

Appendix 11.1

WFD Assessment

Quality Management

	T					
Job No	GC/003613					
Project	Tylorstown Landslip Phase 4					
Location	Tylorstown, Rhondda Cynon Taff, S	South Wales				
Title	Water Framework Directive Con	npliance Assessment				
Document Ref	GC3613-RED-0074-XX-RP-L- 0016					
File reference	\\Cslcpcfs01v\dfs02\Schemes_(Landslide\1 - Documents\EIA\Pl		003613 - RCT Tylorstown			
Date	13/08/2021					
Prepared by	Nicolas Holmberg	Signature (for file)	MAAA			
Checked by	Robin Chase Signature (for file)					
Authorised by	Rachel Taylor	Signature (for file)				

Revision Status / History

Rev	Date	Issue / Purpose/ Comment	Prepared	Checked	Authorised
P01	04/05/2021	S3- Issued for review	NH	RC	RT
P02	13/08/2021	S3- Issued for Consultation	NH	RC	RT

Contents

1.	Introduction	1
1.1	Purpose of this report	1
	Background to the Water Framework Directive	1
	WFD Elements	3
	WFD Assessment Process	4
1.5	Consultation with NRW	5
	Option Summary	7
	Design elements	7
	Construction	S
	Baseline Data	10
	Baseline Scope and data sources	10
	Surface water bodies	10
	Groundwater Bodies Protected Areas	24
	Colliery material properties	26 26
	Water and soil properties at the Receptor Site	27
4.		28
4 .4.1	0	28
	Groundwater – screening of relevant scheme components	30
	Scope of the Assessment	31
	WFD Elements to be assessed	31
	Information and data supporting the assessment	31
	WFD Assessment	33
	WFD Assessment	33
	Surface Water Assessment	33
6.3	Groundwater Assessment	40
7.	Conclusions and Recommendations	46
	Conclusions	46
7.2	Recommendations	46
App	pendix A – WFD Waterbodies Plan	
App	pendix B – Other Watercourses Plan	
	pendix C – Recorded Groundwater Levels	
	pendix D – Summary contaminated land information	
	-	
Abb	pendix E – Summary Water Quality information	

Tables

Table 1. WFD classification for the Afon Rhondda Fach WFD surfa	се
water body.	17
Table 2. WFD classification for the Nant Clydach WFD surface wat	er
body.	19
Table 2. WFD classification for the WFD groundwater body affecte	d by
the Proposed Scheme.	25
Table 3. Surface water screening assessment for scheme	
components.	29
Table 4. Groundwater screening assessment for scheme compone	nts.
	30
Table 5. WFD Assessment of the elements of the Proposed Schen	ne
relevant to surface water bodies.	34

Table 6. WFD Assessment of the elements of the Proposed Scheme relevant to groundwater bodies 4

1. Introduction

1.1 Purpose of this report

- 1.1.1 On Sunday 16th February 2020, Storm Dennis caused the Llanwonno Upper Tip to fail above the village of Tylorstown. Approximately 60,000m³ of slipped material filled the valley bottom from the toe of the slope outwards in an extremely low angled and widely distributed debris envelope, filling the Afon Rhondda Fach's channel and diverting its course to the western side of the valley bottom. The slipped material also covered an essential water main and disused trainline which is used as a footpath. Emergency works (referred to as Phases 1, 2 and 3 of the Tylorstown Landslip scheme) were required to remove the slipped material from the river and valley bottom and transported to nearby receptor sites. These Phases are currently underway and do not form part of the Proposed Scheme.
- 1.1.2 The Proposed Scheme is for Phase 4 of the Tylorstown Tip project which consists of undertaking essential stabilisation and remediation works, as recommended by geotechnical studies, to ensure the remaining material within the Llanwonno Upper tip is safe, as well as offering enhancements for the local area.
- 1.1.3 The main objective for the Proposed Scheme is to prevent any future slips of material such as that that occurred following Storm Dennis by moving colliery material from the Llanwonno Upper Tip (RH01) to a new Receptor Site adjacent to Old Smokey (RH02). Further detail on the Proposed Scheme can be found in Chapter 3.
- 1.1.4 This Water Framework Directive Assessment report has been written to support the planning application and seeks to address the following:
 - The elements of the proposed works which have the potential to negatively impact the surrounding water environment;
 - The methodology and mitigation measures for the proposed works which have been developed to minimise these impacts; and
 - how the proposed scheme complies with the EU Water Framework Directive.

1.2 Background to the Water Framework Directive

1.2.1 The Water Framework Directive (WFD) established a framework across the European Union for the protection of water bodies (including terrestrial ecosystems and wetlands directly dependent upon them), which aims to prevent further deterioration, enhance their status, promote sustainable water use, reduce pollution and mitigate the effects of floods and droughts. Water bodies include surface waters (rivers, large lakes, canals, transitional and coastal waters) and groundwater bodies (superficial and bedrock aguifers).

- 1.2.2 The baseline condition of all water bodies was presented in the River Basin Management Plans (RBMPs) in 2009, with England and Wales being split into its major river basin catchments. Updates to water body status is presented to the European Commission (EC) every six years. The 2015 RBMPs provided Cycle 2 updates and there are a further two cycles to be repeated in 2021 and 2027, by which point all water bodies should be achieving good ecological status or good ecological potential for artificial or heavily modified water bodies (AWB or HMWB).
- 1.2.3 For AWBs and HMWBs the classification system is slightly different in recognition of the impact that human activity can have on the water environment. For such water bodies the classification is based predominantly on the presence or absence of mitigation measures within the water body as a whole. These mitigation measures are defined for each water body within the RBMPs as set by the Natural Resource Wales (NRW) and the Environment Agency (EA).
- 1.2.4 As part of the Proposed Scheme, it is important for the client and NRW (as the relevant regulator) to consider any permanent changes the Proposed Scheme will create against the legal environmental obligations and apply best practice in terms of the environment and WFD. Any changes to physical river features, water flows, and / or chemical and ecological changes the Proposed Scheme may cause for the long term must be adequately considered as well as impacts on locally designated sites all of which form part of the WFD assessment criteria.
- 1.2.5 In line with the WFD, EA Guidelines¹ or equivalent NRW guidelines, to ensure physical works or modifications in rivers meet WFD and wider environmental duties, the proposed scheme should ensure that:
 - The works will not lead to a deterioration in the quality of a water body; and
 - The works will not prevent the future improvement of a water body.
- 1.2.6 Consideration for the wider environmental effects of the scheme should also ensure that:
 - The works will not impact a protected nature conservation area or priority habitat;
 - The works will not impact a protected or priority species;
 - Heritage, landscape and fisheries interests and the need for an Environmental Impact Assessment (EIA) have been considered; and

¹ Flood & Coastal Risk Management – an introduction to delivering the Water Framework Directive (OI 871_11); Protecting and improving the water environment – Water Framework Directive compliance of physical works in rivers (Position 488_10); Internal Environmental Assessment and the Water Framework Directive: assessing new modifications (Operational Instruction 301_10); Internal Environmental Assessment and the Water Framework Directive: Supplementary Info (Operational Instruction 302_10).

- Opportunities have been sought to improve the water environment.
- 1.2.7 Where a scheme is found to cause a potential deterioration in WFD status of a water body or prevent it achieving good status then the project must be subject to a more detailed assessment under Article 4.7 to defend the breach of WFD objectives. Strict environmental and sustainability criteria must be met to enable the work to proceed.

1.3 WFD Elements

1.3.1 The WFD classification for a defined water body is produced by the assessment of a wide variety of different 'elements' measured against specific standards and targets developed by the WFD UK Technical advisory Group (UKTAG) and the European Union that relate to a particular type and natural status of a water body.

Ecological Status

- 1.3.2 Ecological status classification is based upon the following groups of elements:
 - Biological elements such as fish, invertebrates, macrophytes, phytobenthos (which
 include aquatic and riparian plants, macro-algae, phytoplankton and diatoms);
 - Supporting elements that include chemical measurements such as ammonia, dissolved oxygen, pH, phosphate, copper, zinc and temperature (often referred to as 'physchem' attributes) and includes specific pollutants;
 - Hydromorphology (supporting conditions) that assess the physical attributes of the water body such as 'quantity and dynamics of flow', 'river continuity', 'structure of riparian zone' and 'morphology'; and
 - Assessments given for each element are also accompanied by a measure of certainty in the result (i.e. Probable, Suspected, and Certain).
- 1.3.3 The ecological status classification is based upon the poorest measurement found for any of the relevant elements being assessed for the identified water body. 'Good ecological status' is a classification that applies to near-natural water bodies and has been described for assessment purposes to represent those that demonstrate only a slight variation from undisturbed, natural conditions.
- 1.3.4 Primary elements assessed are the biological elements, supported by standard water quality parameters (physchem). The assessment also includes a review of whether or not the water body supports good conditions or features with respect to the quantity and dynamics of flow and the geomorphological condition (hydromorphology). Biotic indicator condition (high, good, moderate, poor, bad) takes precedent over physchem standards for the classification, with physchem only contributing as high, good or moderate (even if poor or bad water quality elements are recorded).

Chemical Status

- 1.3.5 Chemical status is recorded as good or fail and is assessed by compliance with environmental standards for chemicals that are listed in the Environmental Quality Standards (EQS) Directive 2008/105/EC1 4 (and amendments of 2013). These chemicals include priority substances and priority hazardous substances.
- 1.3.6 The chemical status classification for a water body is determined by the worst scoring chemical, along with a measure of results certainty. This is only assessed for water bodies where such pollutants are known to be discharged in significant quantities and is not assessed for watercourses that do not receive such substances (labelled as 'does not require assessment').

Groundwater Status

1.3.7 Groundwater status is based on a series of conditions defined in the WFD (2000/60/EC) and Groundwater Directive (2006/118/EC) and a series of tests have been designed to define good groundwater status in respect of five chemical and four quantitative parameters. The results for these are combined and the worst-case classification for the chemical status and the worst case for the quantitative elements are presented independently and the overall groundwater status is taken from the worst of these two results. Groundwaters are either classed as good or poor status.

Overall Status

- 1.3.8 Overall status classification is based on the poorest result for ecological and / or chemical status and is based on a 'one out, all out' principle. The classification methodology is being continuously developed as more data is collected and monitoring methods improve.
- 1.3.9 For heavily modified and artificial water bodies, the assessment is based more on chemical supporting elements than on the biological elements or supporting conditions. This is because good status would otherwise be impossible to achieve. Meeting the requirements of areas that are protected under other European legislation (e.g. Bathing Waters, Birds, Drinking Water, Freshwater Fish, Shellfish, Habitats, Nitrates and Urban Wastewater Treatment Directives) can also be applied to and strengthen WFD assessments.
- 1.3.10 The 2015 status classification provides a baseline condition against which targets of 'no deterioration' can be measured and provides a basis against which any future improvements can be measured. Reasons for a given classification are complex and may not necessarily be fully understood, particularly if there is a failure of an element of an overall status. Further investigations and improved monitoring may be required.

1.4 WFD Assessment Process

1.4.1 In order to perform the WFD assessment the following methodology has been adopted:

- Step 1 Baseline data collection;
- Step 2 Screening: exclude activities assessed not to have an impact on water bodies or WFD elements;
- Step 3 Scoping: identify water bodies and specific WFD elements to be assessed;
 and
- Step 4 WFD Compliance Assessment: consider impacts and mitigation and conclude the effects of the activity.
- 1.4.2 In order to ensure no deterioration in the WFD status of surface or ground water bodies, the following criteria must be demonstrated:
 - WFD 1: The proposed works will not result in a deterioration of current ecological status or potential.
 - WFD 2: The proposed works will not cause failure to meet Good Ecological Status
 / Good Ecological Potential (GES/GEP) by the target timeframe.
 - WFD 3: The proposed works will not permanently prevent or compromise the relevant environmental objectives being met in other water bodies.

1.5 Consultation with NRW

- 1.5.1 NRW were initially consulted regarding this Scheme through the EIA scoping process and, in their scoping response, NRW confirmed that the planning application and ES were to be accompanied by a WFD assessment and supported by a drainage survey.
- 1.5.2 A meeting was subsequently held between NRW, RCT and Redstart on 28/04/2021 during which Redstart presented the Proposed Scheme as well as their approach to:
 - · The drainage strategy and design;
 - · Site investigations; and
 - The WFD Assessment.
- 1.5.3 NRW were subsequently invited to provide their comments or raise questions about the points above. The following points were raised by NRW:
 - NRW confirmed that they agreed with the assessor's decision to exclude the Nant Clydach from the WFD assessment;
 - NRW requested that the assessment consider the fish spawning season and include appropriate mitigation measures in relation to this; and
 - NRW queried whether the proposals create an easier pathway for leachate, due to looser compaction on the donor site. However, the Redstart design team

confirmed that material is expected to be more tightly compacted at Llanwonno Tip than it is currently.

1.5.4 The above comments were taken into consideration and integrated into the assessment, where relevant, during the finalisation of this report.

Design Description

2.1 Design elements

2.1.1 The Proposed Scheme involves ensuring the remaining material within the tip safe, as well as offering enhancements for the area. As such, it includes the remediation of the remaining material within RH01, on the hillside and consists of the following, as depicted in Figure 2.1.

Llanwonno Tip

- 2.1.2 Circa 195,000m³ of material remaining within Llanwonno Upper Tip, on the hillside, will be removed and landscaping of the area following the removal will be implemented. The hillside will be graded to match the natural sloping gradient of the valley side, tying the area into the surrounding landscape. This will also create more stability on the valley side by removing the material overlying the natural sloping gradient of the valley The proposed excavation area is depicted in drawing GC3613-RED-75-XX-DR-C-0063 and associated cross sections in drawings GC3613-RED-75-XX-DR-C-0064 to 0069.
- 2.1.3 Appropriate surface water drainage will be provided at the reprofiled tip. This will consist of swales and herring bone drains to collect surface water flows, directing them towards a network of three drainage channels below the tip. These will, in turn, direct waters towards an existing channel and outfall to the Afon Rhondda Fach. Further details of the outline drainage design are available in the Tylorstown Slip Phase 4 drainage strategy (see Appendix 11.2 of the Tylorstown Slip Phase 4 Environmental Statement).

Slip Area

2.1.4 Up to 35,000m³ of material will be used to infill such features as the slip scar, below Llanwonno Tip, to bring the ground to a homogenous level, similar to the natural sloping gradient of the valley side.

Widening of Tramway

2.1.5 Approximately 160,000m³ of the material will need to be transported along a disused tramway to the adjacent Receptor Site (approximate centre at ST 02103 95732).
Widening of the existing tram way is necessary to allow access for trucks and plant to RH01 and the Receptor Site.

Receptor Site

- 2.1.6 As mentioned above, approximately 160,000m³ of the material excavated from Llanwonno Tip will be transported to the Receptor Site, to be deposited and landscaped into a new landform, adjacent to the existing Old Smokey. The purpose of this movement of colliery material is to prevent any future slips such as that that occurred in February 2020, by moving it to a more stable and secure location. The final landform at of the Receptor Site will be 540m long, with a width varying between 75m and 120m, a maximum height of 7.08m, a 2.5% cross fall and 1 in 3 side batters. The location of the Receptor Site is depicted in Figure 2.1 below. The outline drainage design proposals for the Receptor Site consist of swales surrounding the new landform and feeding into two attenuation ponds which discharge into the existing drainage network.
- 2.1.7 Further drawings and details of the Receptor Site are available in Volumes 1 and 2 of the Tylorstown landslip Phase 4 Environmental Statement. The exact layout and landscaping of the reprofiled material will be refined during the detailed design and informed by environmental surveys and the EIA process. Further details of the outline drainage design are available in the Tylorstown Slip Phase 4 drainage strategy.

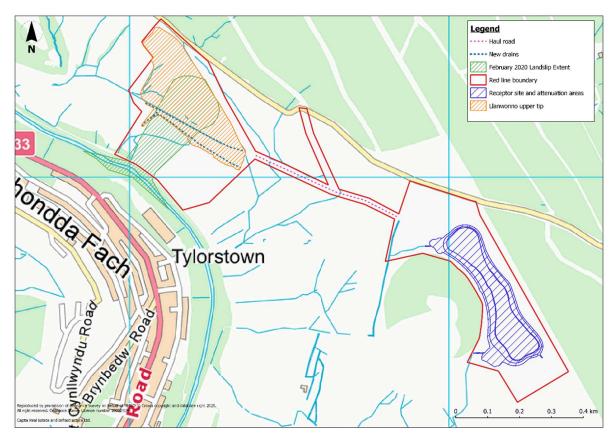


Figure 2.1 Proposed development boundary and design elements

2.2 Construction

Haulage routes and Vehicle Movements

- 2.2.1 The design of the Proposed Scheme allows the recovery of all the material to be undertaken without having to access the public road network. The haulage route used between the sites will be along the disused tramway and not on any public highway for the duration of the Proposed Scheme's construction. This has major advantages in that it saves approximately 3,000 HGV road journeys through Ferndale, and potentially up to 9,000 if travelling through Blaenllechau.
- 2.2.2 It is assumed that the transport of material from Llanwonno tip to the receptor site will require 15,000 HGV movements in total over a period of around four months, giving an average of 135 to 140 HGVs movements per day.
- 2.2.3 The tramway will be widened to approximately 5m, dependent on vehicle size, with a length of 550m. It will be surfaced using stone surfaced crusher run at <300mm in diameter (thickness to be confirmed by the contractor, based on conditions after site strip).
- 2.2.4 Further detail on the transport arrangements required during the depositing of material on the sites are discussed in the Transport Statement² accompanying the application.

Construction compounds

2.2.5 There will be one construction compound on site that will have an approximate area of 5700m². This will be located to the east of the haulage route, north-west of the Receptor Site, as depicted in Figure 2.1.

Construction plant and equipment

- 2.2.6 The plant likely to be used for the construction of the Proposed Scheme includes:
 - Volvo A20 articulated hauler;
 - Volvo A30 articulated hauler; and
 - CAT 320 hydraulic excavator.

Construction practice

- 2.2.7 The majority of works will take place during the working week and only in the daytime.

 There will be no night-time working and minimal working on Saturday and Sunday mornings. All relevant Code of Construction Practice (CoCP) guidelines will be followed to reduce impacts during construction.
- 2.2.8 Further information on the design is available in the Tylorstown Landslip Phase 4
 Environmental Statement³.

² Capita / Redstart (2021), Tylorstown Landslip Phase 4 Transport Statement.

³ Capita / Redstart (2021), Tylorstown Landslip Phase 4 Environmental Statement.

Baseline Data

3.1 Baseline Scope and data sources

- 3.1.1 In order to assess the impacts of the proposed works on the water environment, relative to the objectives of the WFD, an assessment of the baseline conditions is required.
- 3.1.2 The Proposed Scheme is in proximity to fluvial (river) settings and therefore should consider the relevant RBMP. The proposals lie within the Afon Rhondda Fach valley and catchment, which is located within the Severn River Basin.
- 3.1.3 The Water Watch Maps produced by Natural Resources Wales (NRW) and the Severn RBMP have been used to define the current condition of the relevant water bodies, the objectives in place specific to the relevant water bodies, and any protected areas associated with the water bodies.
- 3.1.4 Groundwater level data has been obtained from ground investigation to provide an estimate of the groundwater levels in specific locations to predict the likelihood of potential effects of the scheme components on the groundwater bodies.
- 3.1.5 A drainage survey was undertaken in March 2021, identifying the location and properties of all watercourses and drains within the Redline Boundary. This was undertaken primarily for drainage purposes but has also been used to confirm the water environment and WFD baseline at the site.
- 3.1.6 For the purposes of this assessment, the geographical scope (the 'study area') will cover the immediate extent of the proposed development area and a 1km buffer around the redline boundary, as depicted in Figure V2-S11-0001 of the ES.

3.2 Surface water bodies

- 3.2.1 This section includes the WFD classifications for each WFD surface water body within the study area. All classifications and objectives are included in Table 1. A description of the network of minor watercourses in the study area is also included.
- 3.2.2 Three surface water designated under the WFD are present in the study area (see Appendix A for depiction):
 - Afon Rhondda Fach source to confluence Rhondda R (GB109057027210) designated as a heavily modified water body;
 - Nant Clydach source to confluence R Taff (GB109057027250) not designated artificial or heavily modified water body; and
 - Aman R source to confluence Afon Cynon (GB109057027130) not designated artificial or heavily modified water body.

3.2.3 Other watercourses present within the study area but are not designated WFD water bodies include a large number of unnamed drains, ditches and adits scattered across the side of the valley.

Afon Rhondda Fach

- 3.2.4 The Rhondda Fach River is a tributary of the River Taff and drains a catchment of approximately 29.71 km². The watercourse's headwaters form in the hills above Blaenrhondda, in a marshy area between Mynydd Beili Glas and Mynydd Bwllfa. The river enters the Lluest-wen Reservoir before flowing down into Maerdy and then on through the settlements of Ferndale, Tylorstown and Ynyshir before reaching its confluence with the River Rhondda at Porth.
- 3.2.5 Within the study area the catchment is predominantly urban and post-industrial, characterised by a narrow floodplain with a series of settlements and towns (such as Ferndale and Tylorstown) established along its course. Areas of mostly pastoral with some arable agricultural use as well as woodland are also present with the catchment. The water body is tree lined along most of its course; however, these do not provide a consistent or thick coverage, so they do not provide abundant shading. The water body is also crossed by numerous roads, including the A4233 which runs alongside the watercourse, along the valley bottom, crossing the river in multiple locations. The Rhondda Fach has been heavily modified throughout its course, to accommodate the industrial development of the area, particularly along the stretch adjacent to the Proposed Scheme. As a result, the river is a highly modified and confined watercourse.
- 3.2.6 Site observations of the Afon Rhondda Fach were made from Station Road bridge down to the location of the February 2020 landslip.
- 3.2.7 As it flows below Station Road bridge, the channel of the Rhondda Fach bears no signs of a natural or naturalistic form as it is lined with stone and concrete and runs through a pipe directly below the bridge before discharging into a small bason directly downstream of the bridge. Evidence of the previous industrial activity and further modifications of the floodplain are visible throughout this area, in the form of stone walls and metal pipes (See Figure 3.1 below).

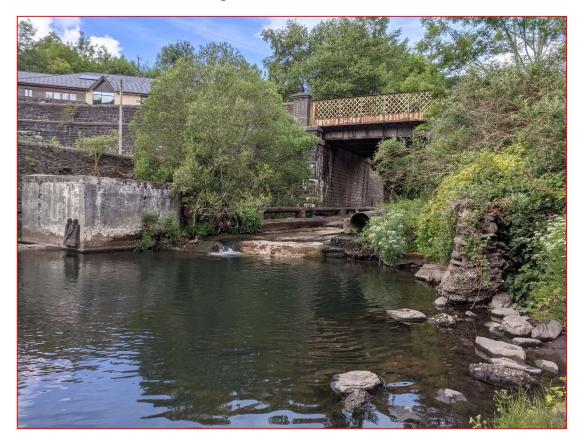


Figure 3.1 Heavily modified section of the Rhondda Fach river, below Station Road bridge.

- 3.2.8 Downstream of this, the watercourse superficially appears more naturalistic, with extensive areas of the channel bed filled with scattered pebbles and boulders (See Figure 3.2). These provide a network of naturalistic pools and riffles that supply varying flows along this reach. However, further evidence of heavy modification is also visible, with the edges of the channel being lined with concrete as well as large areas of the riparian zone (See Figure 3.3). The banks of the Rhondda Fach therefore display great stability and there is no evidence of erosion or natural processes occurring on the banks of the watercourse.
- 3.2.9 This section of the river is lined with trees, Although they do not appear to contribute towards the stability of the banks on this location, they do provide shading to the watercourse.
- 3.2.10 Ecological surveys undertaken along this reach have also identified evidence of Otter activity, meaning that this section of the Rhondda Fach provides a source of foraging for individuals in the area.

Figure 3.2 View of the Rhondda Fach facing downstream, with visible concrete banks.

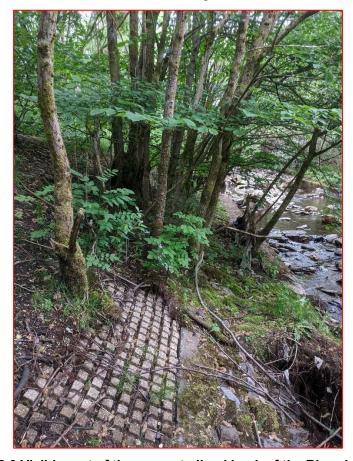


Figure 3.3 Visible part of the concrete-lined bank of the Rhondda Fach.

- 3.2.11 At the location of the February 2020 slip, little evidence remains of the previous course of the Rhondda Fach. As mentioned above, the slipped material accumulated at the bottom of the valley is this location, shfting the course of the river. Emergency works have since been undertaken to remove the excess material and realign the channel to its previous course. Figure 3.4 and Figure 3.5 below show the current alignment of the Rhondda Fach, as a result of the realignment works.
- 3.2.12 The bed and banks of the river have been lined with stone, some of which are remnants of the original channel and others that have been newly imported for the purpose of realigning the watercourse. The bed substrate is generally dominated by coarse cobbles and boulders which provide riffles and varying flows. The channel has been designed into a 2-stage channel, with the lower stage consisting of steep or vertical banks and the upper stage possessing more gradual gradients.
- 3.2.13 Tree and vegetation cover along this stretch of the river were lost as a result the landslip, rendering the banks bare of any shading.
- 3.2.14 As this is a newly realigned channel, there is no evidence of natural processes, however, it is expected that these are likely to be limited and confined by the engineered stone banks of the channel, as it is in the remainder of this reach of the Rhondda Fach.

Figure 3.4 View of the Rhondda Fach at the slip location, facing upstream.

Figure 3.5 View of the slip location on the Rhondda Fach, facing downstream.

- 3.2.15 The Afon Rhondda Fach source to conf Rhondda R WFD water body was classed as having 'Moderate' ecological status in 2009 (Cycle 1), however this has declined to 'Poor' in 2015 (Cycle 2) and poor 2018 (Cycle 2). The poor overall status was due to a poor status for fish in 2015 and 2018. These have been attributed to diffuse and point sources of sediment and organic pollution because of discharge from sewage treatment works, industrial and an abandoned mine. Also, poor fish status has also been attributed to physical barriers to migration. Specific species that were identified as failing in the watercourse are Salmon, Trout and Bullhead.
- 3.2.16 All water body objectives were met in 2015 except for hydrological regime and the fish element which has an objective of good by 2021.
- 3.2.17 WFD classifications are detailed in Table 1.
- 3.2.18 Mitigation measures that are noted as not yet being in place include:
 - control or manage point source inputs
 - · control or manage diffuse source inputs;
 - removal or easement of barriers to fish migration;
 - to mitigate/Remediate point source impacts on receptor; and
 - alter/change permits for sewage treatment works.

3.2.19 Three sets of water samples were collected from the Afon Rhondda Fach in November and December 2020, upstream of the location of the slip (as well as in a tributary draining the tip location), as part of a previous phase of the project (see Appendix E). These were tested for water quality and revealed that concentrations of dissolved copper and zinc in the Afon Rhondda Fach exceed Water Framework Directive EQS. This suggests that the chemical WFD elements of the Afon Rhondda Fach could be of a lesser quality than is reflected in the waterbody's current classification. Additionally, one of the samples obtained from the tributary contained concentrations of dissolved lead exceeding EQS; however, levels in the Rhondda Fach remained below the EQS threshold.

 Table 1.
 WFD classification for the Afon Rhondda Fach WFD surface water body.

	Classifications					
Elements	Afon Rhondda Fach - source to confluence Rhondda R (GB109057027210)					
	2009	2015	2018 Cycle 2	Objectives ⁴		
Overall Status	Moderate	Poor	Poor	Good by 2021		
Ecological Status Potential	Moderate	Poor	Poor	Good by 2021		
Mitigation Measures Assessment	Moderate	Moderate	Moderate	Good by 2021		
Fish	Moderate	Poor	Poor	Good by 2021		
Invertebrates	Good	Good	Good	Good by 2015		
Macrophytes & Phytobenthos	Not assessed	Good	Good	Good by 2015		
Hydromorphological Supporting Elements	Not assessed	Not assessed	Not assessed	Not assessed		
Hydrological Regime	Not assessed	Does not Support Good	Moderate	Good by 2021		
Flow	Not assessed	Fail	Not assessed	Not assessed		
Morphology	Not assessed	Supports Good	Not assessed	Supports Good by 2015		
Physico-chemical quality elements	Not assessed	Not assessed	Not assessed	Not assessed		
Ammonia	High	High	High	High by 2015		
Dissolved Oxygen	High	High	High	High by 2015		
Biological Oxygen Demand (BOD)	Not assessed	Not assessed	Not assessed	Not assessed		
pH	High	High	High	High by 2015		
Phosphate	High	Good	Good	High by 2015		
Temperature	High	High	High	High by 2015		
Specific Pollutants (Annex 8)	High	High	High	High by 2015		
Chemical Status	Good	Good	Good	Good by 2015		
Other pollutants	Not assessed	Not assessed	Not assessed	Not assessed		
Copper	Not assessed	Good	High	Good by 2021		

⁴ It is assumed that the WFD objectives have been met where the previous status is assessed as high or good.

	Classifications					
Elements	Afon Rhondda Fach - source to confluence Rhondda R (GB109057027210)					
	2009	2015	2018 Cycle 2	Objectives ⁴		
Iron	Not assessed	Good	High	Good by 2015		
Zinc	Not assessed	Good	Not assessed	Good by 2015		
Priority hazardous substances	Not Assessed	Not assessed	Not assessed	Not assessed		
Priority substances (Annex 10)	Not Assessed	Good	Not assessed	Good by 2015		

Nant Clydach

- 3.2.20 The Nant Clydach is a small stream that is a tributary of the River Taff. It joins the Taff just outside Pontyprid. and drains a catchment of approximately 25.68 km².
- 3.2.21 Although the waterbody itself is not located within the study area, its catchment does extend into the area of the proposed development. The headwater of the Nant Clydach form to the east of Ferndale and Tylorstown, up on the hills, to the north of Llanwonno. The watercourse flows in a general south-easterly direction along its 13km length, through the village of Ynysybwl before reaching the River Taff, outside Pontyprid.
- 3.2.22 The Nant Clydach is not designated as artificial or heavily modified and its catchment is primarily occupied by woodland areas as well as areas of agricultural land use.
- 3.2.23 The water body was classed as having 'Poor' ecological status in 2009 (Cycle 1), 2015 (Cycle 2) and poor 2018 (Cycle 2). The poor overall status was due to a 'Poor' status for fish in 2015 and 2018, which has been attributed to the presence of physical barriers to fish migration in the watercourse.
- 3.2.24 All water body objectives were met in 2015 except for the fish element which has an objective of good by 2021.
- 3.2.25 WFD classifications are detailed in Table 2.
- 3.2.26 Mitigation measures that are noted as not yet being in place include:
 - · control or manage point source inputs
 - control or manage diffuse source inputs; and
 - removal or easement of barriers to fish migration.

Table 2. WFD classification for the Nant Clydach WFD surface water body.

	or the Nant Clydach WFD surface water body. Classifications				
Elements	Nant Clydach - source to confluence R Taff (GB109057027250)				
	2009	2015	2018 Cycle 2	Objectives⁵	
Overall Status	Poor	Poor	Poor	Good by 2021	
Ecological Status	Poor	Poor	Poor	Good by 2021	
Fish	Poor	Poor	Poor	Good by 2021	
Invertebrates	High	Good	Good	Good by 2015	
Macrophytes & Phytobenthos	Not assessed	Not assessed	High	High by 2021	
Hydromorphological Supporting Elements	Not assessed	Not assessed	Not assessed	Not assessed	
Hydrological Regime	Not High	Supports Good	Not High	Good by 2015	
Flow	Pass	Pass	Not assessed	Not assessed	
Morphology	Good	Supports Good	Good	Good by 2015	
Physico-chemical quality elements	Not assessed	Not assessed	Not assessed	Not assessed	
Ammonia	High	High	High	High by 2015	
Dissolved Oxygen	High	High	High	High by 2015	
Biological Oxygen Demand (BOD)	Not assessed	Not assessed	High	High by 2015	
рН	High	High	High	High by 2015	
Phosphate	High	High	High	High by 2015	
Temperature	High	High	High	High by 2015	
Specific Pollutants (Annex 8)	High	Not assessed	Not assessed	Not Assessed	
Chemical Status	Good	Good	Good	Good by 2015	
Other pollutants	Not assessed	Not assessed	Not assessed	Not assessed	
Copper	Not assessed	Good	Not assessed	Good by 2021	
Iron	Not assessed	Good	Not assessed	Good by 2015	

_

⁵ It is assumed that the WFD objectives have been met where the previous status is assessed as high or good.

	Classifications					
Elements	Nant Clydach - source to confluence R Taff (GB109057027250)					
	2009	2015	2018 Cycle 2	Objectives⁵		
Zinc	Not Assessed	Good	Not assessed	Good by 2015		
Priority hazardous substances	Not Assessed	Not assessed	Not assessed	Not assessed		
Priority substances (Annex 10)	Not Assessed	Good	Not assessed	Good by 2015		

Aman R - source to confluence Afon Cynon

3.2.27 This WFD waterbody is located approximately 1km north of the redline boundary and does not remotely interact with the proposed Scheme. No further consideration has therefore been given to this WFD waterbody.

Minor watercourses

- 3.2.28 A drainage survey of the study area identified a total of 22 drainage channels located on the valley side, within the study area, forming a large network collecting surface water from the top and sides of the valley and discharging it into the Afon Rhondda Fach. Most of these watercourses are artificial, consisting of either excavated drainage ditches, concrete channels or footpaths that now act as flow routes. This network of drains is depicted in Appendix B, with arrows indicating flow paths and direction. None of these watercourses are WFD waterbodies; however, they all lie within the Afon Rhondda Fach catchment.
- 3.2.29 Llanwonno Upper Tip is bordered and drained by ditches; two to the east (channels 13 and 14), a ditch directly to the west (channel 17) and an engineered footpath running to the south, directly below the tip, acting as a drainage ditch (channel 10/10A; see Figure 3.6).
- 3.2.30 Surface water captured within these channels flows downstream, along two principal flow paths (one directly below the tip and the other slightly to the south) that discharge into the Afon Rhondda Fach. Channel 22 has a naturalistic channel (see Figure 3.7) and is located directly below the tip, transporting some of the flows from the above tip down to the Afon Rhondda Fach.
- 3.2.31 The landslip that occurred in 2018 also removed a large section of drainage previously located on the valley side. Following the landslip, emergency mid-slope drainage arrangements were designed and constructed directly below Llanwonno Upper Tip, to capture surface water flowing down the face of the valley without any defined flow path.

Figure 3.6 Footpath below Llanwonno Upper Tip acting as drainage.

Figure 3.7 Naturalistic channel near outfall of channel 22 into the Afon Rhondda Fach.

- 3.2.32 Old Smokey, however, is primarily drained by shallow concrete channels that surround the mound, capturing surface water and directing it along two principal flow paths:
 - The western side of Old Smokey is drained by concrete channel (channel 5) that directs surface water flows in a southerly then westerly direction, down the valley (see Figure 3.8). The lower reaches of the channel have a more natural form and

- are no longer concreted (see Figure 3.9), discharging surface water directly into the Afon Rhondda Fach below; and
- The eastern side of Old Smokey is also drained by a concrete channel (channel 2) that directs flows in a southerly direction, beyond the site boundary and into further drains (see Figure 3.10). The upper reaches of the channel (directly adjacent to Old Smokey) run beside a footpath and show signs of structural damage (see Figure 3.11) A review of aerial mapping and topography suggests that these flows eventually reach the Afon Rhondda Fach; however, this flow route is a much longer than its western counterpart.
- 3.2.33 In addition to these surveyed watercourses, there are several adits lying uphill of Llanwonno Upper Tip that are known to have mine water discharge which flows through the network of channels discussed above.

Figure 3.8 Upper reaches of channel 5. Concrete lined channel.

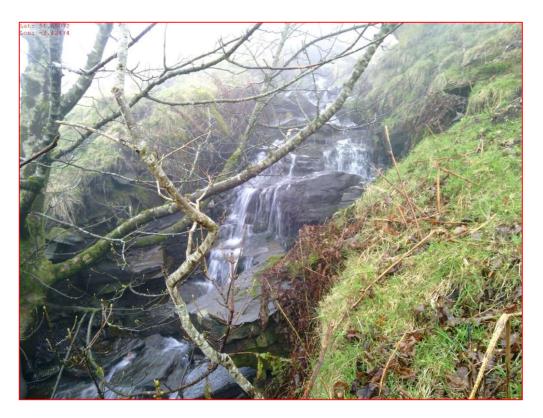


Figure 3.9 Lower reaches of channel 5. Naturalistic channel

Figure 3.10 Lower reaches of channel 2. Concrete lined channel.

Figure 3.11 Upper sections of Channel 2. Concrete channel with visible damage.

3.3 Groundwater Bodies

- 3.3.1 One groundwater body designated under the WFD is present in the study area.
 - SE Valleys Carboniferous Coal Measures (GB40902G201900).
- 3.3.2 All classifications and objectives are included in Table 3.

SE Valleys Carboniferous Coal Measures

- 3.3.3 The SE Valleys Carboniferous Coal Measures groundwater body is a Drinking Water Protected Area. The water body was classed as having an overall status of poor in 2009 due to a combination of good quantitative status and poor chemical status. In 2015, these classifications had not changed and therefore indicated no improvements in the overall water body classification. Failure of the Chemical dependent surface water body status with no information to attribute this to a particular source. This has therefore been listed as no known technical solution available. Targets set to achieve poor chemical status and poor overall status by 2015 have been met.
- 3.3.4 Six recent boreholes (BH01 to BH07) and three existing wells (BH01A to BH03A) from previous GI have been monitored for groundwater, below the footprint of the proposed Receptor Site, with two rounds of testing completed in March 2021. The results (presented in Appendix C of this report) indicate that the equilibrium water table lies more than 70m below ground level (bgl).

 Table 3.
 WFD classification for the WFD groundwater body affected by the Proposed Scheme.

<u>.</u> . ,	SE Valleys Carboniferous Coal Measures (GB40902G201900)			
Elements	Classification 2009	Classification 2015	Objectives ⁶	
Overall Water Body	Poor	Poor	Poor by 2015	
Quantitative Status	Good	Good	Good by 2015	
Quantitative Dependent Surface Water Body Status	Low	Good	Good by 2015	
Quantitative GWDTEs test	Good	Good	Good by 2015	
Quantitative Saline Intrusion	Good	Good	Good by 2015	
Quantitative Water Balance	Good	Good	Good by 2015	
Chemical Status	Poor	Poor	Poor by 2015	
Chemical Dependent Surface Water Body Status	Poor	Poor	Poor by 2015	
Chemical Drinking Water Protected Area	Good	Good	Good by 2015	
Chemical GWDTEs Test	Good	Good	Good by 2015	
Chemical Saline Intrusion	Good	Good	Good by 2015	
General Chemical Test	Good	Good	Good by 2015	

⁶ It is assumed that the WFD objectives have been met where the previous status is assessed as high or good.

3.4 Protected Areas

- 3.4.1 The proposed works will need to consider the presence of any protected areas within the immediate vicinity. Under WFD, the following designations must be considered as protected areas associated with WFD waterbodies:
 - Bathing Waters;
 - Special Protection Areas;
 - Drinking Water Protected Areas;
 - Special Area of Conservation;
 - Nitrate Vulnerable Zone;
 - Shellfish Waters; and
 - Sensitive Areas (Urban Wastewater).
- 3.4.2 Further information on the protected areas present across the water body can be found in the Severn RBMP.
- 3.4.3 As part of this assessment information has been gathered from Natural Resources Wales which provides online maps and databases which present the best available information on the protected sites across Wales.
- 3.4.4 A review of the data available confirmed that:
 - there are no protected areas with the catchment of the Afon Rhondda Fach; and
 - the Nant Clydach WFD waterbody is designated as a Drinking Water Protected Area
- 3.4.5 No designated protected areas will need to be considered in this assessment, given that none identified above will be directly affected by the Proposed Scheme.

3.5 Colliery material properties

- 3.5.1 A Ground Investigation was undertaken at Llanwonno Tip in January 2021 and included chemical testing of the colliery material at Llanwonno Tip, as well as the collection and testing of leachate samples. A summary of the results is available in Appendix D1.
- 3.5.2 Leachate testing of the material comprising Llanwonno Tip also showed the samples to be free from contaminants. No PAHs, monoaromatics or TPH species were present above detection limits. For metals, all except lead were below relevant screening criteria (Water Framework Directive EQS). This creates a potential for the colliery material to be acting as a source of lead pollution to the nearby Afon Rhondda Fach. Refer to Appendix D3 for these results.

3.5.3 Also, testing of the Llanwonno tip material indicates that it is porous, allowing rainwater infiltration levels similar to those currently at the Receptor Site.

3.6 Water and soil properties at the Receptor Site

- 3.6.1 Soil testing was also undertaken within the footprint of the proposed Receptor Site. Soils were shown to be free from contamination regarding relevant screening levels⁷ for a Public Open Space (parks) land use, though several samples reported low pH. Eight of fourteen samples recorded a pH of lower than 6, and two of those eight reported a pH lower than 5. A summary of the results is available in Appendix D2.
- 3.6.2 Leachate testing of the soils revealed that two samples failed against relevant screening criteria (Water Framework Directive EQS) for iron, with a maximum value of 1200μg/l against a limit of 1000μg/l. Leachate testing is known to be aggressive and provide a conservative assessment of the in-situ leaching situation, so it is difficult to assess whether this marginal failure currently affects nearby watercourses (Refer to Appendix D4 for these results). The concentrations of copper, zinc, manganese, and nickel were assessed using the UK Technical Advisory Group Metal Bioavailability Assessment Tool (m-BAT) to determine their bioavailable concentrations. Calcium concentrations, a key parameter of these equations, was below detection limits so the limit has been used in its place. Only one failure was identified, with one sample of zinc from TP3 showing a bioavailable concentration of 12.78 ug/l against a limit of 10.9 ug/l.
- 3.6.3 A borehole (BH07), which recorded the most perched groundwater immediately after drilling, and two surface water monitoring points (located in drainage features between 20m and 40m from the proposed Receptor Site) were tested for a comprehensive suite of water quality parameters in two separate monitoring rounds. Water samples were again shown to be largely free from contamination, though bioavailable manganese concentration of 240µg/l and 180µg/l were recorded in BH07 and one of the surface water samples respectively, exceeding the limit of 123µg/l. Manganese is a common contaminant in colliery spoil so these results are not unexpected, and there is the potential for material at the Receptor Site to be adding to the manganese load in watercourses which run through a valley with numerous colliery waste tips. Dissolved Copper concentrations also exceeded EQS thresholds in all water samples.

⁷ Nathanail et al. (2015), The LQM/CIEH S4ULs for Human Health Risk Assessment.

4. Screening

4.1 Surface water

- 4.1.1 In this section, the scheme components summary (described in Section 2.1) and the water body baseline information (described in Section 3) is used to assess which scheme components and surface water bodies are to be taken forward for the WFD Compliance Assessment. The following principles were applied to screen watercourses in or out for further assessment:
 - All WFD waterbodies located within the redline boundary are automatically screened into the assessment.
 - Any WFD waterbodies that aren't located within the redline boundary but who's
 catchment interacts with the redline boundary is given further consideration and
 can be either screened in or screened out, depending on whether a likely impact
 source and/or pathway are created by the proposed Scheme; and
 - All non-WFD watercourses within the redline boundary are automatically screened out of the assessment but are given further consideration as a pathway, if they are tributaries of WFD waterbody.
- 4.1.2 To screen design elements of the Proposed Scheme in or out for further assessment, it was considered whether a likely impact source and/or pathway exists between the design element and WFD waterbodies or are created by the design element. If so, the design element was screened in.
- 4.1.3 Table 4 sets out the watercourses affected by the Scheme and the relevant Scheme Design Elements before providing a screening outcome for each of these, as well as a justification for this outcome.

 Table 4. Surface water screening assessment for scheme components.

Scheme Design Element	Affected watercourse	Screening outcome	Justification
Removal of material from Llanwonno Tip (RH01) and associated landscaping (including associated drainage works)	Afon Rhondda Fach - source to confluence Rhondda (WFD water body. Ref. GB109057027210)	In	The removal of material and subsequent landscaping of the area (including drainage arrangements) is likely to cause changes to the surface water draining into the Afon Rhondda Fach, potentially affecting the waterbody as a result.
Construction of Haul Road (and associated drainage).	Afon Rhondda Fach - source to confluence Rhondda (WFD water body. Ref. GB109057027210)	In	Although the works associated with the haul road are unlikely to cause significant change to the Afon Rhondda Fach, there is a direct pollution pathway between it and the watercourse.
Creation of a new landform at the Receptor Site	Afon Rhondda Fach - source to confluence Rhondda (WFD water body. Ref. GB109057027210)	ln	The creation of a new landform at the Receptor Site, using colliery spoil is likely to is likely to cause changes to the surface water draining into the Afon Rhondda Fach, potentially affecting the waterbody as a result.
Removal of material from Llanwonno Tip (RH01) and Construction of Haul Road (and associated landscaping drainage).	Nant Clydach - source to confluence R Taff (WFD water body. Ref. GB109057027250)	Out	These proposed design elements of the Scheme do not interact directly or indirectly with the Nant Clydach - source to confluence R Taff WFD waterbody and there is therefore no pathway for impacts to materialise.
Creation of a new landform at the Receptor Site.	Nant Clydach - source to confluence R Taff (WFD water body. Ref. GB109057027250)	Out	Although the Proposed Scheme is partly located with the its catchment, it will not affect the 'Nant Clydach - source to confluence R Taff' WFD water body. The review of LiDAR and the results of the drainage survey have confirmed that surface water in the Scheme location drains westwards, into the Rhondda Fach catchment, as opposed to the Nant Clydach catchment. The drainage proposals of the Scheme will also assure this remains the case post-construction.
All Scheme components	All minor watercourses and drains within the vicinity of the Scheme.	Out	Watercourse receptor value is low as they are not WFD watercourses. Given further consideration as a pathway for impacts to

Scheme Design Element	Affected watercourse	Screening outcome	Justification
			the Afon Rhondda Fach - source to confluence Rhondda downstream.

4.2 Groundwater – screening of relevant scheme components

4.2.1 In this section, all scheme components are assessed for their potential to impact on groundwater quantity and quality. For this screening assessment, scheme components are grouped according to their type rather than focussing on specific components. This is to allow for consideration of the generic impacts of each component at this stage. Scheme components, potential impacts and their screening outcome are provided in Table 5 below.

Table 5. Groundwater screening assessment for scheme components.

Scheme component	Affected water bodies	Screening outcome	Justification / potential impact if relevant
Removal of material from Llanwonno Tip (RH01) and associated landscaping (including associated drainage works)	SE Valleys Carboniferous Coal Measures	ln	Potential to affect groundwater flow, creating or altering of pathways along which existing poor quality groundwater can migrate.
Construction of Haul Road (and associated drainage).	SE Valleys Carboniferous Coal Measures	In	Potential to affect groundwater quality, particularly during the construction and operation of the haul road.
Creation of a new landform at the Receptor Site	SE Valleys Carboniferous Coal Measures	In	Potential to affect groundwater flow, creating or altering of pathways along which existing poor quality groundwater can migrate.

Scope of the Assessment

5.1 WFD Elements to be assessed

5.1.1 The assessment of the Proposed Scheme and its design will be conducted for various WFD elements that are relevant to those that provide the 2015 WFD classification for the water bodies screened in to the assessment in Section 4 above.

Ecological status (potential) elements

5.1.2 The ecological elements considered in this assessment, include Fish; Invertebrates; Macrophytes; and Phytoplankton (including native and non-native species) as well as mitigation measures (as the waterbody is heavily modified). Supporting elements are also assessed in the report, including: physico-chemical quality elements (such as Dissolved Oxygen, pH, Phosphates, Temperature etc.) and hydrological regime parameters (such as flow dynamics and geomorphology).

Chemical status elements

5.1.3 Chemical Status (for priority and priority hazardous substances) is considered in this assessment, including the potential risk of contaminant release during the construction and operational phases.

Temporary works

5.1.4 Temporary works during construction are considered under the WFD but only if potential impacts are permanent. The assessment below primarily focuses on permanent measures and their impact on WFD waterbodies. However, any temporary works undertaken during construction that could result in permanent impacts to a water body (such as extensive quantities of sediment release or pollution incidents) have been considered in this assessment also. These will be adequately mitigated through construction management measures to minimise the risk to WFD waterbodies.

5.2 Information and data supporting the assessment

- 5.2.1 This assessment is supported by information described in the design and baseline (in Sections 2 and 3) as well as the appendices of this report, all of which have been obtained from multiple data sources:
 - WFD classification data available on NRW's Water Watch page and in the Severn RBMP has been used to define the baseline WFD status of the relevant WFD waterbodies. These are provided in Section 3 above;
 - A drainage survey has been undertaken to inform the drainage design of the
 Scheme but will also inform the WFD assessment by providing detail on all drains

and watercourses on site as well as all drainage pathways (and therefore impact pathways) from the various design elements to Rhondda Fach;

- Chemical testing results of the colliery material within Llanwonno tip; and
- Available water quality data collected from the Afon Rhondda Fach, upstream of the drainage outfalls, has also inform the WFD assessment baseline.

WFD Assessment

6.1 WFD Assessment

- 6.1.1 The purpose of the assessment is to ensure that the works are compliant with the WFD.

 The following sections considers the proposed works associated with the development in respect to the objectives of the WFD.
- 6.1.2 The surface water and groundwater assessments are provided in Sections 6.2 and 6.3 respectively. These assessments include: (i) a description of the potential impacts from each scheme component on WFD elements and receptors in the absence of mitigation; (ii) proposed mitigation measures; and (iii) an indication of whether the 3 WFD objectives (as stated in Section 1.4) are met by the Scheme, including with the application of mitigation measures.

6.2 Surface Water Assessment

6.2.1 The elements of the Proposed Scheme affecting watercourses are outlined in Section 2.

The following components of the Proposed Scheme have been screened in to the WFD assessment for impacts on surface water bodies. Table 6 presents this assessment.

Design Element 1: Removal of material from Llanwonno Tip (RH01) and associated landscaping (including associated drainage works);

Design Element 2: Construction of Haul Road (and associated drainage); and

Design Element 3: Creation of a new landform at the Receptor Site.

6.2.2 The full surface water assessment for the above elements is provided in Table 6 below. A high-level summary of the findings is also provided from Section 0.

Table 6. WFD Assessment of the elements of the Proposed Scheme relevant to surface water bodies.

Key impact and WFD elements affected	Potential impacts of the element without mitigation	Proposed mitigation measures	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)
Design Element 1: Ro	emoval of material from Llanwonno Tip (RH01) and associated lar	ndscaping (including associated drainage works)			
Key waterbodies affe	ected: Afon Rhondda Fach - source to confluence Rhondda				
Ecological Status Fish Invertebrates Macrophytes & Phytobenthos	The proposals will have no direct physical impacts on fish, invertebrates, macrophytes and phytobenthos, as the proposal are removed from the Rhondda Fach and therefore not introducing physical barriers or causing the loss of habitat. The removal of the material during construction has the potential to mobilise pollutants contained in the spoil material which, once they drain through the network of drains within the redline boundary, into the Afon Rhondda Fach, have the potential affect fish, and invertebrates, through a reduction in water quality. During the operation of the Proposed Scheme, the quantity of contaminants previously leaching from Llanwonno Upper Tip will be reduced in this location, thereby reducing the risk of contamination to fish and invertebrates. Moreover, the removal of the material from the slopes of the valley will reduce the risk of future landslips and the resulting habitat destruction, fish and invertebrate mortality.	Environmental considerations including the potential for contamination and any risks arising from the development to the environment will be considered through an appropriate risk assessment. Appropriate pollution prevention measures will also be reference in the Construction Environmental Management Plan (CEMP) and applied on site, during the excavation of material. The drainage design of the Llanwonno tip should incorporate swales into the drainage network. These are to be appropriately vegetated in order to capture and retain some of the metals (such as lead) found to be present in the colliery material, thereby reducing the amount reaching the Afon Rhondda Fach downstream. Moreover, the proposed works should avoid the fish spawning season between November and January and ensure appropriate sediment control measures are in place to prevent the discharge of sediment in to the Afon Rhondda Fach.	Yes. No residual adverse impacts and minor beneficial impacts.	Yes. No residual adverse impacts and minor beneficial impacts.	Yes. No residual adverse impacts.
PhysChem Phosphates	The removal of the material during construction has the potential to mobilise sediment and pollutants contained in	Environmental considerations including the potential for contamination and any risks	Yes. No residual adverse impacts	Yes. No residual adverse impacts	Yes. No residual adverse impacts.

Key impact and WFD elements affected	Potential impacts of the element without mitigation	Proposed mitigation measures	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)	
Dissolved oxygen pH Temperature Chemical Status Priority and priority hazardous substances	the spoil material which, once it drains down into the waterbody, has the potential to reduce the Physico-chemical status of the Rhondda Fach. During the operation of the Proposed Scheme, the quantity of contaminants previously leaching from Llanwonno Upper Tip will be reduced in this location, thereby reducing the concentration of metals such as Copper, Iron and Zinc entering the Afon Rhondda Fach. Moreover, the removal of the material from the slopes of the valley will reduce the risk of future landslips and the resulting release of metal pollutants into the Rhondda Fach.	arising from the development to the environment will be considered through an appropriate risk assessment. Appropriate pollution prevention measures will also be reference in the Construction Environmental Management Plan (CEMP) and applied on site, during the excavation of material. The drainage design of the Llanwonno tip should incorporate swales into the drainage network. These are to be appropriately vegetated in order to capture and retain some of the metals (such as lead) found to be present in the colliery material, thereby reducing the amount reaching the Afon Rhondda Fach downstream.	and minor beneficial impacts.	and minor beneficial impacts.		
Hydromorphology Flow quantity & dynamics Bed substrate Riparian zone HMWB Mitigation	The proposals will have no direct or indirect impacts on the hydromorphology of the Afon Rhondda Fach. Moreover, the removal of the material from the slopes of the valley will reduce the risk of future landslips and the associated disruptive impacts on the hydromorphology of the Rhondda Fach. The removal of material from Llanwonno Tip will not prevent	N/A	Yes. No Change Yes. No Change	Yes. No Change Yes. No Change	Yes. No Change	
Measures Design Element 2: Con	the implementation of mitigation measures outlined in the RBMP. Instruction and operation of Haul Road (and associated drainage sted Afon Rhondda Fach - source to confluence Rhondda This change is not expected to have any long-term impact on any of the ecological elements of the Rhondda Fach.	Environmental considerations including the potential for contamination and any risks	Yes. No Change	Yes. No Change	Yes. No Change	

Key impact and WFD elements affected	Potential impacts of the element without mitigation	Proposed mitigation measures	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)
Invertebrates Macrophytes & Phytobenthos	There is potential for pollution event to occur during construction, affecting the ecological status of the watercourse.	arising from the development to the environment will be considered through an appropriate risk assessment. Appropriate			
PhysChem Phosphates Dissolved oxygen pH Temperature Chemical Status Priority and priority hazardous substances	This change is not expected to have any long-term impact on any of the physio-chemical or chemical elements of the Rhondda Fach. There is potential for pollution event to occur during construction, affecting the physico-chemical status of the watercourse.	pollution prevention measures will also be reference in the CEMP and applied on site, during the excavation of material.			
Hydromorphology Flow quantity & dynamics Bed substrate Riparian zone	This change is not expected to have any long-term impact on any of the Hydromorphological elements of the Rhondda Fach.	N/A			
HMWB Mitigation Measures	This change will not prevent the implementation of mitigation measures outlined in the RBMP.	N/A			
	eation of a new landform at the Receptor Site				
Ecological Status Fish Invertebrates Macrophytes & Phytobenthos	The deposition of material at the receptor site is creating a new source of chemical and sediment pollution that could reach the Afon Rhondda Fach downstream. However, based on the review of mapping and the results of the drainage survey, it has been concluded that the moving the material to this new location has increased the length of	Environmental considerations including the potential for contamination and any risks arising from the development to the environment will be considered through an appropriate risk assessment. Appropriate pollution prevention measures will also be	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts

Key impact and WFD elements affected	Potential impacts of the element without mitigation	Proposed mitigation measures	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)
PhysChem Phosphates Dissolved oxygen pH Temperature Chemical Status Priority and priority hazardous substances	the pathway from the contamination source (the material) to the receptor (Afon Rhondda Fach), reducing the amount of contaminants reaching affecting ecological receptors in the Afon Rhondda Fach. This is therefore considered that to constitute a minor improvement to the baseline situation. The material poses a risk of leaching contaminants and sediment during its handling and transport, during construction. The deposition of material at the receptor site is creating a new source of chemical and sediment pollution that could reach the Afon Rhondda Fach downstream. However, based on the review of mapping and the results of the drainage survey, it has been concluded that the moving the material to this new location has increased the length of the pathway from the contamination source (the material) to the receptor (Afon Rhondda Fach), reducing the amount of contaminants reaching the Afon Rhondda Fach. This is therefore considered that to constitute a minor improvement to the baseline situation. The material poses a risk of leaching contaminants and sediment during its handling and transport, during construction.	reference in the CEMP and applied on site, during the excavation of material. The drainage design of the Receptor Site should include the integration of swales into the drainage network. These are to be appropriately vegetated in order to capture and retain some of the metals found to be leaching from the material forming the receptor site, thereby reducing the amount reaching the Afon Rhondda Fach.			
Hydromorphology Flow quantity & dynamics Bed substrate Riparian zone	This change is not expected to have any long-term impact on any of the Hydromorphological elements of the Rhondda Fach, as the works are remote from the river and the hydrology is not significantly changed.	N/A	Yes. No Change	Yes. No Change	Yes. No Change

Key impact and WFD elements affected	Potential impacts of the element without mitigation	Proposed mitigation measures	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)
HMWB Mitigation Measures	The deposition of colliery material at the Receptor Site will not prevent the implementation of mitigation measures outlined in the RBMP and may contribute towards the achievement of one of these ("control or manage diffuse source inputs"), by increasing the pathway between source and receptor.	N/A	Yes. No residual adverse impacts and minor beneficial impacts.	Yes. No residual adverse impacts and minor beneficial impacts.	Yes. No residual adverse impacts.

Summary of surface water assessment

Minor adverse impacts

6.2.3 The deposition of material at the receptor site is not creating a new source of chemical and sediment pollution, as the material is already currently located within the Afon Rhondda Fach catchment, with surface water draining into the WFD watercourse. However, the handling of the material is likely to mobilise pollutants and eventually lead to increased leaching of metals such as lead once the material has been deposited. This could in turn affect ecological elements of the watercourse, such as fish, which already have a failing WFD status.

Minor beneficial impacts

6.2.4 Based on the review of mapping and the results of the drainage survey, it has been concluded that the moving the material to the Receptor Site will increase the length of the pathway from the contamination source (the material) to the receptor (Afon Rhondda Fach), reducing the amount of contaminants reaching the Afon Rhondda Fach. This is therefore considered to constitute a minor improvement to the current baseline scenario.

Mitigation measures

- 6.2.5 The following mitigation measures have been identified as being required to address the impacts on surface water bodies discussed above and ensure the compliance of the Proposed Scheme with the WFD:
 - To prevent any pollution events during construction, appropriate pollution prevention
 measures will be included in the CEMP and applied across the construction site,
 particularly during the excavation and handling of material. Where relevant, the
 proposed works shall comply with and refer to the Department for Environment, Food
 and Rural Affairs (DEFRA) & EA's Pollution Prevention Guidance⁸ as well as NRW
 guidance⁹;
 - The proposed works should avoid the fish spawning season between November and January and ensure appropriate sediment control measures are in place to prevent the discharge of sediment in to the Afon Rhondda Fach;

⁸ Department for Environment, Food and Rural Affairs & Environment Agency (2016), *Guidance: Pollution prevention for businesses*. https://www.gov.uk/guidance/pollution-prevention-for-businesses#construction-inspection-and-maintenance.

⁹ Natural Resources Wales (2014), How to comply with your environmental permit. https://cdn.cyfoethnaturiol.cymru/media/2110/how-to-comply-with-your-environmental-permit.pdf?mode=pad&rnd=131467604540000000

- The drainage design of the Llanwonno tip should incorporate swales into the
 drainage network. These are to be appropriately vegetated in order to capture and
 retain some of the metals (such as lead) found to be present in the colliery material,
 thereby reducing the amount reaching the Afon Rhondda Fach downstream;
- The drainage design of the Receptor Site should incorporate swales and wetlands
 into the drainage network. These are to be appropriately vegetated (with rush
 species for example) in order to capture and retain some of the metals (such as lead)
 found to be present in the colliery material, thereby reducing the amount reaching the
 Afon Rhondda Fach downstream; and
- Topsoil should be reinstated to cap both the remainder of Llanwonno tip and the
 Receptor Site, allowing natural regeneration of vegetation in these areas. This would
 reduce the mobilisation of sediment and leachate following the deposition of the
 colliery material. The effectiveness of this mitigation measure is expected to
 increase with time, as vegetation establishes itself and stabilises the topsoil capping.
- 6.2.6 Provided these mitigation measures are implemented, the Scheme is considered to have negligible impacts on WFD surface waterbodies and thereby complies with the WFD.

6.3 Groundwater Assessment

6.3.1 The following components of the Proposed Scheme have been screened in for consideration in the WFD assessment for impacts on groundwater bodies:

Design Element 1: Removal of material from Llanwonno Tip (RH01) and associated landscaping (including associated drainage works); and

Design Element 2: Creation of a new landform at the Receptor Site.

6.3.2 The full groundwater assessment for the above elements is provided in Table 7 below.

Table 7. WFD Assessment of the elements of the Proposed Scheme relevant to groundwater bodies

WFD Element	Potential impacts of the element without mitigation ment 1: Removal of material from Llanwonno Tip (RH01) and as	Proposed mitigation measures sociated landscaping (including associated drainage works)	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)
Key water be	odies affected: SE Valleys Carboniferous Coal Measures				
Quantitative	Although the removal of 195,000m³ of material from Llanwonno Tip poses a risk to groundwater flows, a dramatic increase in levels as a result of the Scheme is highly unlikely, as the phreatic surface which presents itself in the remnant and lowered material mass is almost certainly going to be less elevated than in the pre-slip taller landform.	Boreholes will be drilled at a time when most of the material has been moved (once the valley slope is stable) in order to monitor whether groundwater levels remain stable (within seasonal variations), particularly in the vicinity of springs, streams and former ponding area. Groundwater levels will be monitored over 6 months, during winter, employing a once monthly frequency.	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts
	It is therefore considered that the impact is negligible but that further monitoring should be undertaken to confirm this.	Appropriate pollution prevention measures will also be reference in the CEMP and applied on site, during the excavation of material. Reference shall be made to DEFRA) & the EA's Pollution Prevention Guidance as well as NRW guidance.			
Chemical	The removal of 195,000m³ of material from Llanwonno Tip is likely to mobilise sediment and contaminants that have the potential to enter groundwater bodies both during construction, when these are likely to be mobilised, and during operation, when the newly exposed material may be more susceptible to erosion and leaching, following the removal of the covering material. Previous reports¹011 indicate that some hydraulic connection is considered likely between the colliery spoil and the	Environmental considerations including the potential for contamination and any risks arising from the development to the environment will be considered through an appropriate risk assessment. Appropriate pollution prevention measures will also be reference in the CEMP and applied on site, during the excavation of material. Reference shall be made to DEFRA) & the EA's Pollution Prevention Guidance as well as NRW guidance. The drainage design of the Llanwonno tip should incorporate swales into the drainage network. These are to be	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts

¹⁰ Halcrow Group Ltd. (2004), *Llanwonno Tips Reclamation Scheme Stability Report*

¹¹ Halcrow UK (2000), Llanwonno Tips Reclamation Scheme Option Assessment Report, Ref: KJ/LWTR/R1

WFD Element	Potential impacts of the element without mitigation	Proposed mitigation measures	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)
	superficial deposits which suggest that this would remain the case after the removal of material. However, the removal of the material from Llanwonno Tip also presents a beneficial impact, as this will reduce the volume of material from which contaminants can leach into the groundwater in this location.	appropriately vegetated to capture and retain some of the metals (such as Lead) found to be present in the colliery material, thereby reducing the amount reaching the groundwater below. It is also recommended that some form of seeding be applied to the newly exposed tip side, in order to encourage natural regeneration and reduce the risk of erosion, thereby reducing the potential for contaminants and sediment to reach the groundwater below.			
	ent 2: Construction and operation of Haul Road (and associated affected Afon Rhondda Fach - source to confluence Rho The construction of the haul route as well as its use during the construction period is not considered to have any impacts on groundwater flows and availability, as no significant works are expected below ground.		Yes. No Change	Yes. No Change	Yes. No Change

WFD Element	Potential impacts of the element without mitigation	Proposed mitigation measures	WFD 1 objective met? (No deterioration)	WFD 2 objective met? (No prevention to meet objectives)	WFD 3 objective met? (No prevention of other WBs to meet objectives)
Quantitative	The deposition of material at the Receptor Site has the potential to affect groundwater flow paths within the waterbody below. However, the review of Ground Investigation (GI) results confirm that ground water was not encountered within 19m of the surface at the receptor site (See Appendix D2), meaning that the deposited material at the receptor site is unlikely to have any impact on groundwater flows and availability.	Monitoring wells to be installed prior to the placement of material on the receptor site, to monitor any changes in groundwater levels with at least two rounds of water level monitoring before placement of the material at the Receptor Site.	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts	Yes. Negligible residual adverse impacts
Chemical	The deposition of material at the receptor site is creating a new source of chemical and sediment pollution that could reach the groundwater body below. However, GI results confirm that ground water was not encountered within 19m of the surface at the receptor site (See Appendix D2), meaning that any sediment or leachate from the deposited material is unlikely to find a direct pathway to the waterbody below.	Environmental considerations including the potential for contamination and any risks arising from the development to the environment will be considered through an appropriate risk assessment. Appropriate pollution prevention measures will also be reference in the CEMP and applied on site, during the excavation of material. Reference shall be made to DEFRA) & the EA's Pollution Prevention Guidance as well as NRW guidance.	Yes. No residual adverse impacts and minor beneficial impacts.	Yes. No residual adverse impacts and minor beneficial impacts.	Yes. No residual adverse impacts and minor beneficial impacts.
	Moreover, based on the results of the GI, depth of groundwater appears to be greater at the Receptor Site than at Llanwonno Tip, meaning that, by moving the material to this location, the length of the pathway from the contamination source (the material) to the receptor (SE Valleys Carboniferous Coal Measures waterbody) has been increased. This is therefore considered to constitute a minor improvement to the baseline situation. The material poses a risk of leaching contaminants and sediment during its handling and transport, during construction.	The drainage design of the Receptor Site should include the integration of swales into the drainage network. These should be appropriately vegetated to capture and retain some of the metals (such as Lead) found to be leching from the deposited material, thereby reducing the amount reaching the groundwater below. The placement of seeded topsoil on top of the newly formed Receptor Site would reduce the likelihood of metal and sediment mobilisation.			

Summary of groundwater assessment

Negligible adverse impacts

- 6.3.3 Based on the available information on the depth of groundwater and the nature of the Proposed Scheme, it is considered that the Scheme will not create any barriers to groundwater movement. Although a risk of increasing groundwater levels exists, this is considered to negligible and mitigation measures below will ensure that any increase in risk is identified.
- 6.3.4 The risk of groundwater contamination from construction activities is also considered to be negligible, provided best-practice working methods are employed, as suggested in the mitigation measures below.
- 6.3.5 A risk of groundwater contamination post-construction has been identified, as the moved material is likely to contain mobilisable contaminants. However, this risk is negligible once the design mitigation measures below are applied. As a whole, the Scheme is considered to provide an improvement to the current baseline, by moving 160,000m³ of material to a location with deeper groundwater strata and thereby reducing the likelihood of leachate reaching the SE Valleys Carboniferous Coal Measures WFD waterbody.

Mitigation measures

- 6.3.6 The following mitigation measures have been identified as being required to address the impacts on groundwater discussed above and ensure the compliance of the Proposed Scheme with the WFD:
 - Monitoring wells to be installed prior to the placement of material on the Receptor Site, to monitor any changes in groundwater levels during the material placement stages, with at least two rounds of water level monitoring before placement of the material at the Receptor Site;
 - Boreholes will be drilled at Llanwonno Upper Tip, at a time when most of the material
 has been moved (once the valley slope is stable), in order to monitor whether
 groundwater levels remain stable (within seasonal variations), particularly in the
 vicinity of springs, streams and former ponding area. Groundwater levels will be
 monitored over 6 months, during winter, employing a once a month frequency;
 - The construction works should avoid the fish breeding season between November and January, where possible, and ensure appropriate sediment control measures are in place to prevent the discharge of sediment in to the Afon Rhondda Fach;
 - To prevent any pollution events during construction, appropriate pollution prevention measures will be included in the CEMP and applied across the construction site,

particularly during the excavation and handling of material. Where relevant, the proposed works shall comply with and refer to DEFRA & the EA's Pollution Prevention Guidance as well as NRW guidance.

6.3.7 Moreover, mitigation measures integrated into the design to prevent degradation to surface water WFD bodies, such as the integration of swales into the drainage design and the re-use of topsoil onsite, will also contribute towards mitigating for impacts on groundwater WFD bodies.

Conclusions and Recommendations

7.1 Conclusions

- 7.1.1 The Proposed Scheme and associated construction works have been assessed in relation to the objectives of the WFD. Each proposed activity and design element have been assessed against the WFD to ensure all objectives/criterion are met for compliance to be achieved.
- 7.1.2 The Proposed Scheme was found to potentially have minor adverse and positive impacts on local WFD waterbodies (both surface water and groundwater bodies). However, a few mitigation measures have been recommended in this report to reduce the severity of the adverse impacts to a negligible level.
- 7.1.3 In conclusion, provided recommended mitigation measures are applied, the Proposed Scheme satisfies the relevant criteria for compliance with the WFD. The proposed works can be said to satisfy the following statements:
 - WFD 1: The proposed works will not result in a deterioration of current ecological status or potential;
 - WFD 2: The proposed works will not cause failure to meet Good Ecological Status (GES) by the target timeframe; and
 - WFD 3: The proposed works will not permanently prevent or compromise the relevant environmental objectives being met in other water bodies.

7.2 Recommendations

- 7.2.1 Any final scheme should take on board the mitigation measures outlines in the tables within Section 6 of this Report.
- 7.2.2 Should further detailed design information be released, or design changes made which invalidate the assumptions used and/or figures used in calculations within this assessment, reevaluation of the compliance assessment would be required.
- 7.2.3 Should any additional works be identified during the proposed activities which fall outside of those specified in this assessment, further assessment would be required and compliance with the WFD assured.

Appendix A – WFD Waterbodies Plan

Appendix B – Other Watercourses Plan

Appendix C – Recorded Groundwater Levels

Appendix C1 – Groundwater levels at Llanwonno Tip

The groundwater depths within and beneath the Llanwonno Tips were recorded with Piezometers installed by Thyssen Geotechnical Ltd in 1993(1) and 1995(2) and Exploration Associates in 2001(3). The results of this monitoring are presented in the table below, Further details of the monitoring process are available in Halcrow's 2004 Stability Report.

Borehole/ Piezometer No	Borehole Elevation (mOD)	Piezometer/ Standpipe Tip Elevation (mOD)	Elevation of Base of Tip (mOD)	Elevation of Base of Superficial Deposits (mOD)	Max Water Level (mOD)	Min Water Level (mOD)	Remarks
BH4 ⁽¹⁾	317.39	302.39	<302.39	Not proved	302.48	302.48	One reading only (9.10.93). Piezometer in Upper Tip colliery spoil.
BH6 ⁽¹⁾	318.66	306.51	306.51	<305.16	Dry	Dry	One reading only (9.10.93). Piezometer at base of Upper Tip colliery spoil.
BH7 ⁽¹⁾	267.29	256.37	256.39	<254.79	Dry	Dry	One reading only (9.10.93). Piezometer at base of colliery spoil in the Lower Tip.
LWN1a ⁽²⁾	339.66	316.66	332.16	331.57	318.73	317.64	Piezometer in sandstone.
LWN1b(2)	339.73	332.13	332.13	331.57	Dry	Dry	Piezometer at base of Upper Tip colliery spoil.
LWN2a ⁽²⁾	304.47	287.21	296.11	289.25	293.07	288.96	Piezometer in siltstone above No.1 Rhondda Rider coal seam.
LWN2b(2)	304.51	296.11	296.11	289.25	298.54	297.00	Piezometer at base of Upper Tip colliery spoil.
LWN3a ⁽²⁾	317.62	283.12	293.62	293.12	294.71	292.61	Piezometer in mudstone.
LWN3b ⁽²⁾	317.62	294.12	293.62	293.12	294.67	293.96	Piezometer at base of Upper Tip colliery spoil.
LWN4(2)	266.06	248.06	247.96	244.06	248.85	248.5	Piezometer in base of Lower Tip colliery spoil.

Borehole/ Piezometer No	Borehole Elevation (mOD)	Piezometer/ Standpipe Tip Elevation (mOD)	Elevation of Base of Tip (mOD)	Elevation of Base of Superficial Deposits (mOD)	Max Water Level (mOD)	Min Water Level (mOD)	Remarks
LWT 1a ⁽³⁾	299.01	279.72	N/A	296.21	280.48	279.88	Piezometer in Siltstone
LWT 1b ⁽³⁾	299.01	296.36	N/A	296.21	296.61	296.48	Piezometer in Superficial Deposits
LWT 2a (3)	340.18	328.87	333.78	331.08	329.39	328.87	Piezometer in Sandstone
LWT 2b ⁽³⁾	340.18	334.08	333.78	331.08	334.08	Dry	Piezometer in base of colliery spoil in the Upper Tip.
LWT 3a ⁽³⁾	315.04	303.55	304.29	302.54	302.65	302.65	Piezometer in Superficial Deposits below Colliery Spoil tip
LWT 3b ⁽³⁾	315.04	306.54	304.29	302.54	306.42	306.42	Piezometer near base of Upper Tip colliery spoil.
LWT 4Aa(3)	328.50	311.68	320.25	319.25	311.79	311.68	Piezometer in Sandstone
LWT 4Ab(3)	328.50	318.81	320.25	319.25	Dry	Dry	Piezometer in Superficial Deposits below Colliery Spoil tip.
LWT 5a ⁽³⁾	314.12	298.72	300.92	293.02	299.89	298.93	Piezometer in Superficial Deposits below Colliery Spoil tip
LWT 5b ⁽³⁾	314.12	301.01	300.92	293.02	302.44	301.19	Piezometer in base of Upper Tip colliery spoil
LWT 6a ⁽³⁾	303.64	288.00	295.54	288.14	290.45	288.13	Piezometer in Superficial Deposits below Colliery Spoil tip
LWT 6b ⁽³⁾	303.64	296.12	295.54	288.14	297.87	297.42	Piezometer in base of Upper Tip colliery spoil

Borehole/ Piezometer No	Borehole Elevation (mOD)	Piezometer/S tandpipe Tip Elevation (mOD)	Elevation of Base of Tip (mOD)	Elevation of Base of Superficial Deposits (mOD)	Max Water Level (mOD)	Min Water Level (mOD)	Remarks
LWT 7a ⁽³⁾	287.39	273.62	279.09	273.94	278.29	276.96	Piezometer at base of Superficial Deposits
LWT 7b ⁽³⁾	287.39	279.75	279.09	273.94	279.85	279.80	Piezometer in base of Upper Tip colliery spoil
LWT 8a ⁽³⁾	259.75	235.16	238.15	232.25	235.34	235.33	Piezometer in Superficial Deposits below colliery spoil tip
LWT 8b(3)	259.75	238.22	238.15	232.25	Dry	Dry	Piezometer in base of Lower Tip colliery spoil

Appendix C2 – Groundwater levels at the Receptor Site

The groundwater depths beneath the Receptor Site were recorded with Piezometers on 19/03/2021 and 06/04/2021. BH07 is not located within the footprint of the receptor site, but to the south of it.

		Location									
	BH01	BH02	BH03	BH05	ВН06	BH07	BH01A	BH02A	ВН03А		
Response zone/ Hole depth (m)	17-20	21-24	5-8	17-20	17-20	5-8	65	70	69		
GWL (m) 19.03.2021	DRY	23.20	DRY	19.85	DRY	6.43	DRY	DRY	DRY		
GWL (m) 06.04.2021	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY	DRY		

Appendix D – Summary contaminated land information

Appendix D1 – Llanwonno Tip summary contaminated land information (Soil)

Determinand	Screening	Min	Max
General	value		
	0.0	F 0	7.4
pH - Automated	6-8	5.8	7.4
Total Sulphate as SO4	-	330	6000
Total Organic Carbon (TOC)	-	0.7	3.5
PAHs			
Naphthalene	1200	0.28	0.89
Acenaphthylene	29000	< 0.05	< 0.05
Acenaphthene	29000	< 0.05	< 0.05
Fluorene	20000	< 0.05	0.2
Phenanthrene	6200	0.31	1.5
Anthracene	150000	< 0.05	0.23
Fluoranthene	6300	< 0.05	0.94
Pyrene	15000	< 0.05	0.78
Benzo(a)anthracene	49	< 0.05	0.51
Chrysene	93	< 0.05	0.55
Benzo(b)fluoranthene	13	< 0.05	0.38
Benzo(k)fluoranthene	370	< 0.05	0.21
Benzo(a)pyrene	11	< 0.05	0.23
Indeno(1,2,3-cd)pyrene	150	< 0.05	< 0.05
Dibenz(a,h)anthracene	1.1	< 0.05	< 0.05
Benzo(ghi)perylene	1400	< 0.05	< 0.05
Speciated Total EPA-16 PAHs	-	< 0.08	6.28
Metals			
Arsenic (aqua regia extractable)	170	5.6	38
Lead (aqua regia extractable)	1300	18	68
Manganese (aqua regia extractable)	-	120	460

Appendix D2 - Receptor site summary contaminated land information (Soil)

Determinand	Screening value	Min	Max
General	value		
pH - Automated	6-8	4.8	8.9
Calorific value	-	2.1	8.1
PAHs	-	2.1	0.1
Naphthalene	1200		
·		< 0.10	0.88
Acenaphthylene	29000	< 0.10	0.33
Acenaphthene	29000	< 0.10	0.47
Fluorene	20000	< 0.10	0.55
Phenanthrene	6200	< 0.10	2.8
Anthracene	150000	< 0.10	0.51
Fluoranthene	6300	< 0.10	2.7
Pyrene	15000	< 0.10	2.5
Benzo(a)anthracene	49	< 0.10	1.1
Chrysene	93	< 0.10	1.8
Benzo(b)fluoranthene	13	< 0.10	0.81
Benzo(k)fluoranthene	370	< 0.10	1.5
Benzo(a)pyrene	11	< 0.10	0.69
Indeno(1,2,3-cd)pyrene	150	< 0.10	0.39
Dibenz(a,h)anthracene	1.1	< 0.10	0.54
Benzo(ghi)perylene	1400	< 0.10	0.58
Speciated Total EPA-16 PAHs	-	< 2.0	18
Metals			
Arsenic (aqua regia extractable)	170	6.4	19
Lead (aqua regia extractable)	1300	6.1	190
Manganese (aqua regia extractable)	-	59	1400

Appendix D – Summary contaminated land information

Appendix D3 – Screening of leachate from Llanwonno Tip material

Appendix D – Summary contaminated land information

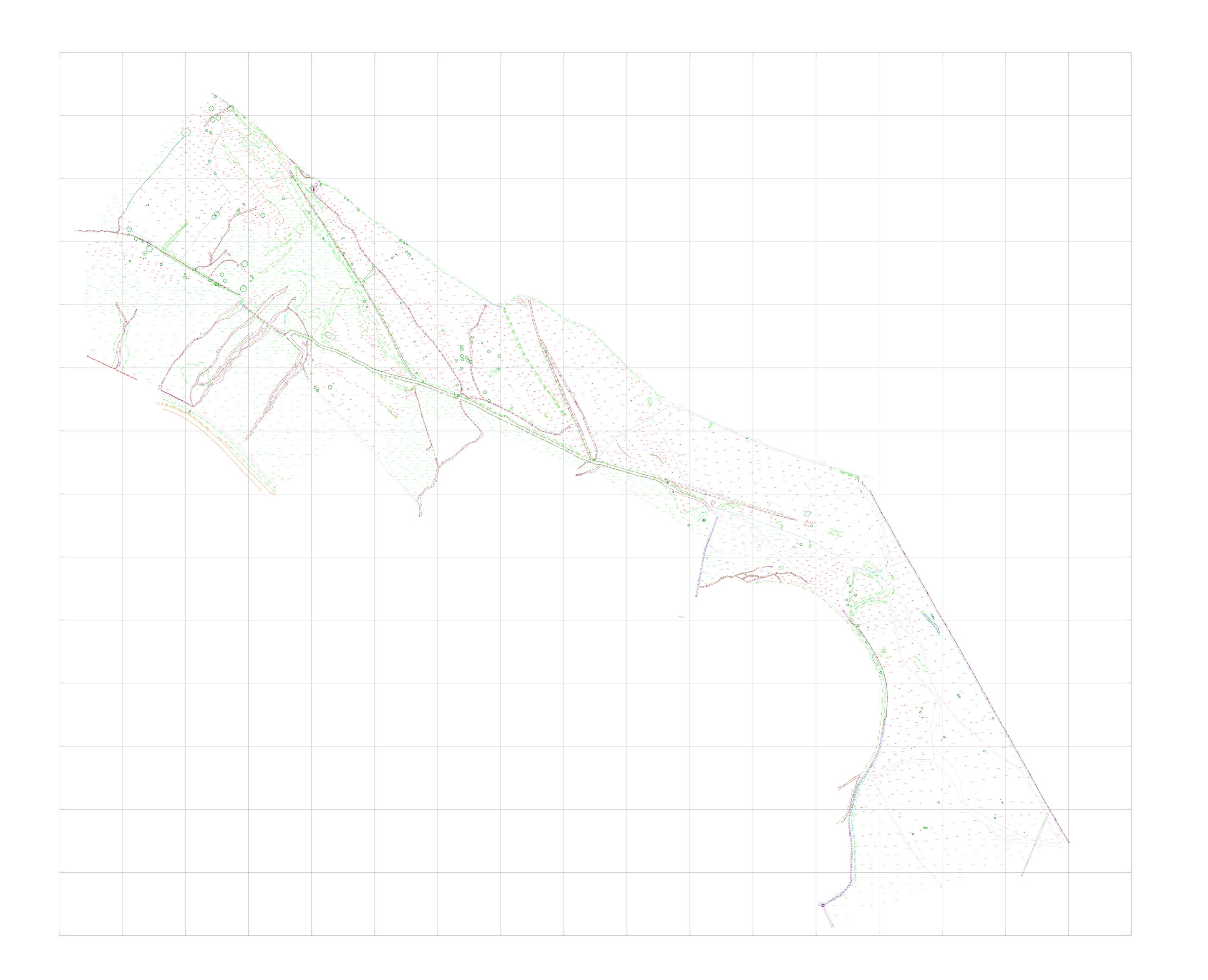
Appendix D4 – Screening of leachate from existing soils at the Receptor Site

Appendix E – Summary Water Quality information

Capita Property and Infrastructure Ltd

St David's House Pascal Close St Mellons Cardiff CF3 0LW

Appendix 11.2


Drainage Strategy

Appendix A

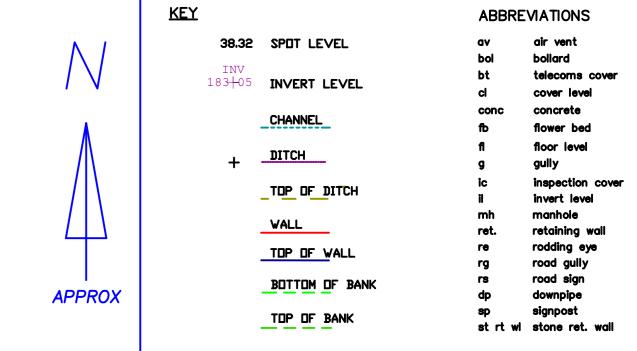
Drawings

A.1 Topographic survey

VINCI SURVEYS 24 BRIDGE STREET NEWPORT GWENT NP20 4SF

VINCI SURVEYS

WEB: WWW.VINCISURVEYS.COM MAIL: INFO@VINCISURVEYS.COM MOB: 07951943789


FACEBOOK: /VINCISURVEYS TWITTER: @VINCISURVEYS

- This drawing is copyright and its use or reproduction without the written permission of VINCI SURVEYS is prohibited.
- 2. Due to unavoidable inaccuracies during the reproduction process these drawings should not be scaled. Where dimensions are critical VINCI SURVEYS should be requested to confirm dimensions based on survey information. Scales appearing at the base of this plan are for indicative purposed only.
- 3. This plan has been prepared in accordance with B.S. 1192, Part 1 in relation to scale and dimension. Tolerances permitted within the British Standard should be observed.
- 4. All dimensions and particulars should be checked on site. Any discrepancies sohuld be reported to VINCI SURVEYS before any work commences.

VINCI surveys

Station	Easting	Northing	Level
ST1	301024.634	196152.782	229.597
ST1A	301424.950	196052.676	318.845
ST2	301633.731	195950.365	358.466
ST3	301789.287	195874.378	392.359
ST4	301784.167	195706.277	386.235
ST5	301924.577	195774.468	403.055
ST6	301961.963	195815.759	405.653
ST7	301923.665	195886.615	405.913
ST8	301781.025	195960.003	399.051
ST9	301581.297	196056.825	366.135
ST10	301294.684	196135.332	314.017
ST11	300903.480	196275.848	261.390
ST12	301187.127	196347.656	338.764
ST13	301494.536	196198.629	375.857
ST14	301752.087	196053.774	406.663

Job: TOPOGRAPHICAL SURVEY TYLORSTOWN

Client: WALTERS/RCT

Scale:	Date:	Drawn By:	Checked By:	Job Ref.
1:2500	04/05/2021	SR	SR	001
NULES:				

CO-ORDINATES RELATED TO A SURVEY GRID DERIVED FROM VRS/OSTN15 LEVELS RELATED TO A SURVEY DATUM DERIVED FROM VRS/OSGM15 2D LEVELS WITH CONTOURS

Appendix B

Documents

B.1 Ground investigation reports

Unit 15, Crosby Yard, Wildmill, Bridgend, Mid Glamorgan, CF31 1JZ, UK Tel: +44 (0) 1656 646588 Fax: +44 (0) 1656 646606 EMail: exploration@bridgend.esgl.co.uk

Llanwonno Tips Reclamation Scheme

Report on Ground Investigation 151258

Client:

Rhondda Cynon Taff CBC Economic & Community Development Team Valleys Innovation Centre Navigation Park Abercynon CF45 4SN Engineer:

Halcrow Group Limited 31-33 Newport Road Cardiff CF24 0AB

CONTENTS

151258 Volume I

				PAGE
1.	INTRODUCTION			1
2.	THE SITE			1
3.	FIE	LDWORK		2
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	General Boreholes In Situ Testing Trial Pits Instumentation Survey Hand Dug Pits Groundwater Monitoring		3
4.	LAB	ORATORY TESTING		4
	4.1 4.2	Routine Testing Chemical Testing		
5.	GRO	OUND CONDITIONS		5
REF	5.1 5.2 5.3 ERENC	Strata Encountered Groundwater		
ENC	LOSUF	RES		
	A B C D	Drawings Exploratory Hole Records Laboratory Test Results Groundwater Monitoring		
APP	ENDIX	General Notes		
		Ceneral Indies		

Volume II - Photographs

1. INTRODUCTION

On the instruction of Halcrow Group Limited (HGL), a ground investigation was carried out by Exploration Associates (EA) at Llanwonno Tips. The instruction to proceed with the ground investigation was given by Rhondda Cynon Taff CBC in a fax dated the 5th of November 2001, reference QA 166K/BP 026459

This factual report provides a description of the site, a summary of the investigation procedures adopted and presents the findings of the exploratory holes, laboratory test results and in situ testing results.

The work was carried out in general accordance with the relevant British Standards and the enclosed general notes.

2. THE SITE

The site is located near Ferndale on an unclassified road leading from Blaenllechau to Llanwonno, as shown on the Site Location Plan, Enclosure A, Drawing 1. The approximate National Grid Reference of the site is ST 011 963.

The site is generally square in shape, but is split into three linear tiers running parallel to the hill side. Access to the site was constructed on a temporary basis from the Llanwonno to Blaenllechau road and via Forestry Commission tracks. The site was covered by rough grassland and ferns.

Access to borehole position LWT2 was achieved through Mrs Barbara Williams' land to the East of the site.

3 FIELDWORK

3.1 General

The fieldwork was carried out during the period between 29th of October 2001, and the 17th of December 2001 generally comprised the drilling of cable percussive boreholes, rotary boreholes and excavation of trial pits, along with associated in situ testing, sampling and the installation of piezometer instrumentation.

The fieldwork was carried out in general accordance with BS 5930: 1999.

3.2 Boreholes

Nine 200mm nominal diameter boreholes were drilled using standard cable percussion techniques to depths of between 9.30 metres and 27.70 metres below existing ground level.

During the course of the cable light percussion drilling, 100mm nominal diameter undisturbed samples, large disturbed (bulk) and small disturbed (jar) were obtained at regular intervals for identification and descriptive purposes, and to facilitate laboratory testing. On encountering groundwater, levels were recorded at 5 minute intervals up to 20 minutes in total.

Six of the eight cable light percussive boreholes were continued using rotary coring techniques to depths of between 14.75 metres and 41.50 metres below existing ground level. Two boreholes, LWT1 and LWT4A, were commenced from ground level using a combination of rotary open hole to depths of 3.50 metres and 11.70 metres and rotary cored to a depth of 23.50 and 16.70 metres, respectively. During the course of drilling, 76mm nominal diameter core was recovered for identification and descriptive purposes.

Photographs of the core are presented within Volume II.

The depths and descriptive details of the strata encountered including comments on the groundwater conditions, details of samples taken and drilling progress are shown on the Borehole Records, Enclosure B. The locations of the boreholes are shown on the Exploratory Hole Location Plan, Enclosure A Drawing 2.

3.3 In Situ Testing

In situ Standard Penetration Tests (SPTs) were performed during the cable percussion drilling, at specified intervals to provide an indication of penetration resistance. The results of which, uncorrected for the effects of overburden pressure, are presented on the individual borehole records in Enclosure B.

3.4 Trial Pits

Five trial pits were excavated using a 15 ton 360 hydraulic tracked excavator to a minimum depth of 2.00 metres and a maximum depth of 3.50 metres below existing ground level. From these large disturbed (bulk) and small disturbed (jar) samples were taken at intervals specified by the HGL Engineer. Trial Pit records are presented within Enclosure B.

3.5 Instrumentation

A total of sixteen 19mm nominal diameter piezometer standpipes were installed in the boreholes, two in each borehole, with the general rule of one in superficial deposits and one in bedrock.

For full details reference should be made to the individual exploratory hole records, Enclosure B.

3.6 Survey

On completion of the drilling a survey was carried out by John Vincent Surveys. The resultant levels and co-ordinates are presented on the individual exploratory hole records. The locations of which are presented on Drawing 2, Enclosure A.

3.7 Hand Dug Pits

A total of ten hand dug pits were undertaken by Dr. Peter Sturgess, of Hyder Consulting. These Pits were dug to a maximum depth of 25cm, with small disturbed (jar) samples taken at every 5cm intervals. These samples were then used for both laboratory and chemical testing. The results of which are presented in Enclosure C.

3.8 Groundwater Monitoring

Groundwater monitoring was undertaken to provide data on the groundwater conditions, the results of these tests can be seen in Enclosure D. If the boreholes were dry then soakaway type tests were undertaken to check that the instruments were functioning.

4 LABORATORY TESTING

4.1 Routine Testing

A laboratory testing schedule was prepared by HGL. The testing undertaken by EA as summarised below:

	Moisture Content	(Refer to BS1377:1990, Part2, Method 3.2)
-	Atterberg Limits	(Refer to BS1377:1990, Part2, Methods 4.3 and 5.3)
-	Dry Density	(Refer to BS1377:1990, Part2, Method 7.3)
-	Shear Box	(Refer to BS1377:1990, Part7, Method 5)
-	pH	(Refer to BS1377:1990, Part3, Method 9)
-	Particle Density	(Refer to BS1377:1990, Part 2, Method 7.3)
-	Sedimentation by pi	pette analysis (Refer to BS1377:1990, Part 2, Method 9.4)
-	Sieve tests	(See Below)

The aforementioned testing was carried out in general accordance with methods given in BS1377: 1990.

It should be noted that the samples taken from the hand dug pits (HD1 to HD10) by Hyder, were insufficient to produce a sieve analysis to BS 1377:1990. However to obtain a rough idea of the soil characteristics, non British Standard sieve tests were conducted as instructed by the engineer.

The results of the laboratory testing are presented in Enclosure C.

4.2 Chemical Testing

A chemical testing schedule was prepared by Dr Peter Sturgess of Hyder Consultancy on samples taken from small disturbed (jar) samples, the testing was undertaken by TES Bretby as presented in Enclosure C.

5 GROUND CONDITIONS

5.1 Published Geology

Reference to British Geological Survey 1:50,000 Scale Series, Sheet 248 Pontypridd; indicates the solid geology of the area is shown to be the Rhondda Beds which form part of the Upper Coal Measures/Pennant Measures of Carboniferous age.

5.2 Strata Encountered

The strata encountered on site generally confirmed the published geology.

For full details of the strata encountered, reference should be made to the Exploratory Hole Records found in Enclosure B.

5.3 Groundwater

Groundwater was encountered in three of the eight boreholes, borehole 3 at 9.50 metres, borehole 6 at 6.20 metres and 15.10 metres and borehole 7 at 10.00 metres. Groundwater was recorded as damp or wet in two others, Boreholes 1 and 5, at depths of 6.70 metres and 11.50 to 13.20 metres respectively.

It should be noted that groundwater levels may at times vary when compared to those recorded during field operations, due to climatic variations and other conditions.

For additional groundwater information, reference should be made to the individual Exploratory Hole Record, which can be found in Enclosure B.

For and on behalf of Exploration Associates A division of Environmental Services Group Limited

C.A. White

B.Sc. (Hons)

CALA

Engineering Geologist.

S.Clarke

Senior Engineering Geologist

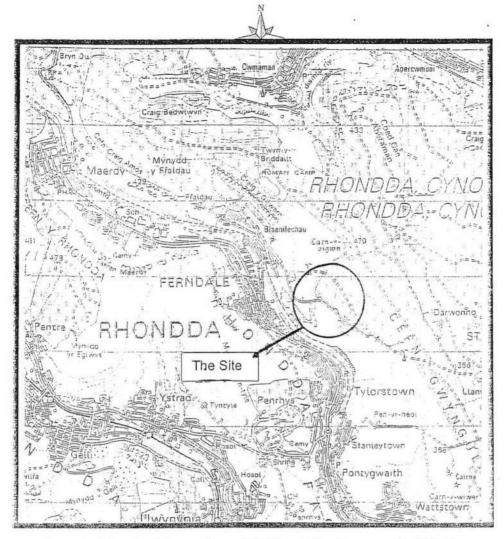
EXPLORATION ASSOCIATES

CW/SC/151258/Feb2002.

REFERENCES

- BRITISH STANDARDS INSTITUTION
 Code of practice for site investigations (formerly CP2001)
 BS5930:1999
- BRITISH STANDARDS INSTITUTION
 Methods of test for soils for civil engineering purposes.
 BS1377:1990
- ORDNANCE SURVEY
 Sheet No 170.
 1:50,000 Landranger Series
- BRITISH GEOLOGICAL SURVEY Sheet 248
 1:63,360 Solid and Drift Edition

ENCLOSURE A


Drawings

Site Location Plan

Drawing 1

Exploratory Location Plan

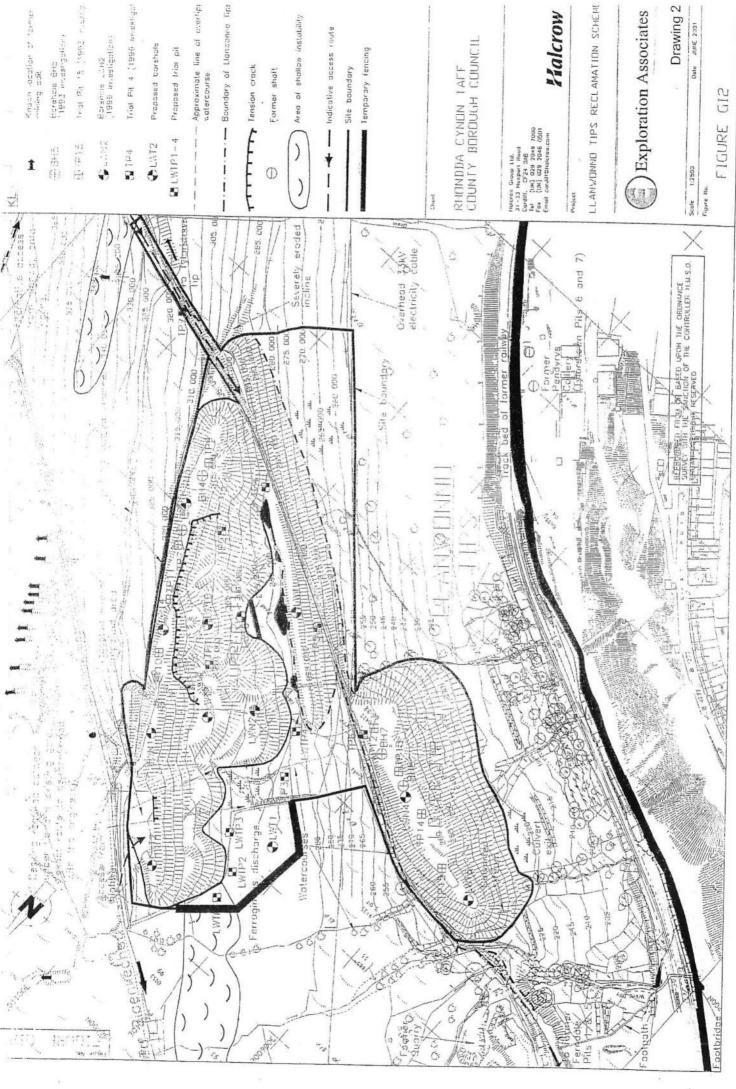
Drawing 2

Reproduced from the Ordnance Survey 1:50,000 scale Landranger map No 170 with the permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office. © Crown Copyright., Environmental Services Group Limited. Licence No. AL 100006060

Scale 1:50,000

Site Location Plan

Project


Contract

Exploration Associates

Llanwonno Tips Reclamation Scheme Halcrow Group Limited 151258

Drawing

1

MOT STATE - 111 PLOT DATE : 2/2/91

ENCLOSURE B

Exploratory Hole Records

Key to Symbols

Borehole Records (Boreholes LWT1 to LWT4, LWT4A, LWT5 to LWT8)

Trial Pit Records (Trial Pits LWTP1 to LWTP5)

Key to Exploratory Hole Records

SAMPLES

Undisturbed

U Driven tube sample

TW Pushed thin wall tube sample

nominally 100 mm diameter and full recovery unless otherwise stated

P Pushed piston sample

Liner sample (from Windowless or similar sampler), full recovery unless otherwise stated

CBR CBR mould sample BLK Block sample

CS Core sample (from rotary core) taken for laboratory testing

Disturbed

D Small sample B Bulk sample

Other

W Water sample G Gas sample

Environmental chemistry samples (in more than one container where appropriate)

ES Soil sample EW Water sample

TEST RESULTS

S or C Standard Penetration Test, open shoe (S) or solid cone (C)

The Standard Penetration Test is defined in BS 1377: Part 9 (1990). The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as

N = ** in the Test column. Where the test drive blows reach 50 (either in total or for a single increment)

the total blow count beyond the seating drive is given (without the N = prefix).

IVp IVr

In situ vane test results given as peak and remoulded shear strengths (kN/m²).

HVp HVr

Hand vane test results given as mean peak and mean remoulded shear strengths (kN/m²).

Pocket penetrometer test results given as mean undrained shear strength (kN/m²).

DRILLING RECORDS

** Denotes driller description

The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930 (1999)

TCR SCR Total Core Recovery, % Solid Core Recovery, % Rock Quality Designation, %

RQD

Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term

non-intact (NI) is used where the core is fragmented.

Flush returns, estimated percentage with colour where relevant, are given in the Records column

CRF

Core recovered (length in m) in the following run

Groundwater level after standing period

AZCL

Assessed zone of core loss

GROUNDWATER

_

Groundwater strike

INSTALLATION

Standpipe/ piezometer Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill. Details of

backfill are provided in Remarks at the base of record.

NOTES

3

Water level observations during boring and drilling are given at the foot of the log and in the Legend column.

2 The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures

The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this

will be the dip.

4 Legends are in accordance with BS 5930 (1999)

REFERENCES

BS 1377: 1990: British Standard Methods of test for soils for civil engineering purposes. British Standards Institution

BS 5930: 1999: Code of Practice for site investigations. British Standards Institution

Notes:

Project

Project No. Carried out for Key

Sheet 1 of 1

09/05/2002 11:08:09 ESGLog v2.

Drilled by **Equipment and Methods** Ground Level +299.01 m OD Rolary Open Hole 115 mm diameter from 0.00m to 3.50m, Rolary Cored 76 mm diameter from 3.50m to 23.50m using Logged by CW E 301024.01 air flush National Grid Checked by SC Coordinates N 196377.86 Samples and Tests Strata Depth Records Date Time Description Depth,Level Legend Casing Water (Thickness) 00 00 Boulder Clay.** (2.80) 00 Moderately weak to moderately strong grey 00 brown fine medium SANDSTONE, Highly 2.80 +296.21 weathered to non intact fracture discontinuity set 1 is subhorizontal closely spaced planar rough From 3.50 to 3.80m Non intact: Recovered as red brown and grey slightly clayey angular medium coarse GRAVEL of highly weathered sandstone. moderately open with some clay infilling and some carbonisation. Two subvertical fractures 80 -3.50 - 5.00m 65 90 degrees from 3.50m to 4.40m terminating on a subhorizontal fracture planar rough and open with sandy clay infill. 5.00 +294.01 Very weak and weak dark . From 5.20 to 5.50m Non grey SILTSTONE. Highly intact: Recovered as dark grey sandy GRAVEL of siltstone. (0.70) weathered, fracture 90 5.00 - 6.20m discontinuities are subhorizontal very closely +293.31 spaced to non intact rough planar tight with red ferrous staining and carbonisation From 6.60 to 6.90m Non intact: Recovered as highly weathered sandy GRAVEL of sandstone. 6.20 - 7.70m 53 ... From 7.50m. Fracture discontinuities medium spaced are horizontal closely spaced rough planar and tight, with occasional carbonisation and Strong grey fine medium SANDSTONE. Slightly weathered - with occasional clay infill. (6.50) occasional iron staining, fracture discontinuities 400 are horizontal closely 7.70 - 9.20m spaced rough planar and tight with occasional carbonisation and occasional clay infill. 9.20 - 11.00m 150 Groundwater Standpipe piezometer installed, 19 mm diameter, response zone from 18.00m to 20.00m Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 0.50m Grout (g), 0.50m to 1.00m Bentonite (b), 3.50m to 17.50m forout (g), 17.50m to 18.00m Bentonite (b), 20.00m to 20.50m Bentonite (b), 2.50m Grout (g), Surface protection: Stop Cock Cover Standpipe Piezometer installed, 19mm diameter, response zone from 1.00m to 3.00m. Borehole wet at 6.70m. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets Project LLANWONNO TIPS Borehole LWT1 Project no. 151258 in depth column Carried out for Rhondda Cynon Taff Scale 1:50 Sheet 1 of 3

09/05/2002 11:08:12 ESGLog v2.10

Drilled by Equipment and Methods See sheet 1 Ground Level +299.01 m OD Logged by CW National Grid F 301024.01 Checked by SC Coordinates N 196377.86 Samples and Tests Strata Date Description Depth,Level Legend Depth If Casing (Thickness) 9.20 - 11.00m 66 50 NI 150 As sheet 1 (6.50)11.00 - 12.20m 12.20 +286.81 12.20 - 14.00m 14.00 - 15.20m Generally weak but very weak in non intact zones dark grey SILTSTONE. Highly weathered to non intact, fracture discontinuities are extremely closely to very closely spaced and randomly orientated. (7.00)15.20 - 16.70m 16.70 - 18.50m 73 46 Strong grey medium SANDSTONE. Slightly 18.50 - 19.70m weathered, fracture discontinuity set 1 are 89 horizontal medium spaced planar rough and tight 19.20 +279.81 with carbonisation. Fracture set 2 are subvertical - 50 degrees, widely spaced (4.30)250 moderately open with red ferrous staining and clay infill. 19.70 - 21.20m Groundwater Remarks TCR/SCR/RQD: 19.70m to 20.00m 97/95/80 Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets Project LLANWONNO TIPS Borehole LWT1 Project no. in depth column. Rhondda Cynon Taff Sheet 2 of 3 Carried out for

Depth TCR	Samples a	nd T	ests		Strata		
19.70 - 21.20m 97 95 90 450 As sheet 2 (4.30pen) 21.20 - 22.70m 98 91 450 As sheet 2 (4.30pen) 22.70 - 23.50m 100 97 71 22.70 - 23.50m 100 97 71 EXPLORATORY HOLE ENDS AT 23.50 m. 22.50 +275 51 22.50 +275 51 23.50							
	21.20 - 22.70m	97 95 80 98 96 81	40 250			(4.30pen)	g
	Groundwater				Remarks	-	

09/05/2002 11:08:18 ESGLog v2.

Scale 1:50

Sheet 1 of 2

GR/RD Drilled by Equipment and Methods Ground Level +340.18 m OD Cable Percussion 200 mm diameter from 0.00m to 9.30m. Rotary Cored 76 mm diameter from 9.30m to 14.30m using Logged by CW E 301107.39 National Grid Checked by Coordinates N 196446.67 Samples and Tests Strata Type & No. Records Date Time Description Depth,Level Legend Casing Water (Thickness) 1.20 - 1.65 1.20 C,N=4 1,1/1,1,1,1 1.20 - 1.50 2.00 - 2.45 29/11/2001 2.40 dry ... From 2,00 to 3.00m becoming 30/11/2001 2.40 dry very clayey. 2.00 - 2.30 B2 MADE GROUND: Loose dark 3.00 - 3.45 **B3** C,N=8 2,2/2,2,2,2 3.00 dry grey and black slightly clayey very sandy angular (6.40)fine to coarse GRAVEL of mudstone and coal. 4.00 - 4.45 4.00 dry 5.00 - 5.45 5.00 dry C,N=8 2.1/2.2.2.2 6.00 dry 6.00 - 6.45 B6 C,N=8 2.2/2.2.2.2 30/11/2001 6,50 dry 6.40 +333.78 Medium dense dark orange brown very clayey 03/12/2001 sandy slightly gravely angular COBBLES of dry siltstone and sandstone. Gravel is fine to coarse and angular. 7.00 - 7.45 B7 7.00 7.10 +333.08 Medium dense becoming dense dark orange brown slightly clayey sandy angular dominantly coarse GRAVEL with occasional subangular cobbles of 8.00 - 8.45 B8 8.00 C,N=29 3,7/7,6,7,9 dry siltstone and sandstone. Sand is fine to (2.00)Strong grey fine medium grained SANDSTONE. Slighty 900-924 89 9.00 03/12/2001 9.00 C,50 5,6/17,33 for 10mm dry weathered fracture 9.10 +331.08 dry discontinuities are 05/12/2001 9.30 9.00 subhorizontal closely spaced rough planar tight (5.65)C,50 25 for 40mm,/50 for 10mm 9.30 - 9.35 9.30 - 10.80m 65 with rare sandy silt infilling. TCR Depth Records Groundwater Standpipe piezometer installed, 19 mm diameter, response zone from 10.50m to 11.50m
Chiselling: 7.10m to 7.30m 30minutes, Chisel, 8.35m to 8.50m 30minutes, Chisel, 9.00m to 9.30m
60minutes, Chisel
Hole backfil: 0.00m to 0.50m Concrete (c), 0.50m to 5.00m Grout (g), 5.00m to 5.50m Bentonite (b), 6.50m to
7.00m Bentonite (b), 7.00m to 10.00m Grout (g), 10.00m to 10.50m Bentonite (b), 11.50m to 12.00m Bentonite (b),
12.00m to 14.75m Grout (g), Surface protection: Stop Cock Cover
Standpipe Piezometer installed. 19mm diameter, response zone from 5.50m to 6.50m. Groundwater Not Encountered. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in death exclusion. Project LLANWONNO TIPS Borehole LWT2 Project no. Carried out for Rhondda Cynon Taff

Drilled by GF Logged by CV Checked by SC			Equipment and Me See sheet 1	ethods			Ground Level National Grid Coordinates		
Samples a		ests	;			Strata			
Depth	TCR SCR RQD	-	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend	
9.30 - 10.80m	75 65 38 90 75 59	60 100 220				From 12.05 to 12.29m Non		b	
- 12.30 - 13.80m	93 89 57	60 100 220				intact: Recovered as clayey sandy subangular fine to coarse GRAVEL of carbonised ferrous stained sandstone. At 12.90 to 13.20m With occasional subhorizhontal carbonised bands - not disturbed by drilling	(5.65pen)	9	
13.80 - 14.75m	53 31 29			05/12/200° 9.30 05/12/200°	dry	At 14.25 to 14.40m with one subvertical fracture 70 - 80 degrees terminating on a horizontal fracture.	14.75 +325.43		
Groundwater						Remarks			
Notes : For explanat ibbreviations see ke evels in metres. Stra or depth column.	ion of s by shee	symbols et. All de nickness	and pths and reduced given in brackets	Project Project no. Carried ou	15	LANWONNO TIPS 51258 hondda Cynon Taff		.WT2	

09/05/2002 11:08:23 ESGLog v2.10

Scale 1:50

Drilled by Equipment and Methods

Cable Percussion 200 mm diameter from 0.00m to 13.40m. Rotary Cored 76 mm diameter from 13,40m to 18,50m using Ground Level +315.04 m OD Logged by CW F 301147 81 National Grid air flush. Checked by SC Coordinates N 196319.12 Samples and Tests Strata Type & No. Date Description Records Depth,Level Legend Depth Casing Water (Thickness) 04/12/2001 0.00 0.50 - 1.00 U1 Sample failed No recovery 1.00 - 1.45 From 1.00m Loose. 15 blows 450mm recovered 1.80 2.00 - 2.50 U3 dry . At 2.50m becoming very From 3.00m becoming medium 3.00 - 3.45 **B**4 C,N=14 1.2/1.2.2.9 3.00 dry 20 blows Sample failed No recovery 43 blows 3.75 - 3.85 U5 3.80 4.00 - 4.50 4.50 D7 MADE GROUND: Medium dense dark grey and black clayey 4.75 475 - 520 **B8** dry sandy angular fine to coarse GRAVEL, with (10.75)occasional subangular cobbles of mudstone and U9 25 blows Sample failed 5.40 5.50 - 5.60 dry ... From 5.75m with soft grey CLAY pockets. No recovery C,N=15 2,3/3,2,4,6 5.75 - 6.20 B10 5.70 Sample failed No recovery 6.50 - 7.00 U11 6.40 04/12/2001 7.00 7.00 - 7.50 U12 ... From 7.75m becoming less sandy B13 7.75 7.75 - 8.20 C,N=20 3,5/5,6,5,4 dry 8.50 - 9.00 U14 50 blows 450mm recovered 8.40 dry Monitor ground water. (20mins)
Standpipe piezometer installed, 19 mm diameter, response zone from 11.00m to 12.00m
Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 5.50m Grout (g), 6.50m to 7.00m Bentonite (b), 9.50m to 10.50m Grout (g), 10.50m to 11.00m Bentonite (b), 12.00m to 12.50m Bentonite (b), 12.50m to 18.50m Grout (g). Surface protection: Stop Cock Cover
Standpipe Piezometer installed, 19mm diameter, response zone from 7.00m to 9.00m. No. Struck Behaviour 9.50m Rising to 9.40m after 20 mins. Sealed 11.00. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets LLANWONNO TIPS Project LWT3 151258 Project no. in death column. Rhondda Cynon Taff Carried out for Sheet 1 of 2

Drilled by JR Logged by CV Checked by SC			Equipment and Meth See sheet 1			· ·	Ground Level National Grid Coordinates	
Samples a	nd 7	Tests	<u>. </u>			Strata		
Depth	Туре	& No.	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
10.00 - 10.40	В	16	C,9 2,1/2,2,1,4 for 25mm	10.00	damp	As sheet 1	(10.75)	9
10.80 - 11.00 _ 11.00 - 11.50	U	19 17	30 blows 450mm recovered	10.90	dry	Very stiff slightly sandy slightly gravelly SILT. Sand is fine to coarse, gravel is angular to subangular fine to coarse of siltstone and sandstone.	10.75 +304.29 11.00 +304.04	
11.75 - 12.15	В	19	C,50 6,4/4,3,14,29 for 20mm	11.75	dry	Very stiff orange brown slightly sandy slightly gravelly SILT, with occasional subangular to subrounded cobbles of sandstone. Sand is fine to coarse, gravel is angular to subangular of siltstone and sandstone.	(1.50)	b
_ 12.50 - 12.84	В	20	C,50 4,11/15,20,15 for 40mm	12.50 05/12/2001 13.00	dry	Sandstone.**	1	9
13.40 - 13.50m				06/12/2001 06/12/2001 13.40 07/12/2001			13.00 +302.04	
13.40 - 13.50m 13.40 - 13.42	47 14 0	NI NI 40	C,50 25 for 10mm/50 for 10mm	13.40 13.00	dry dry	Orange brown generally weak occasionally moderately weak SANDSTONE. Highly weathered. fracture discontinuities are extremely closely spaced randomly orientated generally non intact: Recovered as sandy angular fine to coarse GRAVEL.	(2.50)	
15.00 - 15.50m	60 0 0					From 15.50 to 15.90m Non- intact: Recovered as very clayey sandy angular fine to	15.50 +299,54	
- 15.50 - 17.00m -	67 35 0	NI 60 240				Very weak becoming moderately weak dark grey SILTSTONE. Moderately weathered fracture discontinuities are	(3.00pen)	
- 17.00 - 18.50m -	63 45 42		AL.	07/12/2001 18.50	dry	horizontal closely spaced intact: Recovered as clayey slightly sandy GRAVEL of open with some clay infill.		
						EXPLORATORY HOLE ENDS AT 18.50 m.	18,50 +296,54	
Depth	TCR SCR RQD	If	Records	Date Casing	Time Water	-		
Groundwater No. Struck Behav						Remarks TCR/SCR/RQD: 13.40m to 13.50m //0 Chiselling: 11.80m to 12.50m 105minutes, Chisel, 12.50m to 13.00m 75min 13.40m 90minutes, Chisel	nutes, Chisel, 13.0	00m to
Notes: For explana abbreviations see k evels in metres. Sti n depth column. Scale 1: 50	ey she	et. All o	is and lepths and reduced ss given in brackets	Project Project no. Carried ou		LLANWONNO TIPS 151258 Rhondda Cynon Taff	2000	_WT3

09/05/2002 11:08:30 ESGLog v2.10

Scale 1:50

Equipment and Methods Cable Percussion 200 mm diameter from 0.00m to 10.50m. Drilled by Ground Level Logged by CW E 301221.55 National Grid Checked by SC Coordinates N 196298.30 Samples and Tests Strata Type & No. Date Depth Description Depth,Level Legend Casing Water (Thickness) 13/12/2001 C,N=2 1,-/-,1,-,1 0.50 - 0.95 B1 From 0.50m Very loose. 1.25 - 1.75 U2 D3 1.75 From 2.00m Becoming medium 2.00 2.00 - 2.45 **B**4 dry 275 - 3.25 115 16 blows 2.50 dry 450mm recovered 3.25 D6 3.50 - 3.95 В7 3.50 dry MADE GROUND: Medium dense dark grey and black (8.25)slightly silty sandy angular fine to coarse GRAVEL of mudstone and coal. U8 4.50 dry 4.25 - 4.75 4.75 D9 5.00 - 5.45 B10 5.00 dry 13/12/2001 5.70 14/12/2001 5.70 5.75 - 6.25 U11 25 blows dry 450mm recovered 6.25 6.50 - 6.95 D12 B13 C,N=15 1,3/3,4,4,4 6.50 dry ... From 6.50 to 7.75m becoming 33 blows 450mm recovered slightly clayey. 7.25 - 7.75 7.20 dry D15 800 - 845 B16 C,N=21 3,4/4,6,5,6 8.00 dry 50 blows Sample failed. No recovery C,N=28 5,5/5,6,8,9 8.50 - 8.70 U17 8.40 dry Medium dense orange brown slightly silty sandy angular fine to coarse GRAVEL of siltstone and (1.00)8.75 - 9.20 B18 8.75 dry sandstone. Recovered as: Very dense orange brown slightly 9 25 +319 25 clayey sandy angular fine to coarse GRAVEL, 25 blows Sample failed. No recovery C,50 25 for 70mm,- for 0mm/25 for 50mm,25 for 55mm 9.50 - 9.60 U19 9.30 dry with some subrounded cobbles, of moderately (1.25)weak weathered sandstone. Sand is fine to 9.75 - 9.93 B20 coarse. Chiselling: 9.75m to 10.50m 120minutes, Chisel Hole backfill: 0.00m to 10.50m Arisings (a). Surface protection: <none> Groundwater not encountered Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets LLANWONNO TIPS Project Borehole LWT4 Project no. in depth column. Rhondda Cynon Taff Carried out for Sheet 1 of 2

Note
Page 6 No. Records Casin Water Pascription Page 6 No. Legend Trick-casin Water Page 6 No. Page 6 No.
10.50 +316.60 EXPLORATORY HOLE ENDS AT 10.50 m. 10.50 +316.60 13/13/2001 10.50 +316.60 10.50 +316.60

Samples and Tests	Drilled by MJ Equipment and M Logged by CW Rolary Open Hole Checked by SC	wethods 115 mm diameter from 0	0.00m to 11.70m. Rotary Cored 76 mm diameter from 11.70m to 16.70m.	Ground Level National Grid Coordinates		
12/12/2001 dry	Samples and Tests		Strata			
12/12/2001 dry	Depth TCR Records		Description		Legend	
	RQD	Control of the Contro		(Thickness)		
undwater Remarks		12/12/2001 dry	See LWT4.	(Thickness)	c	
Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 7.50m Grout (n), 7.50m to 8.00m Replacite (b), 9.80m to	Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced evels in metres. Stratum thickness given in brackets	Project LL	Standpipe piezometer installed, 19 mm diameter, response zone from 14.00m Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 7.50m Grout (g), 7.50m 11.00m Bentonite (b), 11.00m to 13.00m Grout (g), 13.00m to 14.00m Benton Cover Standpipe Piezometer installed, 19mm diameter, response zone from 8.00m (ANWONNO TIPS)	ite (b). Surface prote	ection : Stop Co	

Checked by SC		Tool				I Church	National Grid Coordinates	
Samples a						Strata		
Depth	TCR SCR RQD	lf	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
						As sheet 1	(10.50)	l b
							10.50	
						Recovered as: Very dense orange brown slightly	=	
						clayey sandy angular fine to coarse GRAVEL, with some subrounded cobbles, of moderately	(1.20)	g
				12/12/2001 11.50	do	weak weathered sandstone. Sand is fine to coarse.	=	g
				13/12/2001	dry		11.70	
	84			11.50	dry	From 12.00 to 12.40m One	-	
11.70 - 12.70m	84 80					subvertical fracture 60 - 70 degrees with red ferrous staining,	=	
						Statisting, L	3	
		70 100					3	
		400				From 13.10 to 13.30m Non Intact. Recovered as slightly		b
12.70 - 14.20m	79 61					clayey slightly sandy subangular gravel.	7	b
	35					Strong grey SANDSTONE	3	
						slightly weathered. Fracture discontinuities		
						are closely spaced horizontal rough planar From 14.20 to 14.65m Non Intact	(5.00pen)	
	67					open with rare clay Recovered as slightly sandy infilling and black. Recovered as slightly sandy fine to coarse angular gravel.	3	
14.20 - 15.20m	16 0					carbonisation.		
							3	
		40						
		160 320				From 14.20 to 16,70m subvertical 60 - 70 degrees rough planar open with]	
15.20 - 16.70m	98 94					carbonised and ferrous stained surfaces.		
10.20	77						3	
				13/12/2001				
-				11.50	dry	EXPLORATORY HOLE ENDS AT 16.70 m.	16.70	
						EAFLORATORY HOLE ENDS AT 16.70 m.		
						112		
						-		
1		1		1			1	
- 1					1	3		
				1	1			
							-	
oundwater					-	Remarks		
tes : For explanati	on of a	vmbols	and	Project	1	ANWONNO TIPS	rs	
reviations see ke els in metres. Stra	y sheel	t. All dep	oths and reduced given in brackets	Project no.		ANWONNO TIPS 1258	Borehole LV	VT4A
epth column. le 1 : 50				Carried out I		ondda Cynon Taff	1	et 2 of 2

Equipment and Methods
Cable Percussion 200 mm diameter from 0.00m to 21.40m. Rotary Cored 76 mm diameter from 21.40m to 41.50m using Drilled by Ground Level +314.12 m OD Logged by CW National Grid E 301197.33 air flush Checked by SC Coordinates N 196273.27 Samples and Tests Strata Type & No. Records Date Description Depth,Level Casing Water (Thickness) 1.00 - 1.45 C,N=6 1,1/2,1,2,1 From 1.00m Loose. 25 blows Sample failed. No recovery 1.50 U2 2.25 - 2.70 C,N=8 1,1/2,2,2,2 2.25 - 2.55 **B3** 3.00 - 3.50 U4 19 blows 450mm recovered 3.50 D5 3.75 - 4.20 3.75 - 4.00 28 blows 450mm recovered U7 MADE GROUND: Dark grey and black sandy angular fine to coarse GRAVEL of 5.00 DB (10.50)mudstone ironstone and coal. Sand is fine to From 5.25 becoming Medium 5.25 - 5.70 C,N=15 3,2/4,4,3,4 coarse. 5.25 - 5.50 B9 27 blows 450mm recovered 6.00 - 6.50 U10 6.50 D11 6.75 - 7.20 6.75 - 7.00 From 7.50m becoming generally dense. 31 blows 450mm recovered 7.50 - 8.00 8.00 D15 05/12/2001 8.20 dry 06/12/2001 8.30 - 8.65 C,45 10,11/14,14,17 8.30 - 8.60 D16 9.30 - 9.80 U17 9.80 9.90 - 10.35 D18 9.90 - 10.20 819 Groundwater From 11.50 to 13.20m becoming damp Unidentified obstruction 8.30 to 9.30m. Standpipe piezometer installed, 19 mm diameter, response zone from 14.50m to 15.50m Chiselling: 8.00m to 9.30m 300minutes, Chisel Chiselling: 8.00m to 9.30m 300minutes, Chisel
Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 10.00m Grout (g), 10.00m to 11.00m Bentonite (b), 13.50m to 14.00m Grout (g), 14.00m to 14.50m Bentonite (b), 15.50m to 16.50m Bentonite (b), 16.50 Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets LLANWONNO TIPS Project LWT5 151258 Project no. in depth column. Rhondda Cynon Taff Carried out for Sheet 1 of 5 Scale 1:50

09/05/2002 11:08:42 ESGLog v2.1

Drilled by Equipment and Methods RD/M.I Ground Level +314.12 m OD Logged by CW E 301197.33 National Grid Checked by SC Coordinates N 196273.27 Samples and Tests Strata Type & No. Records Date Time Description Depth,Level Legend Casing Water (Thickness) As sheet 1 (10.50) 10.50 - 11.00 U20 35 blows 10.50 +303.62 450mm recovered 11.00 D21 B22 11.20 - 11.65 11.20 - 11.65 MADE GROUND: Medium dense light and dark orange brown very silty very sandy subangular to subrounded fine to coarse GRAVEL of mudstone, siltstone, sandstone and ironstone. Sand is (2.70)fine to coarse, 36 blows Sample failed. No recovery 12.00 - 12.50 U23 ... At 11.50m with very sandy SILT / very silty SAND pockets. Sand is fine to coarse. 12.75 - 13.20 C,N=14 2,2/4,4,3,3 wet 13.20 D24 13.20 +300.92 19 blows 450mm recovered 13.50 - 14.00 1125 06/12/2001 14.00 dry Firm orange brown mottled grey slightly sandy 07/12/2001 14.00 gravelly CLAY. Sand is fine to coarse, gravel is subangular to subrounded of weak mudstone, 14.00 14.30 - 14.75 D26 (2.30)C,N=26 5,5/6,6,6,8 siltstone and sandstone. 14.30 - 14.60 15.00 - 15.50 U28 D29 15.50 15.50 +298.62 15.75 - 16.15 C,50 9,10/9,15,17,9 for 25mm 15.75 - 16.25 B30 C,50 10,15/19,21,10 for 15mm 16.75 - 17.07 16.75 - 17.25 B31 07/12/2001 17.60 16.20 Very dense clayey very sandy subangular to 08/12/2001 17.60 subrounded GRAVEL of sandstone, with some (5.00)C,50 20,5 for 5mm/40,10 for 5mm subangular cobbles of sandstone. 17.75 - 17.91 17.75 - 18.25 B32 C,46 9,11/35,11 for 15mm 18.75 - 18.99 18.75 - 19.25 **B33** 19.25 - 19.57 C,50 7,14/19,20,11 for 20mm 19.75 - 20.50 B34 Groundwater Chiselling: 15.50m to 16,75m 180minutes, Chisel, 16.75m to 17,60m 135minutes, Chisel, 17.60m to 19,75m 240minutes, Chisel, 19.75m to 20,50m 105minutes, Chisel Notes: For explanation of symbols and Project LLANWONNO TIPS Borehole abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in death column LWT5 Project no. in depth column. Rhondda Cynon Taff Carried out for Sheet 2 of 5

Drilled by RE Logged by CV Checked by SC			Equipment and Met See sheet 1	iious			National Grid Coordinates	
Samples a	nd 7	Tests	<u> </u>			Strata		
Depth	Туре	& No.	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
_ 20.50		35				As sheet 2	(5.00)	ا مناسبه مناسبه مناسبه
20.75 - 21.20		36	C,N=26 3,4/5,5,6,10			Stiff dark grey mottled black and yellow gravelly CLAY. Gravel is angular fine to coarse of siltstone and mudstone.	20.50 +293.62	
				08/12/200° 21.40	16.20	Very weak to weak grey MUDSTONE: Recovered as very clayey slightly sandy GRAVEL.	21.10 +293.02 (0.40)	
21.40 - 21.58 - 21.50 - 23.00m	100 40 9	37	\$,50 25 for 70mm/29,21 for 30mm	21.40 21.40	16.20	From 21.50 to 22.70m Non intact: Recovered as grey clayey sandy GRAVEL of weathered sandstone.	21.50 +292.62	
- 23.00 - 24.50m	80 0 0	NI 20 70				Very weak dark grey SILTSTONE. Highly weathered to non intact, fracture discontinuities are extremely closely spaced and randomly orientated. From 23.00 to 24.50m Non intact: Recovered as grey sandy GRAVEL of siltstone.	(4.50)	
- 24.50 - 26.00m -	100 13 0					From 24.70m to 25.80m Non intact: Recovered as grey clayey sandy GRAVEL of siltstone.		
26.00 - 27.50m	100 100 73						26.00 +288.12	
- 27.50 - 29.00m	99 99 87	NI 70 200				Strong dark grey fine to medium SANDSTONE. Moderately weathered fracture discontinuities are horizontal closely spaced smooth planar and tight.	(5.70)	
. 29.00 - 30.50m	99 99 99							
Depth	TCR SCR RQD	If	Records	Date Casing	Time Water		1	
Groundwater						Remarks Chiselling: 21.10m to 21.40m 60minutes, Chisel		
lotes: For explana bbreviations see ke evels in metres. Stra depth column. cale 1:50	tion of ey shee aturn th	symbols et. All de nicknes:	s and apths and reduced s given in brackets	Project no. Carried out	1	LANWONNO TIPS 51258 hondda Cynon Taff		.WT5 eet 3 of 5

09/05/2002 11:08:48 ESGLog v2.10

Drilled by **Equipment and Methods** Ground Level +314.12 m OD Logged by CW National Grid E 301197.33 Checked by Coordinates N 196273.27 Samples and Tests Strata Depth Records Date Time Description Depth,Level Legend If Casing Water (Thickness) 99 NI 70 200 As sheet 3 (5.70)30.50 - 32.00m Non intact: Recovered as grey sandy GRAVEL of sandstone. NI NI 31.70 +282.42 Weak to moderately weak dark grey SILTSTONE. Slightly weathered fracture discontinuities are horizontal closely spaced smooth planar and 32.00 - 33.50m (2.20)70 tight. Weak black COAL. Recovered as angular fine to coarse GRAVEL. 33.90 +280.22 34.10 +280.02 33.50 - 35.00m 10/12/2001 35.00 35.00 - 36.50m 93 55 Weak to moderately weak dark grey fossiliferous SILTSTONE. Slightly weathered fracture discontinuities are horizontal closely spaced (7.40)smooth planar and tight. 36.50 - 38.00m ...From 36.00m becoming moderately strong. 95 55 38.00 - 39.50m 39 50 - 41 00m Groundwater Remarks Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets LLANWONNO TIPS Project Borehole LWT5 151258 Project no. in death column. Rhondda Cynon Taff Carried out for Sheet 4 of 5 Scale 1:50

Drilled by RI Logged by CV Checked by SI			Equipment and Me See sheet 1	thods	-		Ground Level National Grid Coordinates	
Samples a	nd T	ests	i			Strata		
Depth	TCR SCR RQD	If	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
39.50 - 41.00m	99 99 69	70 200 400				As sheet 4	(7.40pen)	
41.00 - 41.50m	100 100 60			10/12/200	1	EXPLORATORY HOLE ENDS AT 41.50 m.	41.50 +272.62	
Groundwater						Remarks	1	
Notes: For explana abbreviations see k levels in metres. St in depth column. Scale 1:50	ation of s ey shee ratum th	symbols et. All de nickness	and epths and reduced s given in brackets	Project no Carried ou	. 1	LANWONNO TIPS 51258 hondda Cynon Taff		-WT5 eet 5 of 5

+303.64 m OD Equipment and Methods
Cable Percussion 200 mm diameter from 0.00m to 15.50m. Rotary Cored 76 mm diameter from 15.50m to 20.50m with Ground Level E 301183.12 Logged by CW National Grid air flush. N 196249.98 Checked by SC Coordinates Samples and Tests Strata Type & No. Records Date Time Description Depth.Level Legend Casing Water (Thickness) 06/12/2001 0.00 14 blows No recovery No recovery 0.50 - 1.00 U1 1.00 - 1.45 1.00 From 1.00m Very loose. U3 30 blows 1.50 1.75 - 2.25 From 2.50m becoming loose with some angular cobbles of 2.50 dry 250 - 295 **B**4 C,N=4 1,1/1,1,1,1 slag and ironstone. 3.00 3.25 - 3.75 U5 25 blows 450mm recovered dry MADE GROUND: Very loose becoming medium dense dark ... From 4.00m becoming grey and black very sandy 4.00 - 4.45 B6 4.00 dry (8.10) slightly silty. angular fine to coarse GRAVEL of mudstone and 50 blows 450mm recovered U7 4.50 4.75 - 5.25 dry 5.50 - 5.90 88 C,24 3,4/6,5,5,8 for 25mm 6.25 - 6.75 119 20 blows Sample failed. 6.00 dry No recovery 06/12/2001 7.00 6.80 ... From 7.00m becoming very 7.00 - 7.45 50 blows Sample failed. U11 7.75 - 8.25 No recovery 8.10 - 8.30 B12 8.10 +295.54 U13 8.00 dry 8.50 - 9.00 Stiff grey mottled brown slightly sandy gravelly CLAY, sand is fine to coarse, gravel (2.00) 9.00 D14 is angular fine to coarse of mudstone, siltstone and sandstone. 9.25 - 9.70 9.25 dry Groundwater Monitor groundwater levels (40 mins).

Standpipe piezometer installed, 19 mm diameter, response zone from 14.50m to 16.50m

Chiselling: 9.30m to 9.50m 30minutes, Chisel

Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 5.00m Grout (g), 5.00m to 5.50m Bentonite (b), 7.60m to

8.10m Bentonite (b), 8.10m to 14.00m Grout (g), 14.00m to 14.50m Bentonite (b), 15.50m to 16.50m Bentonite (b),

16.50m to 20.50m Grout (g). Surface protection: Stop Cock Cover

Standpipe Piezometer installed. 19mm diameter, response zone from 5.50m to 7.60m. No. Struck Behaviour 09/05/2002 11:08:53 ESGLog 6.40m Rising to 6.20m after 20 mins. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets LLANWONNO TIPS Borehole LWT6 151258 Rhondda Cynon Taff in depth column. Carried out for Sheet 1 of 3

Equipment and Methods Ground Level Drilled by E 301183,12 Logged by National Grid CW Coordinates N 196249.98 Checked by Strata Samples and Tests Description Depth.Level Type & No. Date Time Legend Records Casing Water (Thickness) 10.00 - 10.50 33 blows 450mm recovered As sheet 1 10.30 dry U17 30 blows 10.50 - 11.00 450mm recovered Stiff light and dark orange brown sandy 40 blows Sample failed. 11.00 - 11.50 U18 slightly gravelly SILT. Sand is fine to coarse, No recovery gravel is subangular to rounded of siltstone and sandstone. 11.50 - 11.95 B19 11.50 dry C,N=49 5.5/8.11.11.19 12.00 +291.64 Stiff to very stiff orange brown sandy slightly gravelly SILT, with occasional subrounded 12.50 cobbles of sandstone. Sand is fine to coarse, (1.00)12.50 - 12.95 B20 gravel is subrounded to rounded fine to coarse 07/12/2001 13.00 of siltstone and sandstone. 13.00 +290.64 10/12/2001 13.00 13.20 C,50 13,12 for 10mm/50 fo 20mm B21 13.25 - 13.36 Recovered as: Very dense grey and orange brown 14.00 14.00 - 14.45 B22 C,N=39 5.7/9.9.11.10 dry slightly clayey sandy (2.50)subangular fine to coarse GRAVEL of moderately ... From 14,50m with no clay strong weathered becoming very sandy sandstone. B23 C,50 4,7/7,8,35 for 60mm 14.70 dry 15.50 +288.14 C,50 25 for 40mm,/50 for 10mm 15.50 - 15.55 15.50 - 16.50m Generally moderately weak to moderately strong locally very weak non intact grey brown SANDSTONE. Highly 31 16.50 - 18.00m weathered to moderately weathered, fracture discontinity set 1 is subvertical 60 - 70 (5.00)100 degrees widely spaced rough planar moderately From 18 00 to 18 50m Non intact: Recovered as clayey sandy angular fine to coarse open with very clayey gravel infill. Fracture GRAVEL of sandstone set 2 are subhorizontal 18.00 - 19.00m closely spaced rough planar moderately open 11/12/2001 15.50 with sandy clay infill. 92 33 19.00 - 20.50m ... From 19.40 to 20.40m Non intact: Recovered as clayey GRAVEL angular fine to coarse of sandstone. Records Depth If Groundwater Chiselling: 11.60m to 12.00m 60minutes, Chisel, 12.00m to 12.50m 60minutes, Chisel, 12.50m to 13.00m 75minutes, Chisel, 13.00m to 13.60m 90minutes, Chisel, 13.80m to 14.00m 60minutes, Chisel, 14.60m to 15.00m 90minutes, Chisel, 15.00m to 15.50m 90minutes, Chisel No. Struck Behaviour 15.10m Rising to 14.70m after 20 mins. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum (hickness given in brackets LLANWONNO TIPS LWT6 151258 Rhondda Cynon Taff in depth column. Carried out for Sheet 2 of 3 Scale 1:50

Drilled by JR/MJ Logged by CW Checked by SC	Equipment and Methods See sheet 1		Ground Level
Samples and Tests	5	Strata	
Depth TCR SCR RQD	Records Date Time Casing Water	Description	Depth,Level Legend (Thickness)
19.00 - 20.50m 92 NI 100 230	12/12/2001 15.50 Water	As sheet 2 GRAVEL angular fine to coarse of sandstone. EXPLORATORY HOLE ENDS AT 20.50 m.	(5.00pen) 20.50 +283.14
No. Struck Behaviour			
Notes : For explanation of symbols abbreviations see key sheet. All delevels in metres. Stratum thickness in depth column.	s given in brackets Project no. 1	LLANWONNO TIPS 151258 Rhondda Cynon Taff	Borehole LWT6 Sheet 3 of 3

09/05/2002 11:09:02 ESGLog

Drilled by JR/MJ Equipment and Methods Ground Level +287.39 m OD Cable Percussion 200 mm diameter from 0.00m to 14,75m. Rolary Cored 76 mm diameter from 14,75m to 24,75m using CW Logged by National Grid F 301145 79 air flush. SC Checked by Coordinates N 196204.68 Samples and Tests Strata Type & No. Depth Records Date Time Description Depth,Level Legend Casing Water (Thickness) C,N=2 1,-/-,1,1,-0.50 - 0.95 B1 From 0.50m very loose. 20 blows 450mm recovered 1.25 - 1.75 U2 1.20 1.75 D3 C.N=2 1,-/1,-,1,-2.00 - 2.45 **B**4 2.00 dry 15 blows 450mm recovered 2.75 - 3.25 U5 dry D6 3.25 3.50 **B7** 350 - 395 C,N=5 1,-/1,1,1,2 dry From 3.50m becoming loose. MADE GROUND: Loose becoming medium dense dark grey and black slightly clayey, sandy, angular (8.30)fine to coarse GRAVEL of ash, coal and 4.25 - 4.75 U8 16 blows 4 20 dry siltstone. 450mm recovered 4.75 D9 5.00 - 5.45 B10 5.00 dry 5.75 - 6.25 U11 dry D12 6.25 From 6.50m becoming medium 6.50 - 6.95 B13 C,N=16 2,2/4,4,3,5 6.50 dry 7.20 7.25 - 7.75 U14 40 blows No recovery D15 8.00 - 8.45 B16 8.00 dry C,N=27 2,4/4,5,8,10 8.30 +279.09 32 blows 450mm recovered 8.50 - 9.00 dry Firm to stiff orange grey slightly sandy 9.00 9.00 - 9.45 9.00 dry C.N=23 4,4/4,5,7,7 gravelly CLAY. Gravel is fine to coarse angular (1.95)sandstone. 40 blows 450mm recovered 9.75 - 10.25 U20 9.70 damp Groundwater No. Struck Behaviour Monitor groundwater (20mins) Monitor groundwater (20mins).

Standpipe piezometer installed, 19 mm diameter, response zone from 12.00m to 14.00m

Chiselling: 9.50m to 9.75m 45minutes, Chisel

Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 5.30m Grout (g), 5.30m to 5.30m Bentonite (b), 7.80m to 8.30m Bentonite (b), 8.30m to 11.00m Grout (g), 11.00m to 12.00m Bentonite (b), 14.00m to 15.00m Bentonite (b), 15.00m to 24.72m Grout (g), . Surface protection: Stop Cock Cover

Standpipe Piezometer installed, 19mm diameter, response zone from 5.80m to 7.80m. 10.00m Rising to 9.75m after 20 mins. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced Project LLANWONNO TIPS Borehole LWT7 levels in metres. Stratum thickness given in brackets Project no. in depth column Scale 1:50 Rhondda Cynon Taff Carried out for Sheet 1 of 3

JR/MJ Equipment and Methods Ground Level +287.39 m OD Logged by CW E 301145.79 National Grid Checked by SC Coordinates N 196204.68 Samples and Tests Strata Type & No. Records Date Description Depth,Level Legend Casing (Thickness) As sheet 1 12/12/2001 8 80 10.25 +277.14 C,50 17,8 for 20mm/50 for 20mm 10.50 8.80 11.25 - 11.70 11.25 9.30 Dense to very dense clayey sandy angular to subrounded GRAVEL of siltstone, with some (3.20)cobbles and occasional boulders. Sand is fine 12.00 - 12.45 12.00 10.10 C,N=33 7,10/9,10,4,10 12.75 - 13.10 B25 12.75 10.15 C,50 6,9/14,13,23 for 45mm 13.50 - 13.61 C,50 7 for 25mm,12 for 25mm/50 for 60mm B26 13 50 10.20 13.45 +273.94 Very weak, highly weathered orange brown C,50 6,7/9,12,14,15 for 60mm SILTSTONE, recovered as silty sandy and angular 14.00 - 14.44 B27 14.00 10.70 (1.05)fine to coarse gravel. 14.00 D28 12/12/2001 14.50 14.50 +272.89 From 14.75 to 15.10m Non 14/12/2001 14.50 14.50 intact: recovered as a slightly clayey angular fine to coarse GRAVEL. S,50 25 for 60mm,/50 for 10mm 14.75 - 14.82 11.20 14.75 - 16.25m Weak orange brown and grey SILTSTONE. Highly weathered to locally not intact, fracture discontinuities are From 16.25 to 16.75m Non randomly orientated very (3.75)intact: recovered as a slightly clayey angular fine to medium GRAVEL. closely spaced rough 30 planar with red ferrous staining and some clay 16.25 - 17.75m infilling. From 17.05 to 17.35m Non intact: recovered as a clayey subangular fine to coarse GRAVEL of siltstone. From 17.65 to 17.95m Non intact: Recovered as a clayey angular to subangular fine coarse GRAVEL of sillstone. 18.25 +269.14 17.75 - 19.25m 52 Moderately strong to strong grey SANDSTONE. Moderately weathered, fracture discontinuities are mainly horizontal with one subvertical fracture at 18.45 to 18.70m terminating on a 60 horizontal fracture. Fractures are closely spaced rough planar tight with red ferrous 100 19.25 - 20.75m staining. Depth Date Casing Groundwater Chiselling: 10.20m to 10.50m 45minutes, Chisel, 10.80m to 11.00m 30minutes, Chisel, 11.60m to 11.80m 30minutes, Chisel, 12.60m to 13.00m 60minutes, Chisel, 13.50m to 14.00m 60minutes, Chisel, 14.50m to 14.75m 90minutes, Chisel No. Struck Behaviour Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced Project LLANWONNO TIPS Borehole levels in metres. Stratum thickness given in brackets LWT7 Project no. 151258 in depth column Scale 1 : 50 Carried out for Sheet 2 of 3

09/05/2002 11:09:06 ESGLog v2.

Rhondda Cynon Taff

	/MJ		Equipment and Me See sheet 1	thods			Ground	d Level	+287.3	9 m O
Logged by CV Checked by SC			dee sileet i					al Grid	E 301 N 196	145.79
Samples a		ests				Strata				
Depth	TCR SCR RQD	If	Records	Date Casing	Time Water	Description	Depth,I		Lege	nd
19.25 - 20.75m	100	30					-			g
	73 44	60 100				As sheet 2	(2.5	0)		
							20.75 +	200.04		
	98	30				Moderately strong and strong interlaminated light and dark grey SILTSTONE and SANDSTONE	Ξ.			
20.75 - 22.25m	69 20	50 100				with rare ironstone nodules. Fracture discontinuities are horizontal rough planar and	(1.4	5)		
						tight with red ferrous staining.	3			
							22.20 +2	65.19		
							=			
22.25 - 23.75m	100 95						Ξ			
		150				Strong grey SANDSTONE. Slightly weathered.	\exists			
		150 300 500				fracture are discontinuities horizontal medium spaced rough planar tight with red ferrous	(2.55p	en)		
1						staining.	=			
	93						=			
23.75 - 24.75m	89 85					-	\exists			
				14/12/2001 14.50			=			
						EXPLORATORY HOLE ENDS AT 24.75 m.	24.75 +2	62.64		
							\equiv			
							Ξ			
							=			
							3			
							=			
					1		4			
					1		=			
							=			
1							\exists			
							\exists			
							3			
							=			
							3			
							3		1	
							=	- 1		
					1		Ξ			
					- 1		=			
							\exists			
undwater				7.00	-	Remarks				
Struck Behavi	our									
es : For explanati eviations see ke	y sheet	. All de	pths and reduced	Project		ANWONNO TIPS	Boreh	ole	/T-7	
s in metres. Stra pth column. a 1 : 50	ium thi	ckness	given in brackets	Project no. Carried out	for Rh	1258 rondda Cynon Taff			/T7 3 of 3	

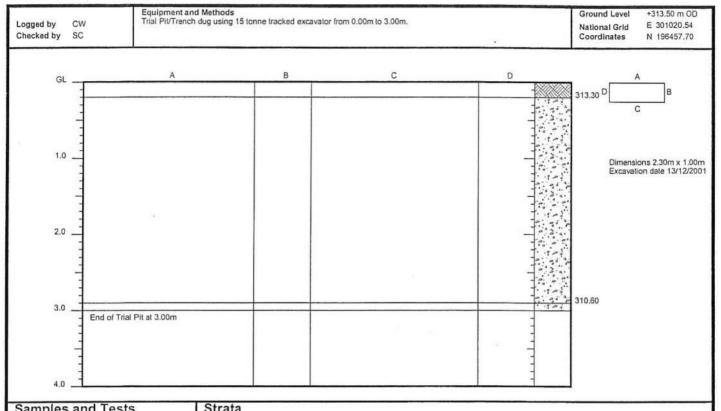
09/05/2002 11:09:11 ESGLog v2.1

Equipment and Methods
Cable Percussion 200 mm diameter from 0.00m to 27.70m. Rotary Open Hole 76 mm diameter from 27.70m to 32.70m Drilled by RD/MJ Ground Level +259.75 m OD Logged by CW E 300874.47 National Grid using air flush. Checked by SC Coordinates N 196284.64 Samples and Tests Strata Type & No. Records Date Time Description Depth,Level Depth Legend Casing Water (Thickness) 10/12/2001 dry C,N=10 2,1/3,2,4,1 1.00 - 1.30 ... From 1.30m with some subangular cobbles. 1.50 - 2.00 U2 10/12/2001 2.00 dry 11/12/2001 dry D3 2.00 2.00 dry C,N=11 1,1/2,3,4,2 2 25 - 2 50 **B**4 14 blows 2.90 3.00 - 3.50 115 dry 450mm recovered 3.50 D6 MADE GROUND: Medium dense dark grey and black C,N=8 1.3/2.2.2.2 3,40 dry slightly clayey very sandy angular fine to (8.00)coarse GRAVEL of mudstone, siltstone, sandstone and coal. 4.50 - 5.00 U8 22 blows 450mm recovered 4.20 dry D9 5.00 5.10 5.25 - 5.70 B10 C,N=10 3,3/3,3,2,2 dry ... From 6.00 with subangular 40 blows Sample failed - transferred to bulk. 6.00 - 6.20 U11 wood and brick fragments. 6.75 - 7.20 C,N=16 3,4/4,5,4,3 6.50 dry B12 6.75 - 7.00 28 blows 450mm recovered U13 7.40 7.50 - 8.00 dry 8.00 D14 8.00 +251.75 MADE GROUND: Firm dark grey mottled yellow slightly slightly gravelly CLAY. Sand is fine 8 25 - 8 70 C,N=10 3,2/2,2,3,3 8.10 dry (0.75)to coarse, gravel is angular fine to coarse of 8.25 - 8.50 **B15** mudstone, sandstone and coal 8.75 +251.00 24 blows 450mm recovered 9.00 - 9.50 U16 8.80 MADE GROUND: Medium dense dark grey and black slightly silty very sandy angular fine to (12.85)coarse GRAVEL of mudstone, siltstone, sandstone 9.50 and coal. From 9.75m very clayey with occasional cobble of sandstone C,N=14 2,2/4,3,4,3 9.50 9.75 - 10.20 and ironstone. 9.75 - 10.00 B18 Groundwater Standpipe piezometer installed, 19 mm diameter, response zone from 22.50m to 24.50m
Chiselling: 6,00m to 6,20m 45minutes, Chisel
Hole backfill: 0.00m to 0.30m Concrete (c), 0.30m to 19.00m Grout (g), 19.00m to 19.60m Bentonite (b), 21.60m to 23.00m Bentonite (b), 25.50m Bentonite (b), 25.50m Grout (g). Surface protection: Stop Cock Groundwater not encountered. Standpipe Piezometer installed, 19mm diameter, response zone from 19.60m to 21.60m. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets Project LLANWONNO TIPS LWT8 Project no. 151258 in depth column. Rhondda Cynon Taff Carried out for Sheet 1 of 4

39/05/2002 11:09:16 ESGLog v2.10

Drilled by Equipment and Methods See sheet 1 Ground Level +259.75 m OD Logged by CW National Grid F 300874.47 Checked by Coordinates N 196284.64 Samples and Tests Strata Type & No. Records Date Time Description Depth,Level Depth Casing Water (Thickness) 10.50 - 11.00 U19 19 blows 450mm recovered 10.30 dry From 10.50 to 11.25m becoming dark grey moltied light brown 11.00 11.25 - 11.70 C,N=11 2,3/3,2,3,3 11.25 dry 11.25 - 11.50 B21 21 blows 450mm recovered 12.00 12.00 - 12.50 U22 dry 11/12/2001 12.00 dry From 12.75m to 13.00m: Recovered as slightly sandy angular GRAVEL and COBBLES of moderately weak to moderately strong grey shale. 12/12/2001 12.00 dry D23 12.50 12.75 - 13.20 C.N=43 3,5/9,10,10,14 12.75 - 13.00 B24 31 blows 450mm recovered 13.50 - 14.00 U25 14.00 C,N=27 2,4/5,5,8,9 14.25 - 14.70 14.25 - 14.50 **B27** 29 blows 450mm recovered As sheet 1 (12.85)15.00 - 15.50 U28 15.50 D29 ... From 15.75m becoming very silly. 15.75 - 16.20 C,N=47 9,8/7,10,14,16 15.75 - 16.00 B30 40 blows 450mm recovered 16.50 - 17.00 U31 D32 C,50 6,7/11,11,14,14 for 17.25 - 17.68 17.25 C,N=35 5,10/9,9,8,9 18.75 - 19.20 18.75 - 19.00 B35 12/12/2001 19.50 50 blows Sample failed. No recovery 19.50 - 19.70 U36 Groundwater Chiselling: 12.80m to 13.20m 75minutes, Chisel, 16.10m to 16.30m 45minutes, Chisel, 17.90m to 18.50m 90minutes, Chisel, 19.70m to 20.10m 75minutes, Chisel Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets Project LLANWONNO TIPS Borehole LWT8 Project no. in depth column. Rhondda Cynon Taff Sheet 2 of 4 Carried out for

09/05/2002 11:09:19 ESGLog v2.10



Drilled by Equipment and Methods Ground Level +259.75 m OD Logged by CW F 300874 47 National Grid Checked by N 196284.64 Coordinates Samples and Tests Strata Type & No. Depth Records Date Time Description Depth.Level Legend Casing Water (Thickness) 20.25 - 20.70 19.50 C,N=40 6,7/10,10,11,9 20.25 - 20.50 **B37** As sheet 1 (12.85) 44 blows 450mm recovered 21.00 - 21.50 U38 21.50 D39 21.60 +238.15 21.70 - 22.20 44 blows 450mm recovered 22 20 D42 22.50 - 22.90 C,42 6,5/7,10,10,15 for 22.50 - 22.80 B43 13/12/2001 23.40 14/12/200 23.40 23.50 23.50 - 23.87 23.50 - 24.50 B44 Very dense brown very silty slightly sandy angular fine to coarse GRAVEL of sandstone, B45 24.50 - 25.50 24.50 - 24.87 with some cobbles. (5.90)24.50 .. From 24.50m becoming silty. 25.50 25.50 - 25.95 C,N=42 6,11/10,11,10,11 25.50 - 26.50 B48 B47 26.50 - 27.50 26.50 - 26.88 26.50 C,50 11,14/19,21,10 14/12/2001 27.70 27.50 +232.25 dry 17/12/2001 27.70 27.50 Moderately strong to C,50 25 for 40mm,- for 0mm/50 for 70mm C,50 25 for 55mm,- for 0mm/50 27.50 - 27.61 strong grey fine medium SANDSTONE. Moderately to 27.50 27.70 - 27.83 highly weathered fracture 27.70 - 29.20m discontinuty set 1 are 290 closely spaced horizontal rough planar and tight. Fracture set 2 are widely spaced subvertical fractures rough planar and moderately open with sandy 29.20 - 30.70m 68 Records Depth Date Casing Time Water If Groundwater 23.40m to 27.70m Water added to assist drilling.
Chiselling: 22.80m to 23.40m to 23.40m to 24.50m to 24.50m to 25.00m 60minutes, Chisel, 26.70m to 27.50m to 27.50m to 27.50m to 27.70m 60minutes, Chisel, 26.70m to 27.50m to 27.70m 60minutes, Chisel, 26.70m to 27.50m to 27.70m 60minutes, Chisel, 27.50m to 27. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets LLANWONNO TIPS Project Borehole LWT8 Project no. 151258 in depth column. Scale 1 : 50 Rhondda Cynon Taff Carried out for Sheet 3 of 4

Samples ar	nd Tes	ts			Strata		
Depth	TCR SCR If RQD	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
29.20 - 30.70m	93 68 33				Non intact: Recovered as grey brown sandy slightly gravelly CLAY.		9
30.70 - 31.50m	94 69 0				As sheet 3	(5.20pen)	
31.50 - 32.20m	83 71 43				<u>=</u>		
_ 32.20 - 32.70m	96 64 60		17/12/200° 27.70	l dry	EXPLORATORY HOLE ENDS AT 32.70 m.	32.70 +227.05	
Groundwater					Remarks		
Notes : For explanat	tion of symb	ools and I depths and reduced	Project	L	LANWONNO TIPS	Borehole	.WT8

Samp	oles and	lests	Strata		
Depth (m)	Type & No.	Records	Depth (m)	No.	Description
			0.00-0.20	1	TOPSOIL: Firm orange brown slightly sandy slightly gravelly SILT, with abundant rootlets and some roots. Sand is fine to coarse, gravel is subangular of sandstone.
.70-0.90 .70-1.90	B1 B2		0.20-2.90	2	Orange brown mottled grey silty sandy subangular to subrounded GRAVEL of sandstone. Sand is fine to coarse.
					From 1.00m with occasional subangular fine to coarse cobbles and rare tabular boulders of sandstone, upto 1.00m x 0.70m.
2.90-3.00	В3		2.90-3.00	3	Light grey mottled orange brown very clayey slightly sandy angular fine to coarse GRAVEL of mudstone and sandstone.
Groundw				100	Remarks
Damp at 2	2.00m.			S H	Stability : Stable, Shoring ; None tole backfill : 0.00m to 3.00m Arisings (a).

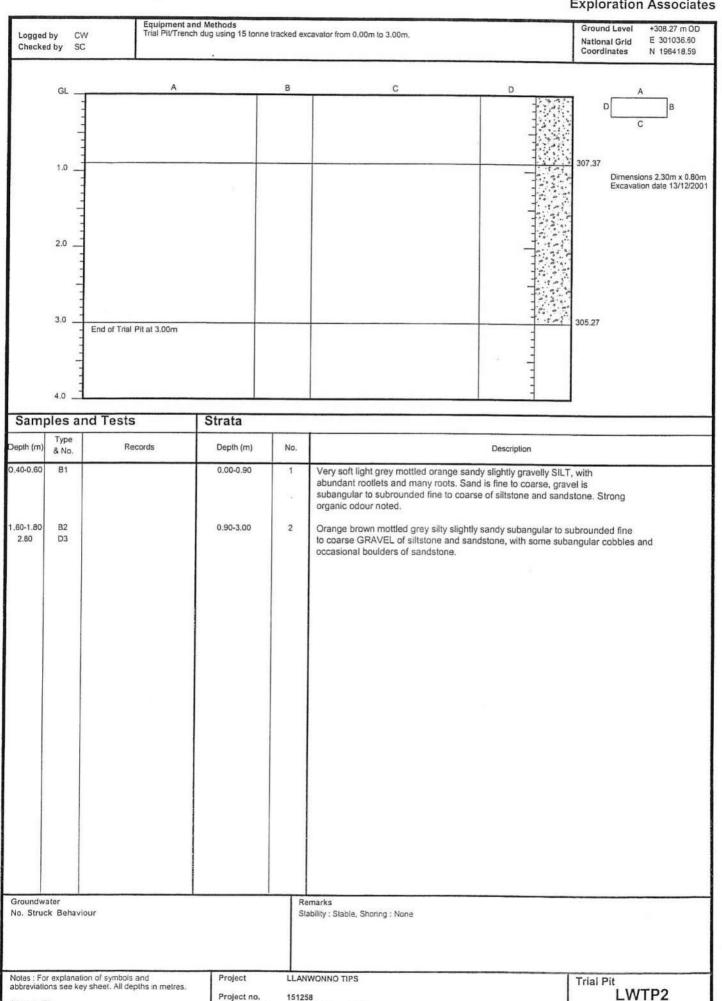
09/05/2002 11:09:23 ESGLog v2.10

Scale 1:50

Notes: For explanation of symbols and abbreviations see key sheet. All depths in metres.

Project

LLANWONNO TIPS


Project no. Carried out for

151258 Rhondda Cynon Taff Trial Pit
LWTP1
Sheet 1 of 1

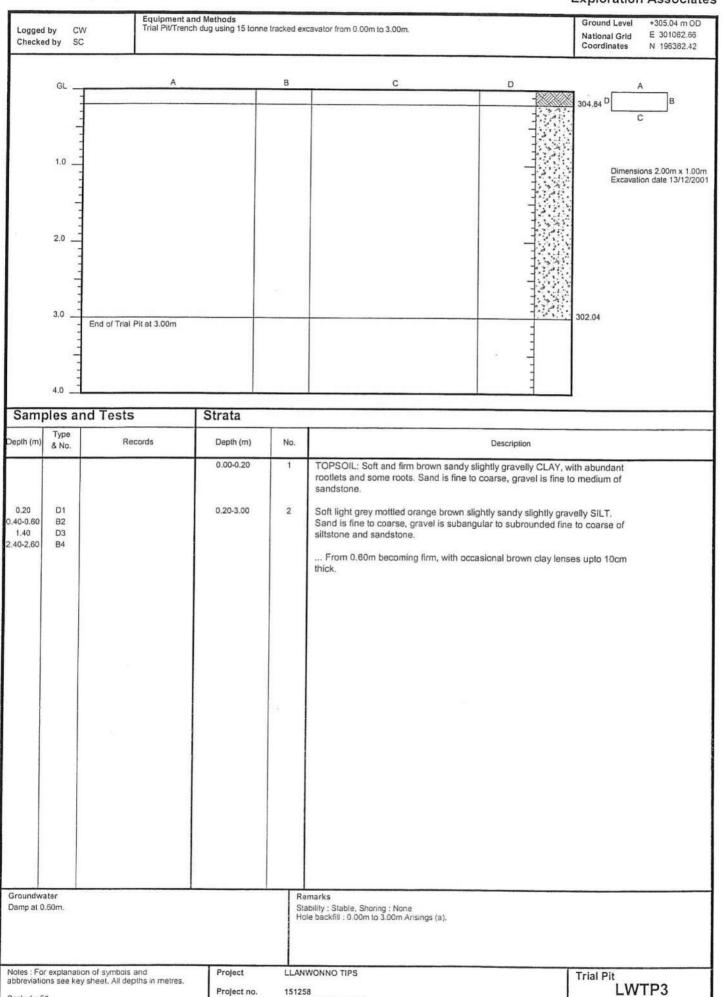
09/05/2002 11:09:25 ESGLog v2.10

Sheet 1 of 1

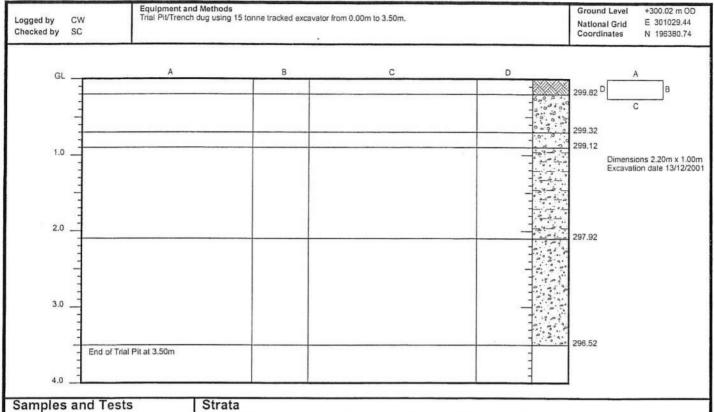
Carried out for

Rhondda Cynon Taff

09/05/2002 11:09:26 ESGLog v2.10


Scale 1:50

Carried out for


Rhondda Cynon Taff

Sheet 1 of 1

ds Depth (m)	No. Description
0.00-0.20	1 TOPSOIL: Soft brown slightly sandy slightly sandy CLAY, with abundant rootlets. Sand is fine to coarse, gravel is rounded to fine to coarse of quartzite and angular of mudstone
0.20-0.70	Orange brown very clayey sandy angular to subangular fine to coarse GRAVEL and COBBLES of sandstone, with some boulders.
0.70-0.90	3 Recovered as: Black sandy gravelly COBBLES of carbonised sandstone.
0.90-2.10	Firm grey slightly sandy gravelly CLAY. Sand is fine to coarse, gravel is angular fine to medium of mudstone and sandstone.
2.10-3.50	Orange brown silty sandy angular to subrounded fine to coarse GRAVEL of mudstone, siltstone and sandstone.
ore	0.00-0.20 0.20-0.70 0.70-0.90 0.90-2.10

09/05/2002 11:09:30 ESGLog v2.10

Notes: For explanation of symbols and abbreviations see key sheet. All depths in metres.

Groundwater not encountered.

Project

LLANWONNO TIPS

Stability: Stable, Shoring: None Hote backfill: 0.00m to 3.50m Arisings (a).

Carried out for Rhondda Cynon Taff

Trial Pit LWTP5 Sheet 1 of 1

ENCLOSURE C

Laboratory Test Results

Key to Symbols

Laboratory Summary Sheets

L1/1 to L1/8

Particle Size Distribution Plots

P2/1 to P2/73

Shear Box Results

P3/1 to P3/35

Chemical Test Results – Soils

Key to Laboratory Test Results

9	0.0	11 1 . 10
	U	Undisturbed Sample
	P	Piston Sample
	TWS	Thin Wall Sample
1	В	Bulk Sample - Disturbed
1	D	Jar Sample - Disturbed
- 6	W	Water Sample
	H	Acidity/Alkalinity Index
	SO ₃	% - Total Sulphate Content (acid soluble)
	SO₃	g/ltr - Water Soluble Sulphate (Water or 2:1 Aqueous Soil
		Extract)
-	+	Calcareous Reaction
(CI	Chloride Content
	p	Plasticity Index
į	, 425	% of material in sample passing 425 micron sieve
		Charles and the contract of th
	N _L	Liquid Limit
	V _p	Plastic Limit
	V	Water Content
1	NP	Non Plastic
7	b 'b	Bulk Density
	'd	Dry Density
	o Ps	Particle Density
	J/D	Undrained/Drained Triaxial
	J/C	Unconsolidated/Consolidated Triaxial
	Г/М	Single Stage/Multistage Triaxial
1	100/38	Sample Diameter (mm)
F	REM	Remoulded Triaxial Test Specimen
7	TST	Triaxial Suction Test
	/	Vane Test
	OSB	Drained Shear Box
	RSB	Residual Shear Box
1	RS	Ring Shear
(73	Cell Pressure
0	T1=O3	Deviator Stress
C		Cohesion
	·	Effective Cohesion Intercept
		Angle of Shearing Resistance - Degrees
4	,	
9	5.	Effective Angle of Shearing Resistance
Е	f	Strain at Failure
*		Failed under 1st Load
*	*	Failed under 2nd Load
#		Untestable
	#	Excessive Strain
	 'o	Effective Overburden Pressure
		Coefficient of Volume Decrease
	n _v	
	v	Coefficient of Consolidation
	Opt	Optimum
V	lat	Natural
S	Std	Standard Compaction - 2.5kg Rammer (¶ CBR)
H	lvy	Heavy Compaction - 4.5kg Rammer (§ CBR)
	ľib	Vibratory Compaction
	BR	California Bearing Ratio
	at m.c.	Saturation Moisture Content
1/	1CV	Moisture Condition Value

Notes: Project Figure

Project No.
Carried out for

Sam	Samples				ssific	atio	n		Strength			Other Tests	
Hole	Depth	Туре	Description	<425 I _P	Prep w _L	w _P	Water	γ _{b 3} Mg/m	Test	σ ₃ kPa	C kPa		
HD1	0.00 -	D	Silty gravelly SAND				34	1.48 Dry= 1.10				pH = 4.3 Particle Size analysis	
HD1	0.05 -	D	Silty SAND and GRAVEL				15	1.65 Dry= 1.44				pH = 4.8 Particle Size analysis	
ID 1	0.10 -	D	Silty very sandy GRAVEL				12	1.53 Dry= 1.36				pH = 4.2 Particle Size analysis	
HD 1	0.15 - 0.20	D	Silty SAND and GRAVEL				12	1.70 Dry= 1.52				pH = 5.5 Particle Size analysis	
HD 1	0.20 - 0.25	D	Slightly silty very sandy GRAVEL				8.4	1.71 Dry= 1.58				pH = 4.9 Particle Size analysis	
ID2	0.00 -	D	Silty gravelly SAND				21	1.51 Dry= 1.25				pH = 6.1 Particle Size analysis	
ID2	0.05 - 0.10	D	Silty gravelly SAND				17	1.69 Dry= 1.44				pH = 6.2 Particle Size analysis	
ID2	0.10 - 0.15	D	Silty gravelly SAND				13	1.78 Dry= 1.58				pH = 6.5 Particle Size analysis	
D2	0.15 - 0.20	D	Silty very sandy GRAVEL					1.52 Dry= 1.38				pH = 6.4 Particle Size analysis	
D2	0.20 - 0.25	200	Slightly silty sandy GRAVEL.					1.62 Dry= 1.51				pH = 6.1 Particle Size analysis	
D3	0.00 -		Slightly silty gravelly SAND					0.99 Dry= 0.57				pH = 5.6 Particle Size analysis	
D3	0.05 -		Slightly silty gravelly SAND					1.30 Dry= 0.89				pH = 4.2 Particle Size analysis	
D3	0.10 -		Slightly silty very gravelly SAND					1.46 Dry= 1.19				pH = 4.0 Particle Size analysis	

Form 10/2

Laboratory - Results Summary

Project

LLANWONNO TIPS Rhondda Cynon Taff Contract

151258

Sheet

L1/1

Exploration Associates

Sam	ples			Clas	ssific	catio	n		Stre	ngth	1	Other Tests	
Hole	Depth	Туре	Description	<425 I _P	Prep W _L	w _P	Water %	γ _b 3 Mg/m	Test	σ ₃ kPa	C kPa		
HD3	0.15 -	D	Slightly silty very				12	1.59				pH = 4.7	
	0.20		gravelly SAND					Dry= 1.42				Particle Size analysis	
ID3	0.20 -	D	Slightly silty very sandy				8.3	1.61				pH = 4.9	
	0.25		GRAVEL					Dry= 1.49				Particle Size analysis	
HD4	0.00 -	D	Slightly gravelly SAND				82	1.20				рн = 6.4	
	0.05							Dry= 0.66				Particle Size analysis	
HD4	0.05 -	D	Slightly silty very				65	1.19				pH = 4.4	
	0.10		gravelly SAND					Dry= 0.72				Particle Size analysis	
HD4	0.10 -	D	Silty very gravelly SAND				61	1.28		8		рн = 4.1	
	0.15							Dry= 0.79				Particle Size analysis	
HD4	0.15 -	D	Silty gravelly SAND				49	1.36		9		рн = 4.5	
	0.20							Dry= 0.91				Particle Size analysis	
HD4	0.20 -	D	Silty slightly gravelly				36	1.44				рн = 3.7	
	0.25		SAND					Dry= 1.06				Particle Size analysis	
HD5	0.00 -	D	Slightly silty SAND and				32	1.20				pH = 4.0	
	0.05		GRAVEL					Dry= 0.91				Particle Size analysis	
1D5	0.05 -	D	Slightly silty very sandy				18	1.41				pH = 4.0	
	0.10		GRAVEL					Dry= 1.19				Particle Size analysis	
lD5	0.10 -	D	Slightly silty SAND and				17	1.48				рн = 4.0	
	0.15		GRAVEL					Dry= 1.27				Particle Size analysis	
ID5	0.15 -	D	Slightly silty SAND and				14	1.60				рн = 4.4	
	0.20		GRAVEL					Dry= 1.40				Particle Size analysis	
ID5	0.20 -	D	Slightly silty very sandy				12	1.64				рн = 4.1	
	0.25		GRAVEL					Dry= 1.46				Particle Size analysis	
ID6	0.00 -	D	Slightly silty very				67	1.02				pH = 4.2	
	0.05		gravelly SAND					Dry= 0.61				Particle Size analysis	

Laboratory - Results Summary

Project

LLANWONNO TIPS Rhondda Cynon Taff Contract

151258

Form 10/2

Sheet

L1/1

Exploration Associates

Sam	ples			Cla	ssific	atio	n		Stre	ngth	1	Other Tests
Hole	Depth	Туре	Description	<425 I _P	Prep W _L	w _P	Water %	γ _b Mg/m	Test	σ ₃ kPa	C kPa	
HD6	0.05 -	D	Sandy slightly gravelly CLAY / SILT				48	1.39 Dry= 0.94				pH = 4.9 Particle Size analysis
HD6	0.10 - 0.15	D	sandy slightly gravelly CLAY / SILT				43	1.50 Dry= 1.05				pH = 4.6 Particle Size analysis
HD6	0.15 - 0.20	D	Sandy gravelly CLAY / SILT				30	1.55 Dry= 1.20				pH = 4.9 Particle Size analysis
HD6	0.20 - 0.25	D	sandy slightly gravelly CLAY / SILT				31	1.49 Dry= 1.14				pH = 5.6 Particle Size analysis
HD7	0.00 -	D	Slightly silty very sandy GRAVEL				234	0.78 Dry= 0.23				pH = 6.2 Particle Size analysis
HD7	0.05 -	D	Slightly silty very sandy GRAVEL				30	1.30 Dry= 1.00				pH = 6.2 Particle Size analysis
HD7	0.10 - 0.15	D	Slightly silty sandy GRAVEL				19	1.20 Dry= 1.01				pH = 6.5 Particle Size analysis
HD7	0.15 - 0.20	D	Slightly silty sandy GRAVEL				18	1.24 Dry= 1.05				pH = 6.1 Particle Size analysis
HD7	0.20 -	D	Slightly silty sandy GRAVEL				13	1.48 Dry= 1.31				pH = 6.0 Particle Size analysis
ID8	0.00 -	D	Very silty gravelly SAND				200	0.91 Dry= 0.27				pH = 5.9 Particle Size analysis
4D8	0.05 -	1	Slightly silty gravelly SAND					0.95 Dry= 0.42				pH = 4.4 Particle Size analysis
lD8	0.10 -	D	Silty gravelly SAND					0.91 Dry= 0.40				pH = 4.1 Particle Size analysis
ID8	0.15 -		Sandy slightly gravelly CLAY / SILT					1.46 Dry= 0.91				pH = 4.7 Particle Size analysis

Form 10/2

Laboratory - Results Summary

Exploration Associates

Project

LLANWONNO TIPS

Rhondda Cynon Taff

Contract

151258

Sheet

San	ples			Cla	ssifi	catio				ngth	1	Other Tests
Hole	Depth	Туре	Description	< 425 I _P	Prep W _L	w _P	Water %	γ _b 3 Mg/m	Test	σ ₃ kPa	C kPa	
HD8	0.20 - 0.25	D	Very sandy gravelly CLAY / SILT				37	1.56 Dry= 1.14				pH = 4.5 Particle Size analysis
HD9	0.00 -	D	Slightly silty gravelly				44	1.29 Dry= 0.89				pH = 6.2 Particle Size analysis
HD9	0.05 - 0.10	D	Slightly silty SAND and GRAVEL				17	1.59 Dry= 1.36				pH = 4.3 Particle Size analysis
HD9	0.10 - 0.15	D	Silty SAND and GRAVEL				14	1.61 Dry= 1.41				pH = 4.2 Particle Size analysis
HD9	0.15 - 0.20	D	Silty SAND and GRAVEL				14	1.63 Dry= 1.43				pH = 4.0 Particle Size analysis
HD9	0.20 - 0.25	D	Silty gravelly SAND				17	1.71 Dry= 1.46				pH = 4.2 Particle Size analysis
HD 10	0.00 - 0.05	D	Slightly silty very gravelly SAND			3	68	1.11 Dry= 0.66				pH = 5.5 Particle Size analysis
HD10	0.05 -	D	Silty gravelly SAND				47	1.34 Dry= 0.91				pH = 3.8 Particle Size analysis
HD10	0.10 - 0.15	D	Silty slightly gravelly SAND				43	1.34 Dry= 0.94				pH = 4.2 Particle Size analysis
HD10	0.15 -	D	Very silty gravelly SAND				52	1.31 Dry= 0.85				pH = 4.1 Particle Size analysis
HD 10	0.20 - 0.25	D	Silty sandy GRAVEL					1.60 Dry= 1.31				pH = 4.1 Particle Size analysis
LWT2	3.00 - 3.45		WALLANDER CONTROL OF THE PROPERTY OF THE PROPE	41 24	425μ 49	Sieve 25	11					pH = 7.0 Ps = 2.32 measured Particle Size analysis S03 = 0.03% Passing 2mm = 39%
Dama												

Remarks

Form 10/2

Laboratory - Results Summary

Exploration Associates

Project

LLANWONNO TIPS

Rhondda Cynon Taff

Contract
151258

Sheet
L1/1

Sar	nples	ė		Cla	ssifi	catio	n			ength	1	Other Tests
Hole	Depth	Туре	Description	<425 I _P	Prep W _L	w _P	Wate	γ _b 3 Mg/m	Test	σ ₃ kPa	C kPa	
LWT2	5.00 - 5.45	В	MADE GROUND: loose dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone and coal.	39 25	425µ 50	Sieve 25	6.4					Ps = 2.62 measured Shearbox Test Particle Size analysis
LWT2	8.00 - 8.45	В	Medium dense becoming dense dark orange brown slightly clayey sandy angular dominantly coarse GRAVEL with occasional subangular cobbles of siltstone and sandstone.		425μ 34	Sieve 21	8.6					pH = 7.2 Ps = 2.70 measured Particle Size analysis SO3 = 0.02% Passing 2mm = 46%
LWT3	2.00 - 2.50	U	MADE GROUND: Loose dark grey sandy angular fine to coarse GRAVEL of weak mudstone and coal	44 33	425µ 59	Sieve 26	5.5	1.80 Dry= 1.69				Shearbox Test
LWT3	3.00 - 3.45	В	MADE GROUND: medium dense dark grey and black clayey sandy angular fine to coarse GRAVEL with occasional subangular cobbles of mudstone and coal.	32 22	425μ 45	Sieve 23	5.1					pH = 8.1 Ps = 2.42 measured Particle Size analysis SO3 = <0.01% Passing 2mm = 40%
LWT3	7.00 - 7.50	U	Dark brown and black slightly sandy very gravelly CLAY	22 15	425μ 32	Sieve 17	6.1	1.80 Dry= 1.68				Shearbox Test
LWT3	7.75 - 8.20		MADE GROUND: Medium dense dark grey and black clayey sandy angular fine to coarse GRAVEL with occasional subangular cobbles of mudstone and coal.	41 20	425μ 46	Sieve 26	6.9					Particle Size analysis
LWT3	10.80- 11.00		Very stiff slightly sandy slightly gravelly SILT. Sand is fine to coarse gravel is angular to subangular fine to coarse of siltstone and sandstone.									Particle Size analysis
LWT3	11.00-	1		1	Natur 31	16	13	2.06 Dry= 1.72				pH = 6.1 Ps = 2.69 measured Shearbox Test SO3 = 0.53% Passing 2mm = 99%
Rema	rks											

.

Project

LLANWONNO TIPS Rhondda Cynon Taff Contract

151258

Form 10/2

Sheet

L1/1

Laboratory - Results Summary

Exploration Associates

San	ples			Cla	ssifi	catio	n		Stre	engtl	1	Other Tests
Hole	Depth	Туре	Description	<425 I _P	Prep W _L	w _P	Water	γ _b 3 Mg/m	Test	σ ₃ kPa	C kPa	
LWT4	2.75 - 3.25	U	Medium dense dark grey slightly silty very sandy angular fine to coarse GRAVEL of mudstone and coal.	46 30	425µ 58	Sieve 28	9.3	- 5,				pH = 6.3 Ps = 2.23 measured Shearbox Test Particle Size analysis SO3 = 0.39% Passing 2mm = 36%
LWT4	6.50 - 6.95	В	Medium dense dark grey slightly silty sandy angular fine to coarse GRAVEL of mudstone and coal.	26 23	425μ 45	Sieve 22	7.2					Particle Size analysis
LWT4	7.25 - 7.75	U	Medium dense dark grey slightly silty sandy angular fine to coarse GRAVEL of mudstone and coal.	32 23	425µ 46	Sieve 23	6.8					Particle Size analysis
LWT4	8.75 - 9.20	В	Medium dense orange brown slightly silty sandy angular fine to coarse GRAVEL of siltstone and sandstone.	39 15	425μ 36	Sieve 21	4.1					pH = 7.2 Ps = 2.64 measured Particle Size analysis SO3 = 0.05% Passing 2mm = 31%
LWT5	9.30 - 9.80	U	MADE GROUND: dark grey and black sandy angular fine to coarse GRAVEL of mudstone ironstone and coal. Sand is fine to coarse.		425μ 46	Sieve 23	10	2.14 Dry= 1.95				pH = 8.4 Ps = 2.26 measured SO3 = 0.05% Passing 2mm = 66%
.WT5	10.50- 11.00		MADE GROUND: medium dense light and dark orange brown very silty very sandy GRAVEL. Sand is fine to coarse, gravel is subangular to subrounded of mudstone siltstone sandstone and ironstone	46 24	425μ 48	Sieve 24	9.8	1.96 Dry= 1.79				Particle Size analysis
.WT5	11.20- 11.65		A CONTROL OF THE PROPERTY OF T		425μ 46	Sieve 24	12					Shearbox Test Particle Size analysis
WT5	13.50- 14.00	9			425μ 44	Sieve 22	13					pH = 5.9 Shearbox Test Particle Size analysis SO3 = 0.52% Passing 2mm = 67%
Remar	rks											

Laboratory - Results Summary

Project

Contract 151258

Form 10/2

Exploration Associates

LLANWONNO TIPS Rhondda Cynon Taff

Sheet

Sar	nples			Cla	assif	icati	on		Stre	engtl	n	Other Tests
Hole	Depth	Туре	Description	<425 I _P	Prep W _L	w _P	Wat	er γ _b 3 Mg/m	Test	σ ₃ kPa	C kPa	
LWT6	1.75 -	U	MADE GROUND: very loose dark grey and black slightly silty very sandy angular fine to coarse gravel of mudstone and coal.	52 24	425 ₇ 51	Siev 27	e 3.8	1.81			2	pH = 6.5 Ps = 2.54 measured Shearbox Test Particle Size analysis SO3 = 0.19% Passing 2mm = 44%
LWT6	8.50 - 9.00	U	Stiff grey mottled brown slightly sandy gravelly CLAY. Sand is fine to coarse gravel is angular fine to coarse of mudstone siltstone and sandstone.	46	425µ 28	Sieve 15	9.4	1.80 Dry= 1.65				Shearbox Test Particle Size analysis
LWT6	10.50-		Stiff light and dark orange brown slightly sandy slightly gravelly SILT sand is fine to coarse gravel is rounded to subangular of siltstone and sandstone.	17	425μ 35	Sieve 18	9.7	1.81 Dry= 1.59				pH = 6.5 Ps = 2.68 measured Shearbox Test Particle Size analysis SO3 = 0.18% Passing 2mm = 99%
WT7	2.00 -		Loose becoming medium dense dark grey and black slightly silty sandy angular fine to coarse GRAVEL of ash coal and sandstone.									pH = 8.3 Particle Size analysis S03 = 0.09% Passing 2mm = 36%
WT7	2.75 - 3.25			24 18	425μ 39	Sieve 21	8.9	1.80 Dry= 1.65				Ps = 2.28 measured Shearbox Test
JT7	5.00 - E	s a	oose becoming medium dense dark grey and black slightly clayey sandy angular fine to coarse GRAVEL of ash coal and andstone.									Particle Size analysis
л7	5.75 - U 6.25	m b a G	ADE GROUND: Loose becoming a medium dense dark grey and lack slightly clayey sandy ngular fine to coarse RAVEL of coal, ash and iltstone		425μ 31	Sieve 18	6.6					Ps = 2.37 measured Shearbox Test
	8.50 - U 9.00	is is	ark orange brown slightly 7 andy gravelly CLAY. Gravel 2 s angular fine to coarse f sandstone.		425μ s 49	Sieve 27		1.79 Dry= 1.47				Shearbox Test

Laboratory - Results Summary

Exploration Associates

Project

LLANWONNO TIPS Rhondda Cynon Taff

Form 10/2 Contract

151258

Sheet

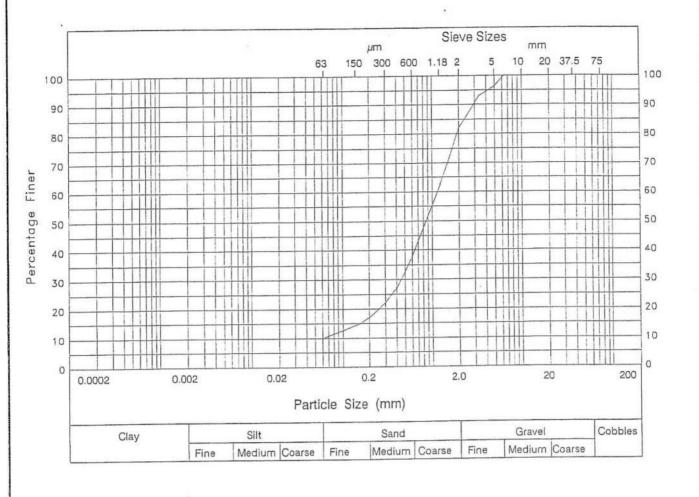
Samples					catio	n		1	ength	1	Other Tests
Depth	Туре	Description	<425 I _P	Prep W _L	w _P	Water	γ _b 3 Mg/m	Test	σ ₃ kPa	C kPa	
9.00 - 9.45	В	Firm to stiff orange mottled grey slightly sandy gravelly CLAY. gravel is angular fine to coarse of sandstone									Particle Size analysis
6.75 - 7.00	В	MADE GROUND: Medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of mudstone sandstone and siltstone and coal.									Particle Size analysis
7.50 - 8.00	U	MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone, coal and wood.	11	425μ 30	Sieve NP	3.7	1.84 Dry= 1.77				Ps = 2.22 measured
15.75- 16.00	В	MADE GROUND: medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of sandstone siltstone and coal.									Particle Size analysis
16.50- 17.00	U	MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone and coal.	13	425μ 29	Sieve NP	9.5	2.10 Dry= 1.92				Ps = 2.31 measured
21.70-22.20		gravelly slightly sandy CLAY with occasional orange	500876	425μ 46	Sieve 26	15	1.80 Dry= 1.46				Shearbox Test Particle Size analysis
25.50- 26.50		clayey slightly sandy angular fine to coarse GRAVEL, with some cobbles				5.2					Particle Size analysis
	Depth 9.00 - 9.45 6.75 - 7.00 7.50 - 8.00 15.75- 16.00 21.70- 22.20	Depth Type 9.00 - B 9.45 - B 6.75 - B 7.50 - U 8.00 - U 15.75 - B 16.00 - U 21.70 - U 22.20 - B	Depth Type Description 9.00 - B Firm to stiff orange mottled grey slightly sandy gravelly CLAY. gravel is angular fine to coarse of sandstone 6.75 - B MADE GROUND: Medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of mudstone sandstone and siltstone and coal. 7.50 - U MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone, coal and wood. 15.75 - B MADE GROUND: medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of sandstone siltstone and coal. 16.50 - U MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of sandstone siltstone and coal. 16.50 - U MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone and coal. 21.70 - U Grey brown slightly gravelly slightly sandy CLAY with occasional orange brown sand partings Very dense brown very	Depth Type Description 4425 9.00 - B Firm to stiff orange mottled grey slightly sandy gravelly CLAY. gravel is angular fine to coarse of sandstone 6.75 - B MADE GROUND: Medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of mudstone sandstone and siltstone and coal. 7.50 - U MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone, coal and wood. 15.75 - B MADE GROUND: medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of sandstone siltstone and coal. 16.50 - U MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone and coal. 21.70 - U Grey brown slightly gravelly slightly sandy CLAY with occasional orange brown sand partings 25.50 - B Very dense brown very clayey slightly sandy angular fine to coarse GRAVEL, with some cobbles	Depth Type Description 4425 Prep WL 9.00 - B Firm to stiff orange mottled grey slightly sandy gravelly CLAY. gravel is angular fine to coarse of sandstone 6.75 - B MADE GROUND: Medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of mudstone sandstone and siltstone and coal. 7.50 - U MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone, coal and wood. 15.75 - B MADE GROUND: medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of sandstone siltstone and coal. 16.50 - U MADE GROUND: Medium dense dark grey and black silty slightly sandy angular fine to coarse GRAVEL of sandstone siltstone and coal. 16.50 - U MADE GROUND: Medium dense dark grey and black slightly clayey very sandy angular fine to coarse GRAVEL of mudstone, siltstone, sandstone and coal. 21.70 - U Grey brown slightly gravelly slightly sandy clay with occasional orange brown sand partings 25.50 - B Very dense brown very clayey slightly sandy angular fine to coarse GRAVEL, with some cobbles	Depth Type Description	Depth Type Description	Depth Type Description	Depth Type Description	Depth Type Description	Depth Type Description

Form 10/2

Laboratory - Results Summary

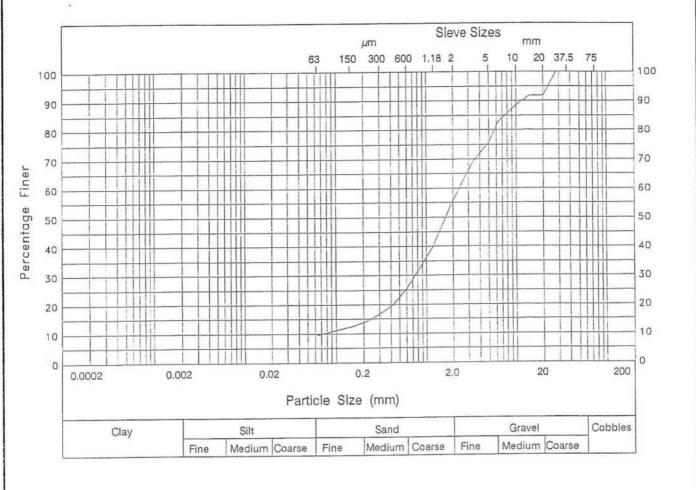
Exploration Associates

Project

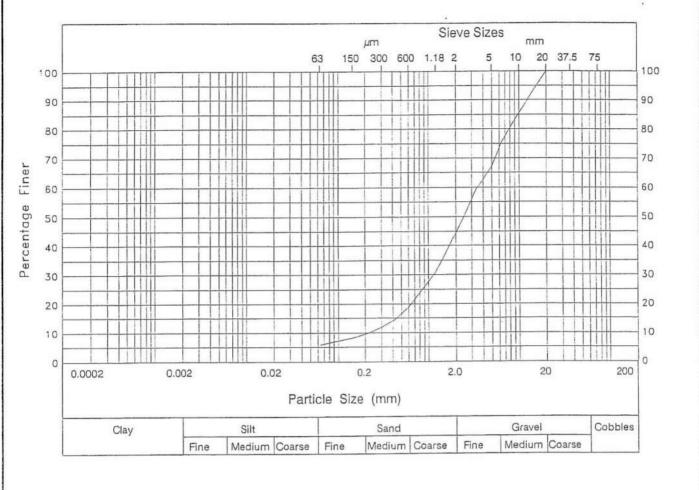

LLANWONNO TIPS

Rhondda Cynon Taff

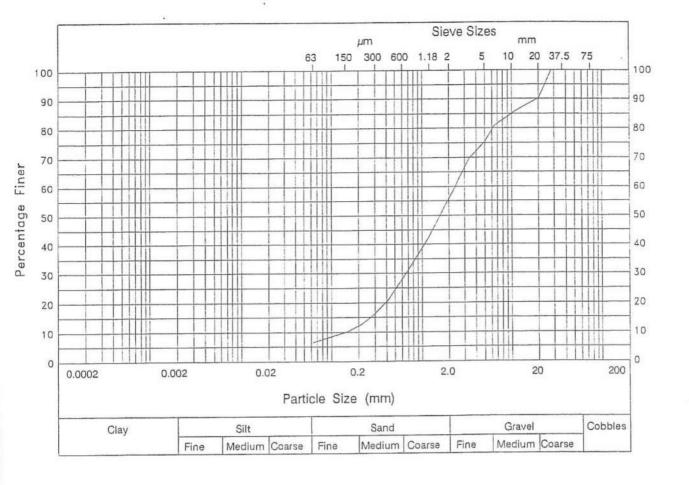
Contract


151258

Sheet


Particle Size	% Passing	Particle Size	% Passing
6.3 mm	100		
5 mm	96		
3.35 mm	93		
2 mm	82		
1.18 mm	61		
600 μm	38		
425 μm	28		
300 μm	22		
212 μm	18		
150 μm	15		
63 μm	10		3
Hole	Description		
HD1	Silty gravel	y SAND	
Depth			
0.00 -0.05			
Туре			
D			
Test Performed	Uniformity	Coefficient = 18	
Wet			

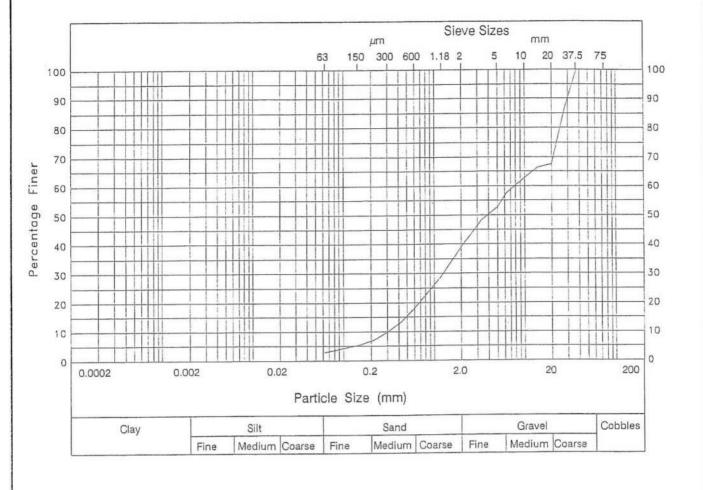
		Form 25/4	
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258	
Exploration Associates	Rhondda Cynon Taff	Sheet P2/1	


Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	14
20 mm	92	150 μm	12
14 mm	92	63 μm	10
10 mm	89	1	
6.3 mm	83		
5 mm	76		
3.35 mm	69		
2 mm	56		
1.18 mm	40		
600 μm	25		
425 μm	20		
300 μm	17		
Hole	Description		
HD1	Silty SAND ar	nd GRAVEL	
Depth			
0.05 -0.10			
Туре			
D			
Test Performed	Uniformity	Coefficient = 37	
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/2

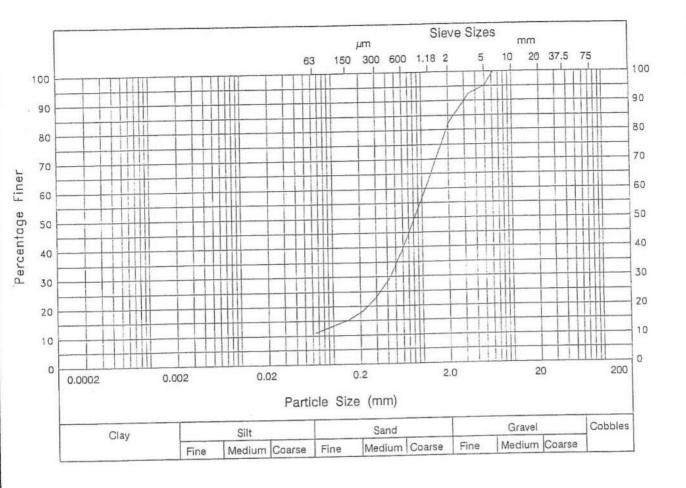
Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	8
14 mm	93	63 μm	6
10 mm	86		
6.3 mm	75		
5 mm	67		
3.35 mm	59		
2 mm	44		
1.18 mm	31	1	
600 μm	19		
425 μm	15	1	
300 μm	12		
212 μm	10		
Hole	Description		
HD1	Silty very sa	andy GRAVEL	
Depth			
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient = 17	
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/3

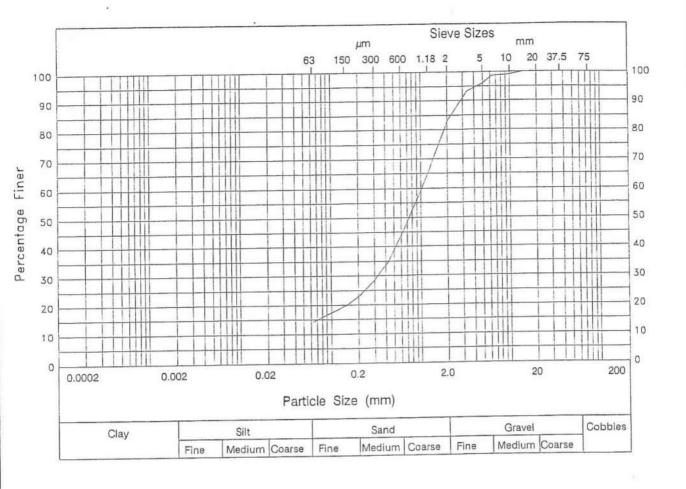

Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 μm	13
20 mm	90	150 μm	10
14 mm	88	63 μm	7
10 mm	85		
6.3 mm	81		
5 mm	75		
3.35 mm	70		
2 mm	56		
1.18 mm	42		
600 μm	28		
425 μm	21		
300 μm	16		
Hole	Description		
HD1	Silty SAND ar	nd GRAVEL	
Depth			
0.15 -0.20			
Туре			
D			
Test Performed	Uniformity	Coefficient = 31	
Wet			

Laboratory - Particle Size Plot

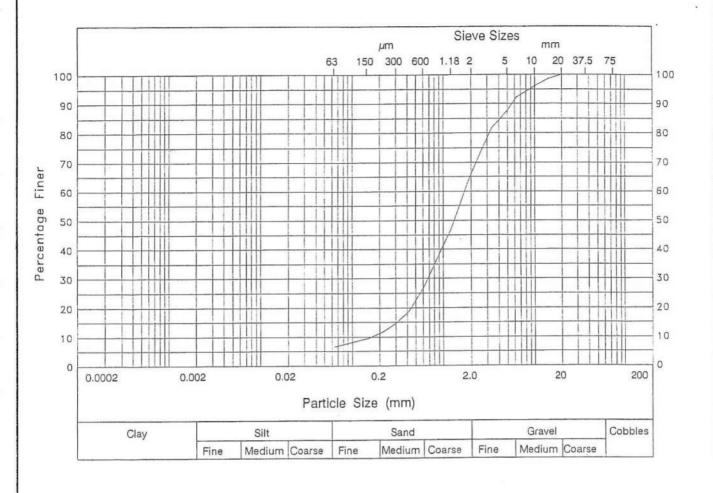
Project
LLANWONNO TIPS
Rhondda Cynon Taff


Exploration Associates

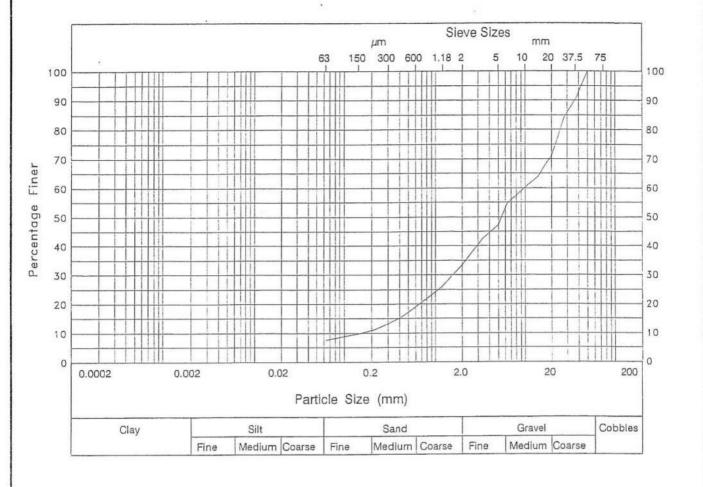
Project
Sheet
P2/4


Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	10
28 mm	87	212 μm	7
20 mm	68	150 μm	5
14 mm	66	63 μm	3
10 mm	63		
6.3 mm	58		
5 mm	53		
3.35 mm	48		
2 mm	39		
1.18 mm	29		
600 µm	18		
425 μm	13		
Hole	Description		
HD1	Slightly silt	y very sandy GRAV	EL
Depth			
0.20 -0.25			
Туре			
D			
Test Performed	Uniformity	Coefficient = 25	
Wet	-commercial mass		

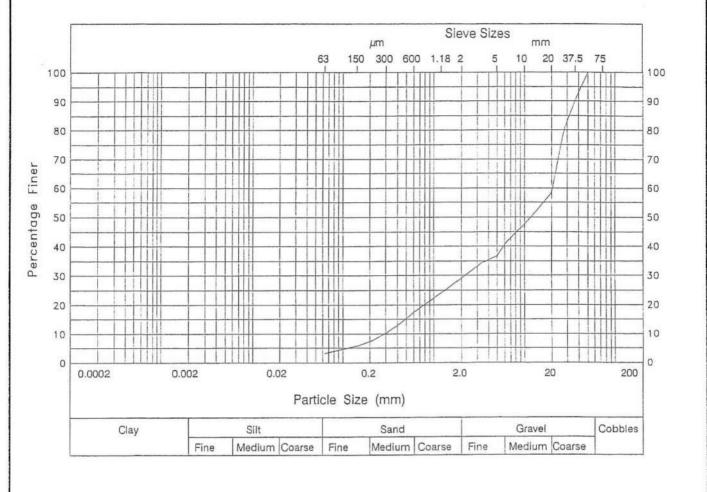
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/5


Particle Size	% Passing	Particle Size	% Passing
6.3 mm	100		
5 mm	95		
3.35 mm	92		
2 mm	82		
1.18 mm	62		
600 μm	40		
425 μm	29		
300 μm	23		1
212 µm	18		
150 μm	15		
63 μm	11		
Hole	Description		
HD2	Silty gravel	Ly SAND	
Depth			
0.00 -0.05			
Туре			
D			
Test Performed Wet	Uniformity	Coefficient not	applicable.

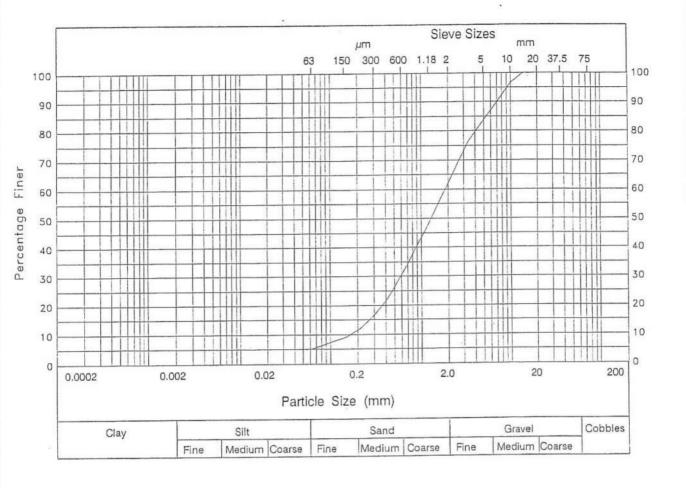
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/6


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	14
10 mm	99		
6.3 mm	99		
5 mm	96		
3.35 mm	93		
2 mm	83		
1.18 mm	64		1
600 μm	44		
425 μm	35		1
300 μm	29		
212 μm	24		
150 μm	20		
Hole	Description		
HD2	Silty gravel	Ly SAND	
Depth			
0.05 -0.10			
Туре			
D			
Test Performed	Uniformity	Coefficient not a	applicable.
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/7

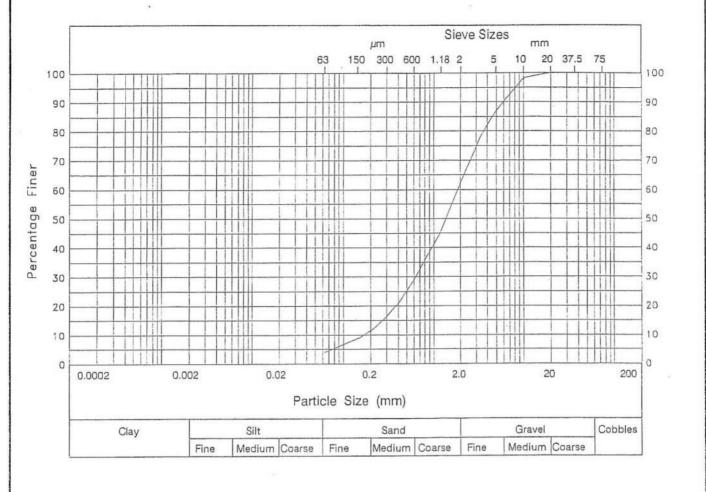

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	10
14 mm	98	63 μm	7
10 mm	96		
6.3 mm	92		
5 mm	88		
3.35 mm	82		
2 mm	66		
1.18 mm	46		
600 μm	27		
425 μm	19		
300 μm	15		
212 μm	12		
Hole	Description		
HD2	Silty gravell	y SAND	
Depth			
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient = 11	
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/8

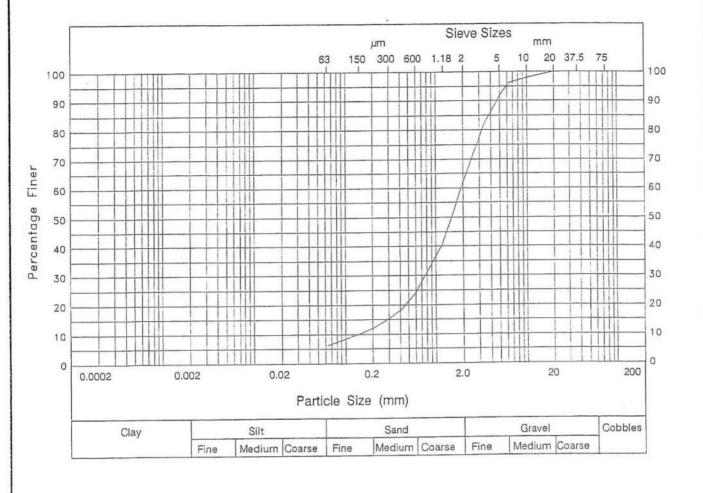

Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 μm	16
37.5 mm	91	300 µm	13
28 mm	84	212 µm	11
20 mm	71	150 µm	10
14 mm	64	63 μm	8
10 mm	60		
6.3 mm	55		
5 mm	47		
3.35 mm	42		
2 mm	34		
1.18 mm	26		
600 μm	19		
Hole	Description		
HD2	Silty very sa	ndy GRAVEL	
Depth			
0.15 -0.20			
Туре			
D			
Test Performed	Uniformity	Coefficient = 65	
Wet			

		Form 25/
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/9

Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 μm	13
37.5 mm	91	300 μm	10
28 mm	81	212 μm	8
20 mm	59	150 μm	6
14 mm	53	63 μm	3
10 mm	48		
6.3 mm	41		
5 mm	37		
3.35 mm	34		
2 mm	29		
1.18 mm	24		
600 μm	17		
Hole	Description		
HD2	Slightly silt	y sandy GRAVEL.	
Depth			
0.20 -0.25			
Туре			
D			
Test Performed Wet	Uniformity	Coefficient = 70	


		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/10

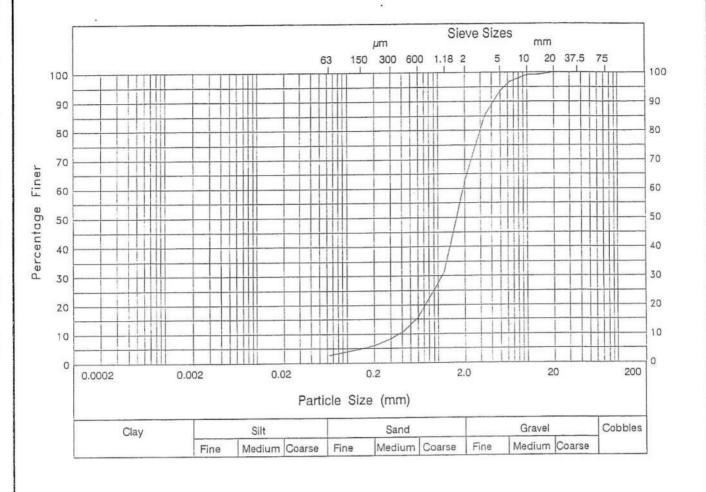
Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	5
10 mm	97	2	
6.3 mm	88		
5 mm	84	1	
3.35 mm	76		
2 mm	62		
1.18 mm	48		
600 μm	31		
425 μm	23		
300 μm	17		
212 μm	12		
150 μm	9		
Hole	Description		
HD3	Slightly silt	y gravelly SAND	
Depth			
0.00 -0.05			
Туре			
D			
Test Performed	Uniformity	Coefficient = 11	
Wet	Personal Red Resident		


Laboratory - Particle Size Plot

| Project | Contract | 151258 |
| Rhondda Cynon Taff | Sheet | P2/11 |

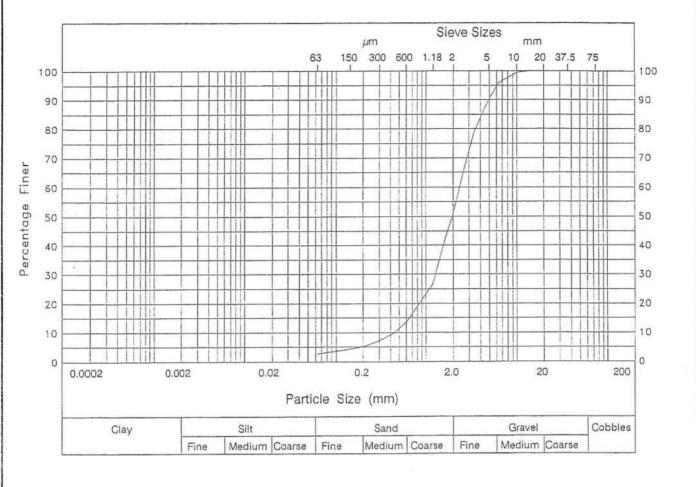
Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	9
14 mm	99	63 µm	4
10 mm	98		
6.3 mm	91		
5 mm	87		
3.35 mm	78		
2 mm	62		
1.18 mm	45		
600 μm	29		
425 μm	22		
300 μm	16		
212 μm	12		
Hole	Description		
HD3	Slightly silt	y gravelly SAND	
Depth			
0.05 -0.10			
Туре			
D			
Test Performed	Uniformity Coefficient = 11		
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/12

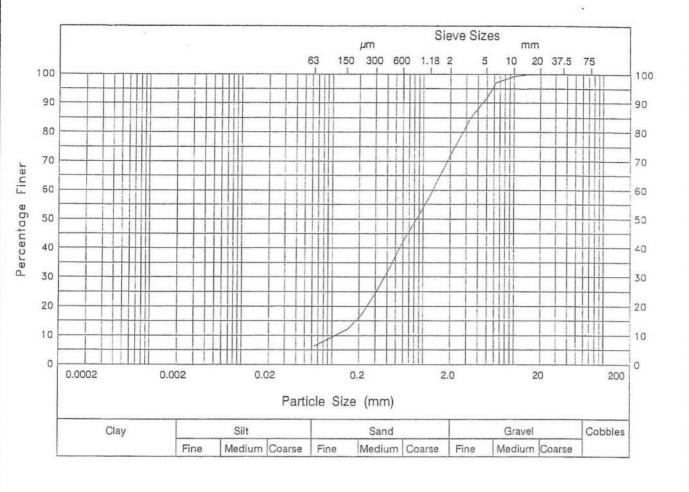


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	10
14 mm	99	63 μm	6
10 mm	98		
6.3 mm	96		
5 mm	92		
3.35 mm	82		
2 mm	62		
1.18 mm	41		
600 μm	24		
425 μm	19		
300 μm	15		
212 µm	12		
Hole	Description		
HD3	Slightly silt	y very gravelly S	AND
Depth			
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient = 26	
Wet			

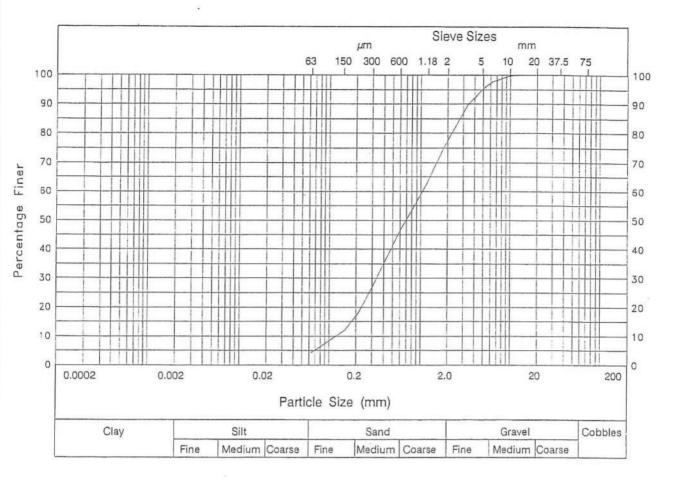
Laboratory - Particle Size Plot


Project
LLANWONNO TIPS
Rhondda Cynon Taff

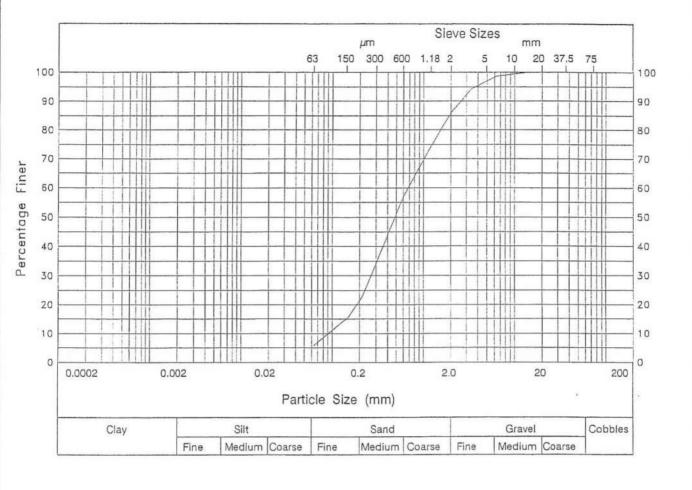
Sheet
P2/13


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	5
14 mm	99	63 μm	3
10 mm	99		
6.3 mm	97		-
5 mm	94		
3.35 mm	85		
2 mm	63		
1.18 mm	32		
600 μm	16		
425 μm	11		
300 μm	8		
212 µm	6		
Hole	Description		
HD3	Slightly silt	y very gravelly S	AND
Depth	1		
0.15 -0.20			
Туре	1		
D			
Test Performed	Uniformity	Coefficient = 5.0	
Wet			

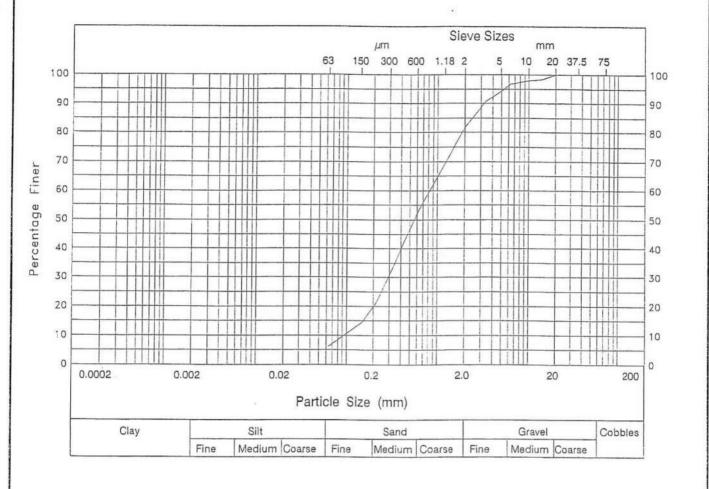
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/14


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	3
10 mm	99		
6.3 mm	96		
5 mm	91		
3.35 mm	79		
2 mm	51		
1.18 mm	27		
600 μm	14		
425 μm	10		
300 μm	7		
212 μm	5		
150 μm	4		
Hole	Description		
HD3	Slightly silt	y very sandy GRAVI	EL
Depth		FOR THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	
0.20 -0.25			
Туре			
D			
Test Performed	Uniformity	Coefficient = 5.6	
Wet	15000000000000000000000000000000000000		

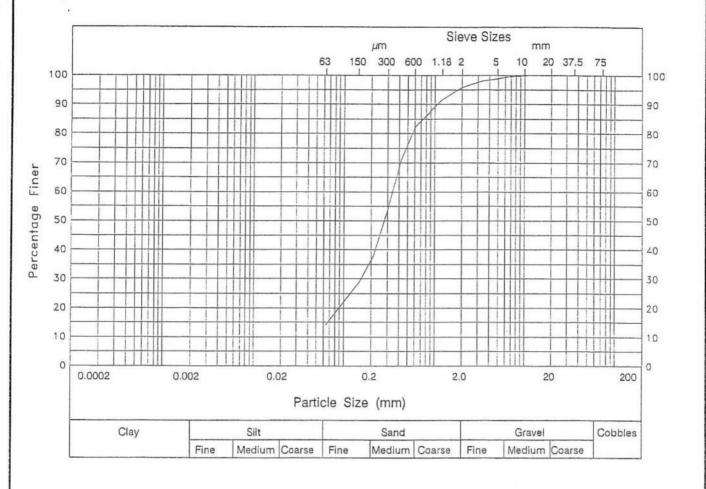
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract
Exploration Associates	Rhondda Cynon Taff	Sheet P2/15


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	12
14 mm	100	63 μm	6
10 mm	99		
6.3 mm	97		
5 mm	92		
3.35 mm	85		
2 mm	72		
1.18 mm	58		
600 μm	42		
425 μm	33		
300 μm	24		
212 μm	17		
Hole	Description		-
HD4	Slightly grav	elly SAND	
Depth		•	
0.00 -0.05			
Туре	7		
D			
Test Performed	Uniformity	Coefficient = 18	
Wet	1		

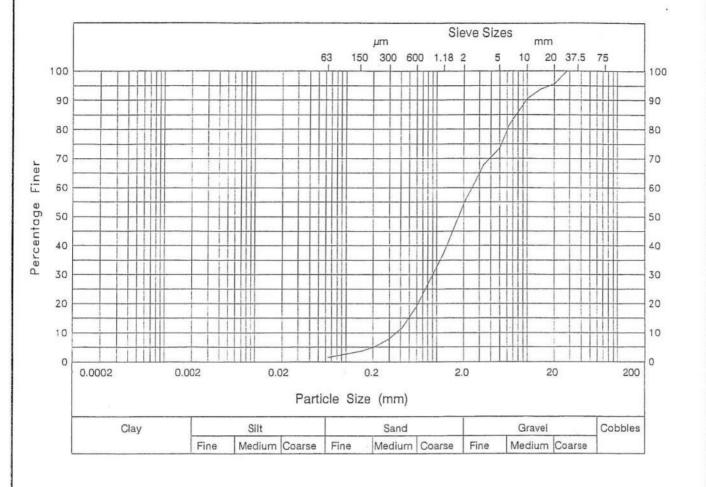
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/16


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	4
10 mm	100		
6.3 mm	98		
5 mm	95		
3.35 mm	90		
2 mm	78		
1.18 mm	63		
600 μm	47		
425 μm	37		
300 μm	27		
212 μm	18		
150 μm	12		
Hole	Description		
HD4	Slightly silt	y very gravelly S	AND
Depth	7		
0.05 -0.10			
Туре			
D			
Test Performed	Uniformity	Coefficient = 14	
Wet			

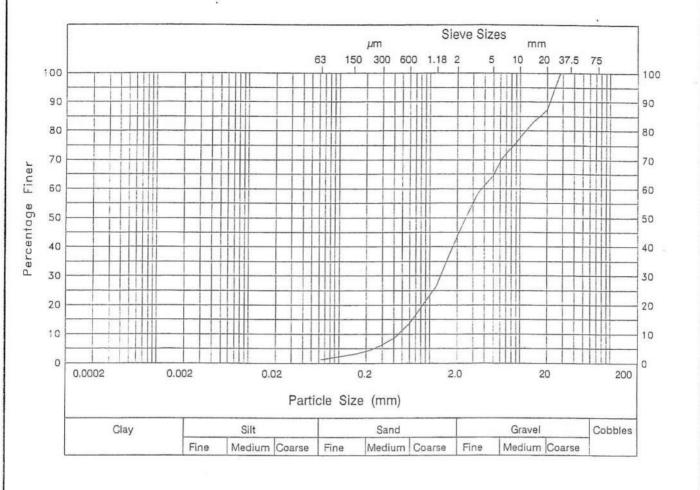
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/17


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	6
10 mm	99		
6.3 mm	99		
5 mm	97		
3.35 mm	94		
2 mm	86		
1.18 mm	74		
600 μm	57		
425 μm	46		
300 μm	34		
212 μm	23		
150 μm	16		
Hole	Description		
HD4	Silty very gr	avelly SAND	
Depth			
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient = 10.	0
Wet			

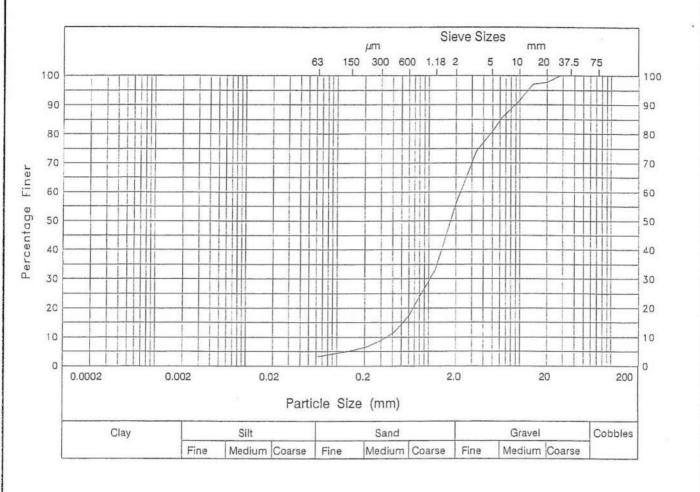
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/18


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	15
14 mm .	98	63 μm	6
10 mm	98		
6.3 mm	97		
5 mm	94		
3.35 mm	91		
2 mm	82		
1.18 mm	69		
600 μm	52		N.
425 μm	42		
300 μm	31		
212 μm	21		
Hole	Description		
HD4	Silty gravell	y SAND	
Depth			
0.15 -0.20			
Туре			
D			
Test Performed	Uniformity	Coefficient = 12	
Wet			

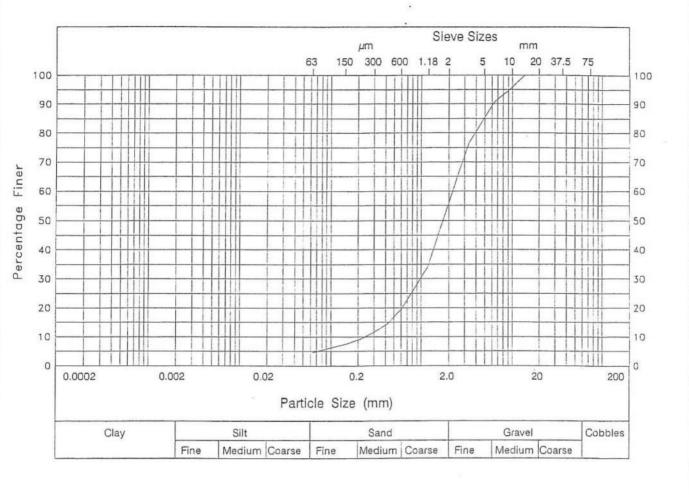
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/19


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	14
10 mm	100		
6.3 mm	99		
5 mm	99		
3.35 mm	98		
2 mm	96		
1.18 mm	92		
600 μm	82		
425 μm	71		
300 μm	54		
212 μm	38		
150 μm	29		
Hole	Description	-	-
HD4	Silty slightl	y gravelly SAND	
Depth			
0.20 -0.25			
Туре			
D			
Test Performed Wet	Uniformity	Coefficient not a	oplicable.

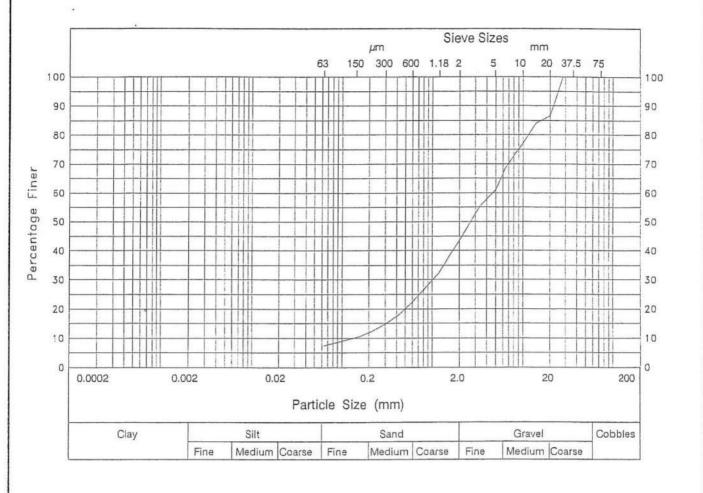
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/20

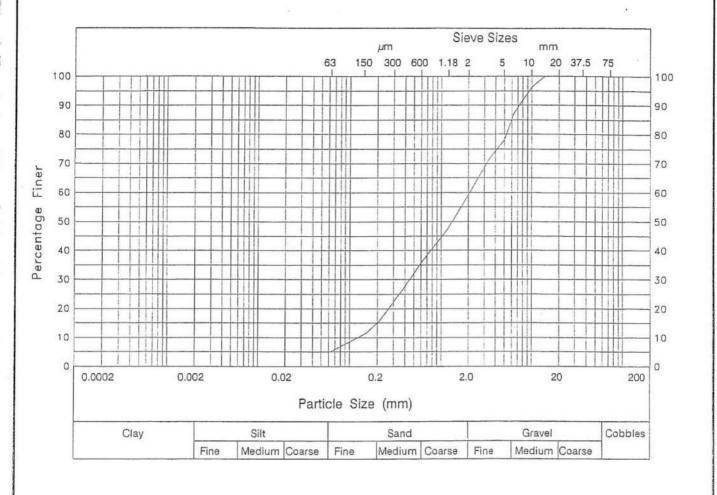

Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	5
20 mm	96	150 μm	4
14 mm	94	63 μm	1
10 mm	90		
6.3 mm	81		
5 mm	74		
3.35 mm	68		
2 mm	55		
1.18 mm	37		1
600 μm	19		
425 μm	12		
300 μm	8		
Hole	Description		
HD5	Slightly silty SAND and GRAVEL		
Depth			
0.00 -0.05			
Туре			
D			
Test Performed	Uniformity Coefficient = 6.8		
Wet	Daniel Stomater		

		Form 25/
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/21

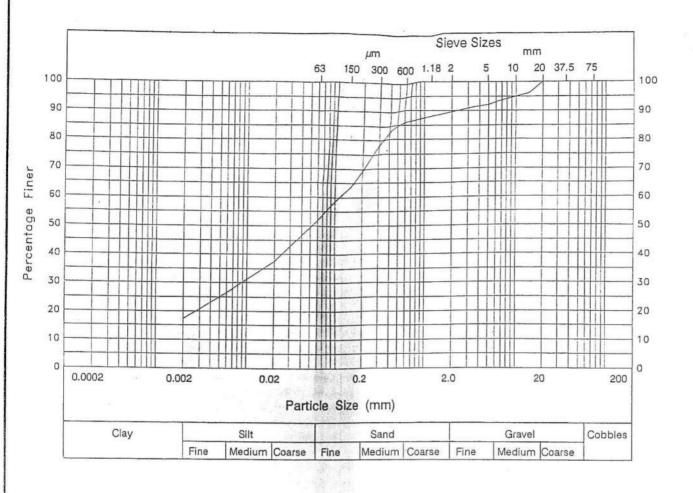


Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	4
20 mm	87	150 μm	3
14 mm	83	63 μm	1
10 mm	78		
6.3 mm	70		
5 mm	65		
3.35 mm	58		
2 mm	44		
1.18 mm	27		
600 µm	14		
425 μm	9		
300 μm	6		1
Hole	Description		
HD5	Slightly silty very sandy GRAVEL		
Depth			
0.05 -0.10	İ		
Туре			
D			
Test Performed	Uniformity Coefficient = 8.3		
Wet			

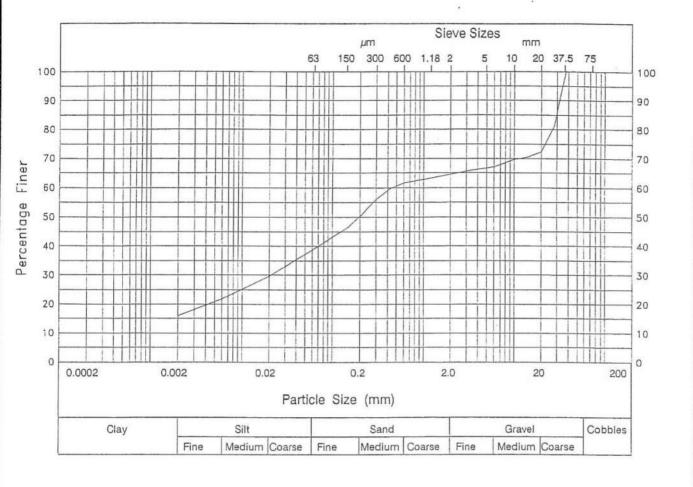

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/22


Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 μm	7
20 mm	98	150 µm	5
14 mm	97	63 μm	3
10 mm	92		
6.3 mm	86		
5 mm	81		
3.35 mm	74		
2 mm	56		
1.18 mm	33		
600 μm	17		
425 μm	12		
300 μm	9		
Hole	Description		
HD5		y SAND and GRAVEL	
Depth			
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient = 6.6	
Wet	1		

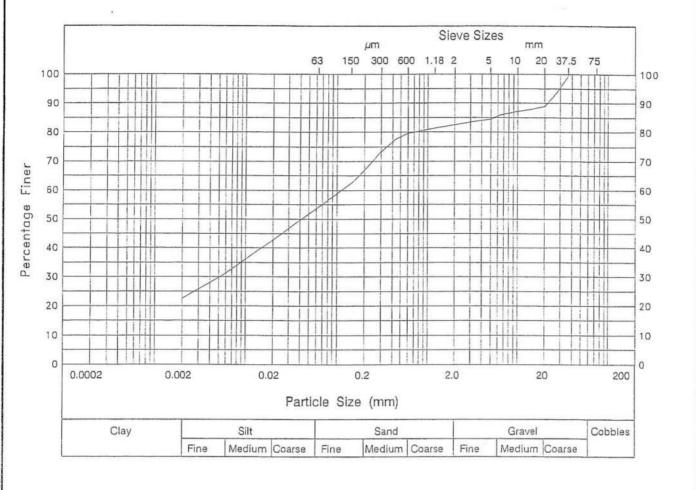
Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	5
10 mm	96		
6.3 mm	90		
5 mm	85		
3.35 mm	77		
2 mm	56		i
1.18 mm	34		
600 μm	19		
425 μm	15		
300 μm	12		
212 µm	9		
150 μm	8		
Hole	Description		
HD5	A Company of the contract of the contract of	y SAND and GRAVEL	
Depth	7		
0.15 -0.20			
Туре			
D			
Test Performed	Uniformity	Coefficient = 9.1	
Dry			



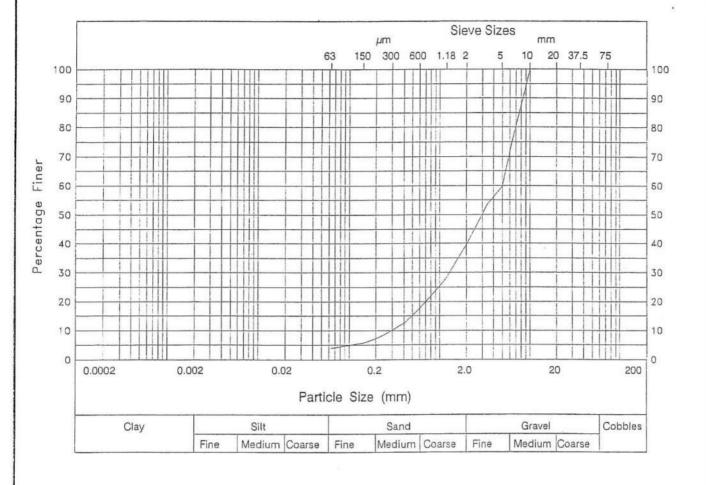
Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	12
20 mm	87	150 μm	10
14 mm	84	63 μm	7
10 mm	77		
6.3 mm	68		
5 mm	61		
3.35 mm	55		
2 mm	44		
1.18 mm	32		
600 μm	22		
425 μm	18		
300 μm	15		
Hole	Description		
HD5	Slightly silt	y very sandy GRAV	EL
Depth			
0.20 -0.25			
Туре			
D			
Test Performed	Uniformity	Coefficient = 64	
Wet			


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	5
10 mm	96		
6.3 mm	87		
5 mm	78		
3.35 mm	71		
2 mm	59		
1.18 mm	47		
600 μm	36		
425 μm	29		
300 μm	22		
212 μm	16		
150 μm	11	1	
Hole	Description		
HD6	The state of the s	y very gravelly S	AND
Depth		A SECOND OF THE PROPERTY OF THE PARTY OF THE	
0.00 -0.05			
Туре			
D			
Test Performed	Uniformity	Coefficient = 29	
Wet			

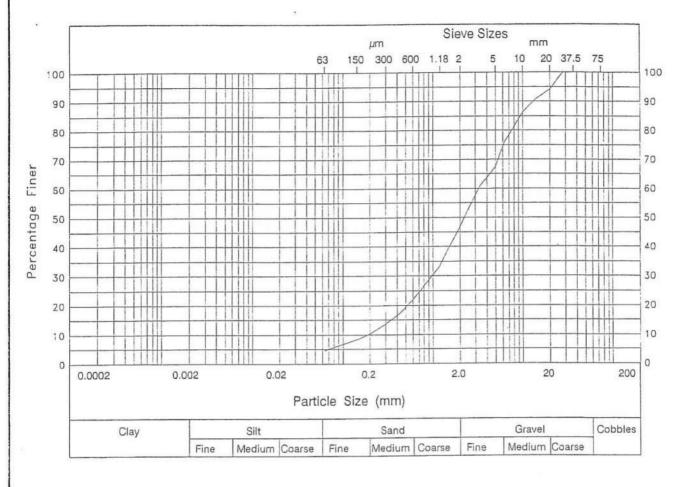
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract
Exploration Associates	Rhondda Cynon Taff	Sheet P2/26


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	· 150 µm	64
14 mm	96	63 μm	53
10 mm	95	20 μm	38
6.3 mm	93	6 μm	27
5 mm	92	2 μm	17
3.35 mm	91		
2 mm	90		
1.18 mm	88		
600 μm	86		
425 μm	83		
300 μm	78		
212 μm	71		
Hole	Description		
HD6	A CONTROL OF THE PROPERTY.	gravelly CLAY /	SILT
Depth	,,	3,	
0.10 -0.15			
Туре			
D			
Test Performed Wet	Uniformity	Coefficient not a	pplicable.

Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract
Exploration Associates	Rhondda Cynon Taff	Sheet P2/28

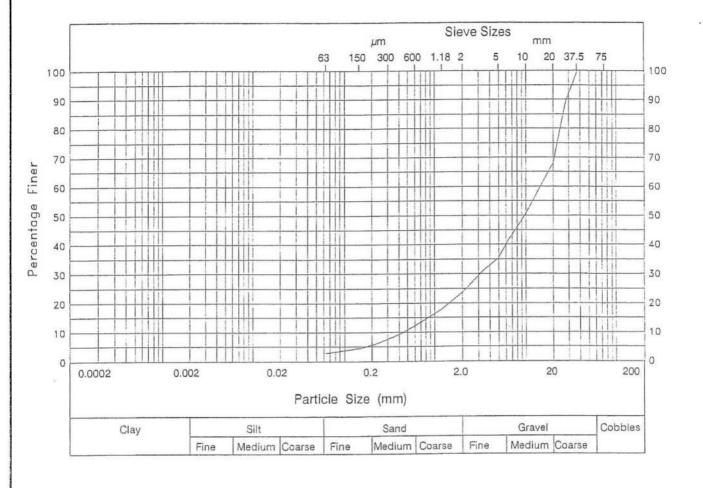

Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	56
28 mm	81	212 μm	51
20 mm	72	150 µm	47
14 mm	70	63 μm	39
10 mm	70	20 μm	30
6.3 mm	67	6 μm	22
5 mm	67	2 µm	16
3.35 mm	66		
2 mm	65		
1.18 mm	63		
600 μm	62		
425 μm	60		
Hole	Description		
HD6	Sandy gravell	y CLAY / SILT	
Depth		,	
0.15 -0.20			
Туре			
D			
Test Performed Wet	Uniformity Coefficient not applicable.		

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/29

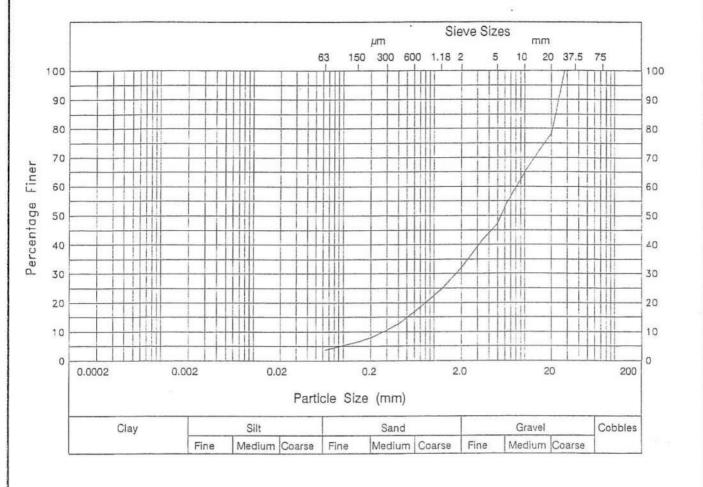


Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	73
28 mm	94	212 µm	68
20 mm	89	150 μm	63
14 mm	88	63 μm	54
10 mm	87	20 μm	43
6.3 mm	86	6 μm	31
5 mm	84	2 μm	23
3.35 mm	84		
2 mm	82		
1.18 mm	81		
600 µm	80		
425 μm	77		
Hole	Description		1
HD6		y gravelly CLAY /	SILT
Depth	1	, , , , , ,	
0.20 -0.25			
Туре			
D			
Test Performed	Uniformity	Coefficient not ap	oplicable.
Wet			(T)

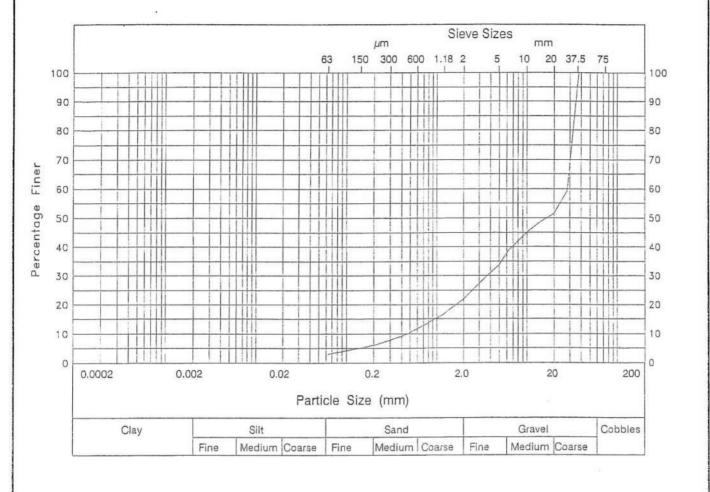
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/30



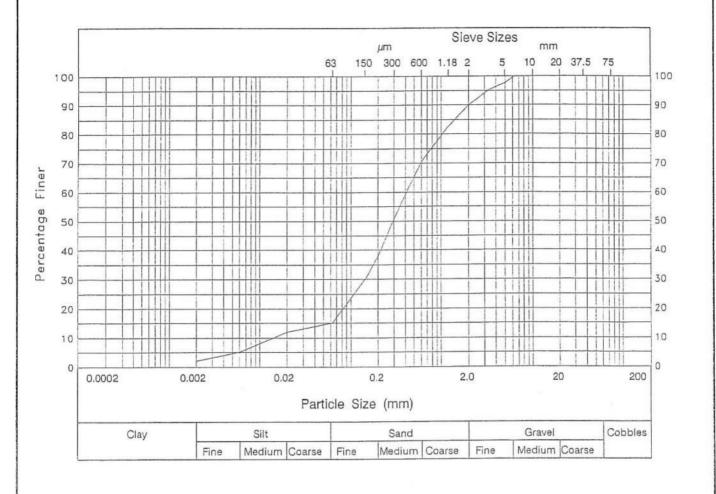
Particle Size	% Passing	Particle Size	% Passing
10 mm	100		
6.3 mm	75		
5 mm	60		
3.35 mm	53		
2 mm	40		
1.18 mm	28		
600 μm	18		
425 μm	13		
300 μm	10		
212 µm	8		
150 μm	6		
63 μm	4		
Hole	Description		
HD7		y very sandy GRAV	EL
Depth			
0.00 -0.05			
Туре	7		
D			
Test Performed	Uniformity	Coefficient = 17	
Wet			


Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 μm	11
20 mm	94	150 μm	9
14 mm	91	63 μm	5
10 mm	86		
6.3 mm	76		
5 mm	67		
3.35 mm	61		
2 mm	47		
1.18 mm	33		
600 μm	22		
425 μm	17		
300 μm	14		
Hole	Description		
HD7		y very sandy GRAV	EL
Depth		18 II	
0.05 -0.10			
Туре			
D			
Test Performed	Uniformity	Coefficient = 18	
Wet			

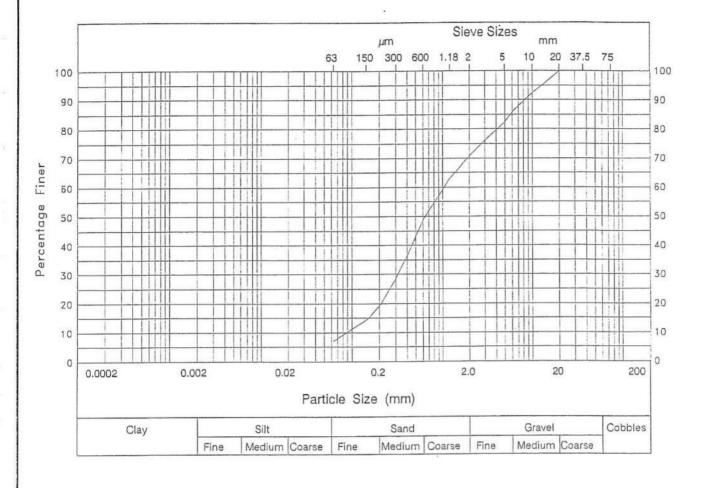
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/32


Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 µm	8
28 mm	90	212 µm	6
20 mm	68	150 μm	5
14 mm	59	63 μm	3
10 mm	51		
6.3 mm	41		
5 mm	35		
3.35 mm	31		
2 mm	24		
1.18 mm	18		
600 μm	12		
425 μm	10		
Hole	Description		
HD7		y sandy GRAVEL	
Depth	7	5.	
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient = 34	
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/33

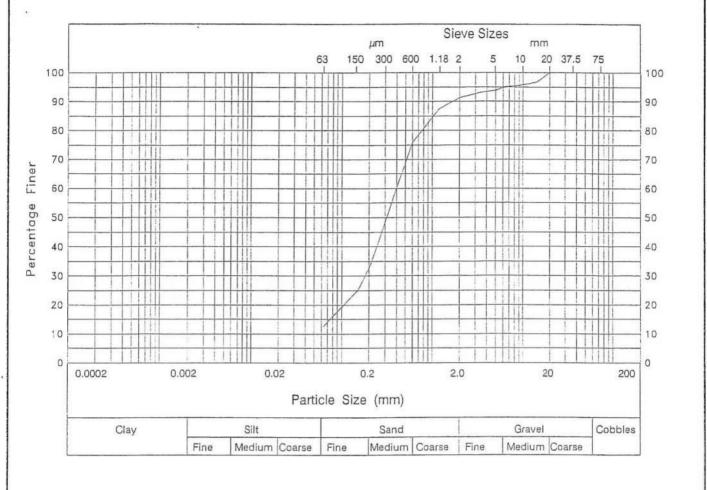

Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	8
20 mm	78	150 μm	7
14 mm	72	63 μm	4
10 mm	65		
6.3 mm	54		
5 mm	47		
3.35 mm	41		
2 mm	32		
1.18 mm	24		
600 μm	17		
425 μm	13		
300 μm	11		
Hole	Description		
HD7	The same of the same of the same	y sandy GRAVEL	
Depth	7		
0.15 -0.20			
Туре	7		
D			
Test Performed	Uniformity	Coefficient = 29	
Wet	1		

Laboratory - Particle Size Plot	Project	Contract
	LLANWONNO TIPS	151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/34

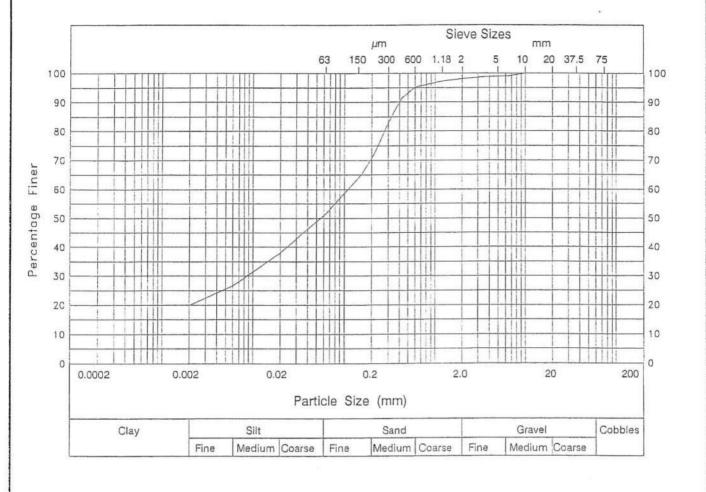


Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	8
28 mm	59	212 µm	6
20 mm	52	150 μm	5
14 mm	49	63 μm	3
10 mm	45		
6.3 mm	39		
5 mm	34		
3.35 mm	29		
2 mm	22	1	
1.18 mm	17		
600 μm	12		
425 μm	9		
Hole	Description		
HD7	Slightly silt	y sandy GRAVEL	
Depth			
0.20 -0.25			
Туре			
D			
Test Performed	Uniformity	Coefficient = 59	
Wet		PROPERTY OF THE PROPERTY OF THE SALPHY	

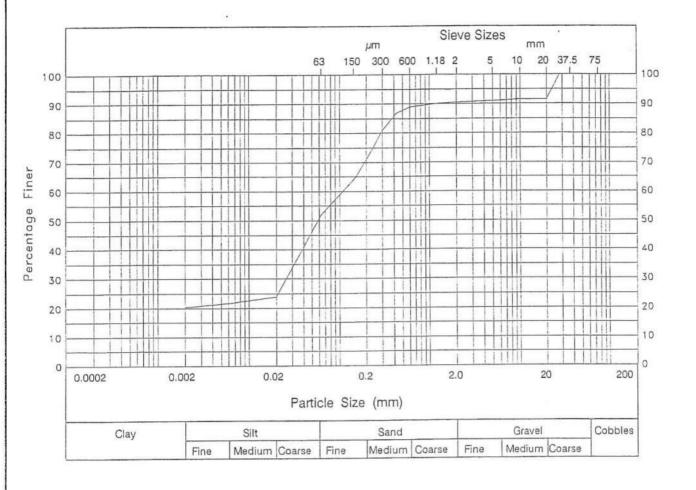
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/35



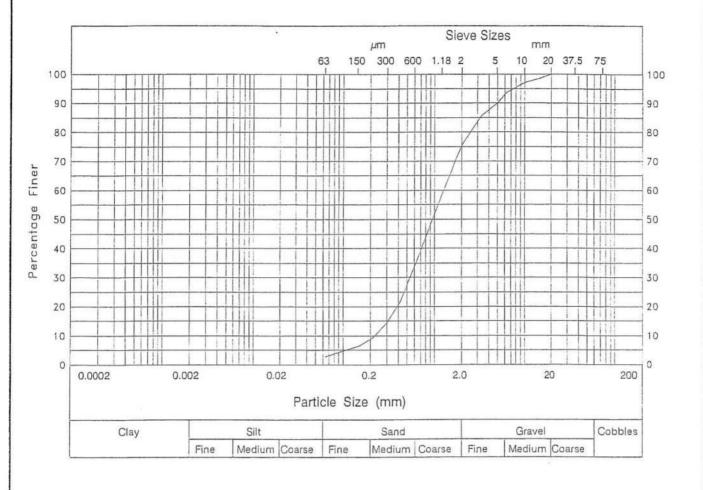
Particle Size	% Passing	Particle Size	% Passing
6.3 mm	100	6 μm	5
5 mm	98	2 μm	2
3.35 mm	95		
2 mm	90		
1.18 mm	82		
600 μm	71		
425 μm	61		
300 μm	51		
212 µm	40		
150 μm	31		
63 μm	15		
20 μm	12		
Hole	Description		
HD8	Very silty gr	avelly SAND	
Depth			
0.00 -0.05			
Туре			
D			
Test Performed Wet	Uniformity	Coefficient = 29	

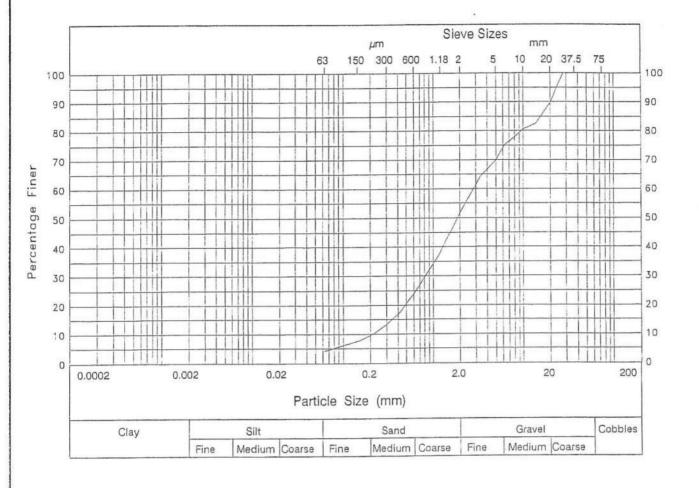


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	15
14 mm	96	63 μm	7
10 mm	92		E.
6.3 mm	86		
5 mm	82		
3.35 mm	78		
2 mm	71		
1.18 mm	63		
600 μm	49		
425 μm	38		
300 μm	29		
212 μm •	20		
Hole	Description	- Lucia	
HD8	Slightly silt	y gravelly SAND	
Depth			
0.05 -0.10			
Туре	7		
D			
Test Performed	Uniformity	Coefficient = 15	
Wet			


		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/37

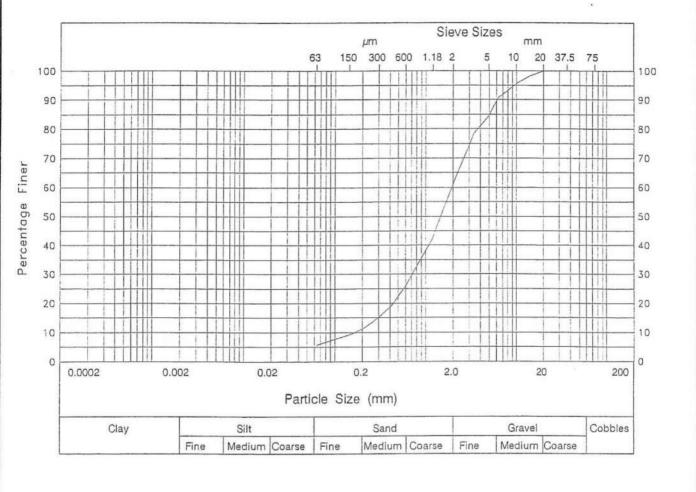
Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	25
14 mm	97	63 μm	13
10 mm	96		
6.3 mm	95		
5 mm	94		
3.35 mm	93		
2 mm	91		
1.18 mm	87		İ
600 μm	76		
425 μm	63		
300 μm	48		
212 μm	35		
Hole	Description		
HD8	Silty gravell	y SAND	
Depth		• 1000000000000000000000000000000000000	
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient not a	oplicable.
Wet			


% Passing	Particle Size	% Passing
100	20 µm	38
99	6 μm	27
99	2 μm	20
99		
98		
97		
95		
91		
83		
72		
65		
52		
Description		
Sandy slightl	y gravelly CLAY /	SILT
Uniformity	Coefficient not a	pplicable.
	100 99 99 99 98 97 95 91 83 72 65 52 Description Sandy slightl	100 20 μm 99 6 μm 99 99 98 97 95 91 83 72 65 52


Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	72
20 mm	92	150 μm	65
14 mm	92	63 µm	52
10 mm	92	20 μm	24
6.3 mm	91	6 μm	22
5 mm	91	2 μm	20
3.35 mm	91		
2 mm	91		
1.18 mm	90		
600 μm	89		
425 μm	87		
300 μm	81		
Hole	Description		
HD8	Very sandy gr	ravelly CLAY / SIL	T
Depth			
0.20 -0.25			
Туре			
D			
Test Performed Wet	Uniformity	Coefficient not a	pplicable.

Laboratory - Particle Size Plot

| Contract | Contract | ILLANWONNO TIPS | Rhondda Cynon Taff | Sheet | P2/40 |

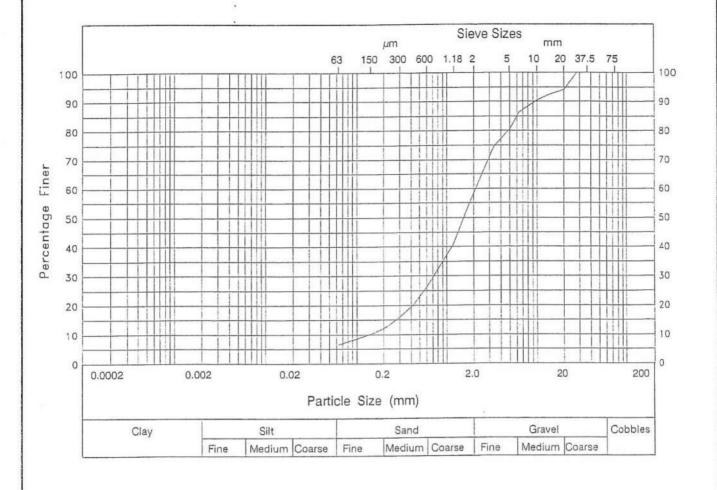


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	6
14 mm	98	63 μm	3
10 mm	97		
6.3 mm	94		
5 mm	90		
3.35 mm	86		Ì
2 mm	75		
1.18 mm	58		
600 μm	34		
425 μm	22		
300 μm	14		
212 μm	9		
Hole	Description		
HD9	Slightly silt	y gravelly SAND	
Depth	7	20 (20)	
0.00 -0.05			
Туре			
D			
Test Performed	Uniformity	Coefficient = 5.5	
Wet	,		

Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	10
20 mm	90	150 μm	8
14 mm	83	63 μm	4
10 mm	81		
6.3 mm	75		
5 mm	70		
3.35 mm	64		
2 mm	52		
1.18 mm	38		
600 μm	24		
425 μm	18		
300 μm	13		
Hole	Description		
HD9	Slightly silt	y SAND and GRAVEL	
Depth			
0.05 -0.10			
Туре			
D			
Test Performed	Uniformity	Coefficient = 13	
Wet			

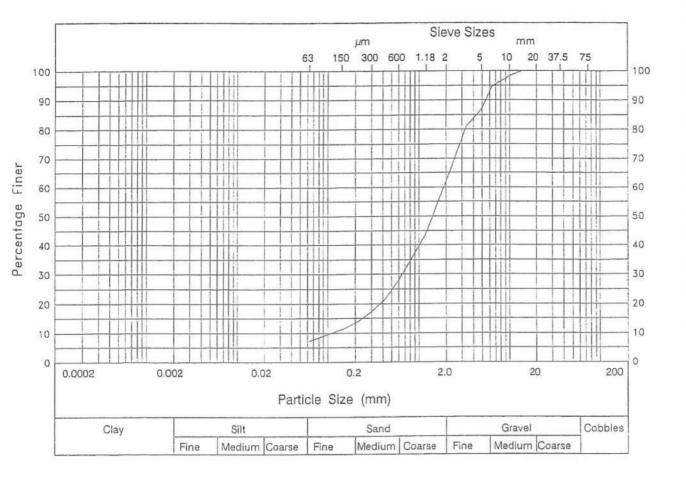
		Form 25,
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/42

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	9
14 mm	98	63 µm	6
10 mm	96		
6.3 mm	91		
5 mm	85		
3.35 mm	78		
2 mm	61		
1.18 mm	42		
600 μm	26		
425 μm	19		
300 μm	15		
212 μm	12		
Hole	Description		
HD9	Silty SAND an	d GRAVEL	
Depth	7		
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient = 11	
Wet			

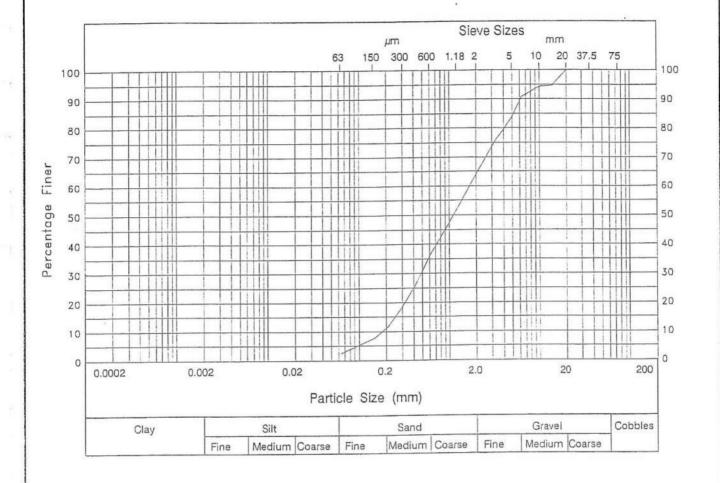

Contract
151258
Sheet
P2/43

Form 25/4

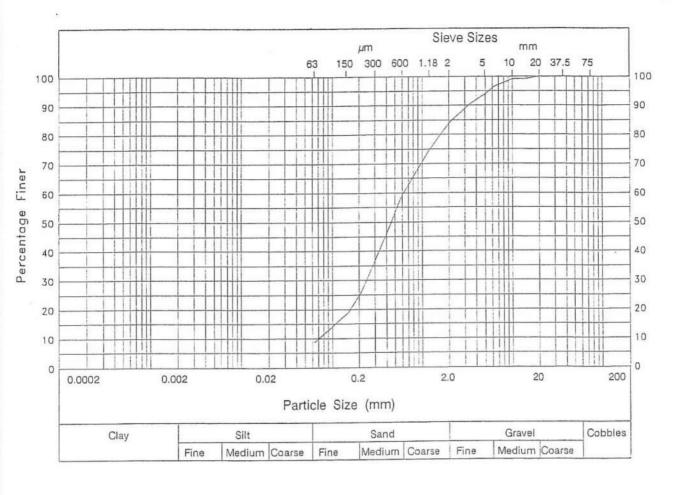
Laboratory - Particle Size Plot


Exploration Associates

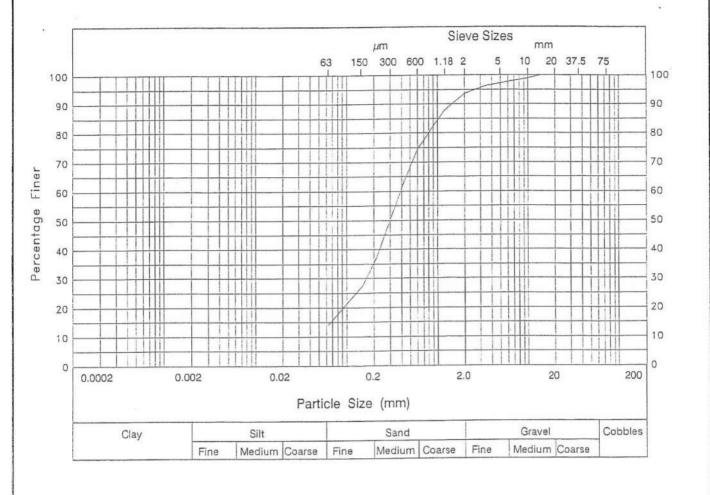
Project
 LLANWONNO TIPS
 Rhondda Cynon Taff


Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	13
20 mm	94	150 µm	10
14 mm	92	63 μm	7
10 mm	90		
6.3 mm	86		
5 mm	80		
3.35 mm	75		
2 mm	59		
1.18 mm	41		
600 µm	26		
425 μm	20		
300 μm	16		
Hole	Description		
HD9	Silty SAND an	d GRAVEL	
Depth	7		
0.15 -0.20			
Туре	7		
D			
Test Performed	Uniformity	Coefficient = 28	
Wet			

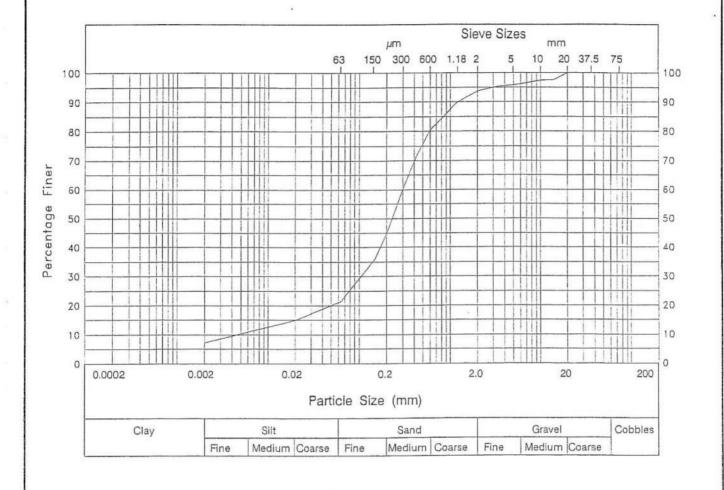
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/44



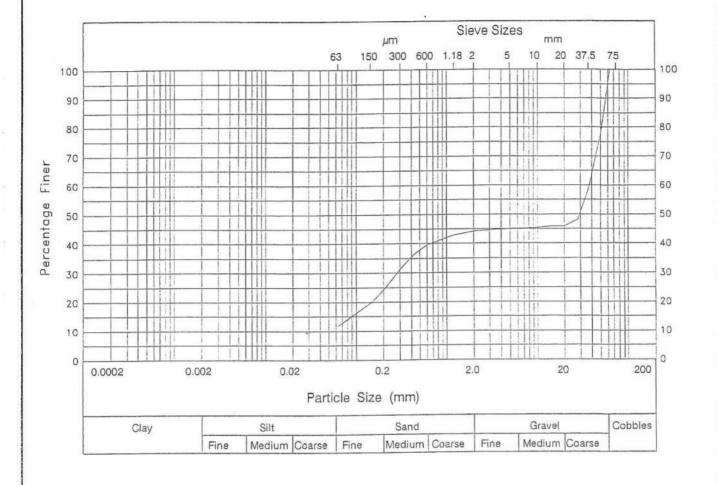
Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	7
10 mm	98		
6.3 mm	95		
5 mm	87		
3.35 mm	81		
2 mm	62		
1.18 mm	44		
600 μm	28		
425 μm	22		
300 μm	17		
212 μm	14		
150 μm	11		
Hole	Description		_!
HD9	Silty gravell	y SAND	
Depth			
0.20 -0.25			
Туре			
D			
Test Performed	Uniformity	Coefficient = 27	
Wet			


		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/45

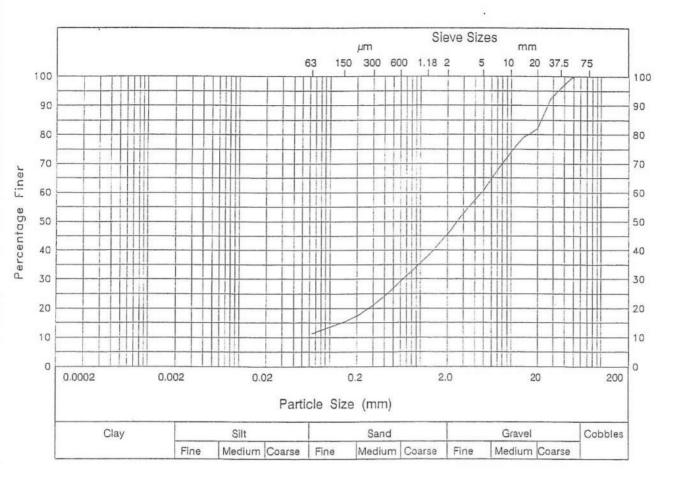
Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	8
14 mm	95	63 μm	2
10 mm	94		
6.3 mm	91		
5 mm	84		1
3.35 mm	76		
2 mm	64		
1.18 mm	51		
600 μm	36		
425 μm	26		
300 μm	18		
212 μm	12		
Hole	Description		
HD10	Slightly silt	y very gravelly S	AND
Depth	30 30		
0.00 -0.05			
Туре	7		
D			
Test Performed	Uniformity	Coefficient = 9.4	
Wet			



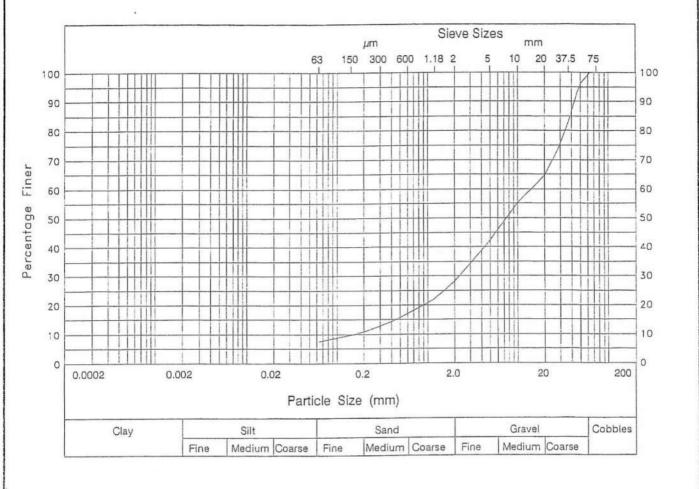
Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	19
14 mm	99	63 μm	9
10 mm	99		
6.3 mm	97		
5 mm	94		
3.35 mm	90		
2 mm	84		
1.18 mm	74		
600 μm	59		
425 μm	48		
300 μm	37		
212 μm	26		
Hole	Description		
HD10	Silty gravell	y SAND	
Depth	1		
0.05 -0.10			
Туре			
D			
Test Performed	Uniformity	Coefficient = 9.8	
Wet			


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	14
10 mm	99		
6.3 mm	98		
5 mm	97		
3.35 mm	96		
2 mm	94		
1.18 mm	88		
600 μm	75		
425 μm	63		
300 μm	50		
212 μm	37		
150 μm	28		
Hole	Description		
HD10	Silty slightl	y gravelly SAND	
Depth			
0.10 -0.15			
Туре			
D			
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			

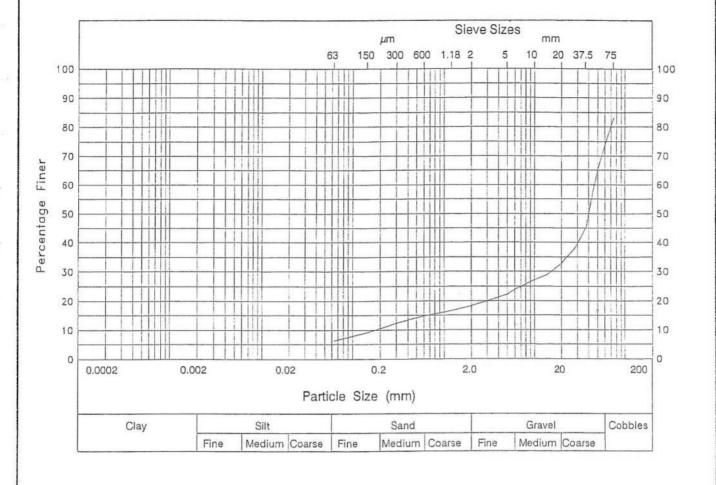
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/48


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	36
14 mm	97	63 μm	21
10 mm	97	20 μm	15
6.3 mm	96	6 μm	11
5 mm	96	2 μm	7
3.35 mm	95		
2 mm	94		
1.18 mm	90		
600 μm	81		
425 μm	72		
300 μm	60		
212 μm	47		
Hole	Description		
HD10	Very silty gr	avelly SAND	
Depth	7		
0.15 -0.20			
Туре	7		
D			
Test Performed Wet	Uniformity	Coefficient = 65	_

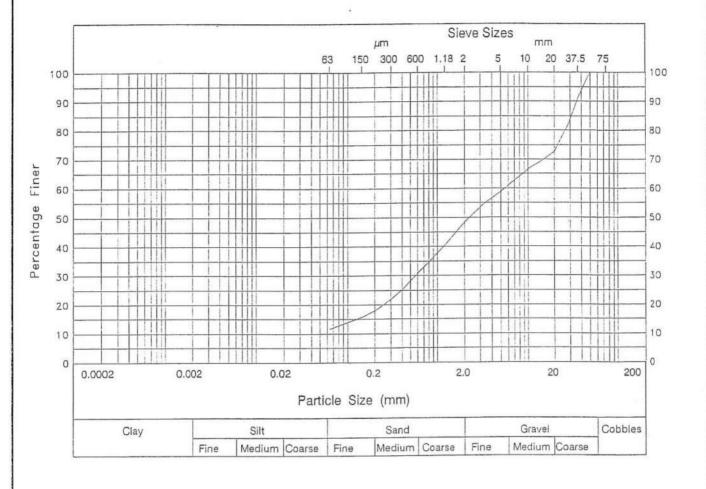
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/49


Particle Size	% Passing	Particle Size	% Passing
63 mm	100	600 μm	40
50 mm	77	425 μm	36
37.5 mm	60	300 μm	31
28 mm	48	212 μm	25
20 mm	46	150 μm	20
14 mm	46	63 μm	12
10 mm	45		
6.3 mm	45		
5 mm	45		
3.35 mm	45		
2 mm	44		
1.18 mm	43		
Hole	Description		
HD10	Silty sandy G	RAVEL	
Depth	1		
0.20 -0.25			
Туре			
D			
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			005 - 000

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/50

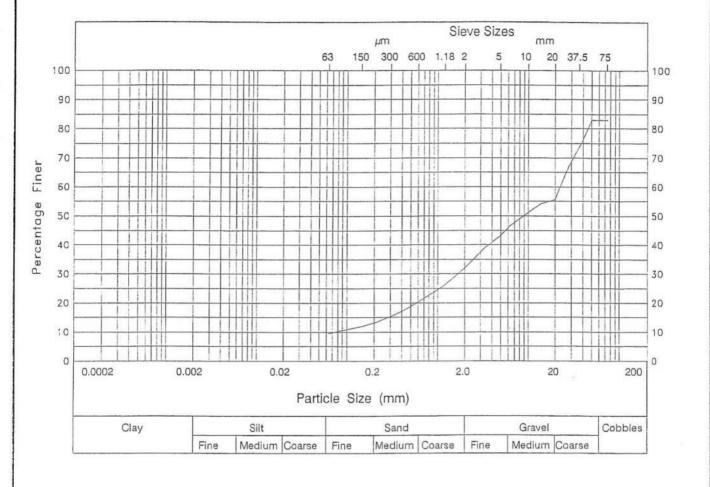

Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 μm	25
37.5 mm	96	300 µm	21
28 mm	92	212 µm	18
20 mm	82	150 µm	16
14 mm	79	63 μm	11
10 mm	74		
6.3 mm	66		
5 mm	61		
3.35 mm	55		
2 mm	46		
1.18 mm	38		
600 μm	29		
Hole	Description		
LWT2	MADE GROUND:	loose dark grey a	nd black
Depth		ey very sandy ang	
3.00 -3.45		of mudstone and	
Туре			
В			
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/51

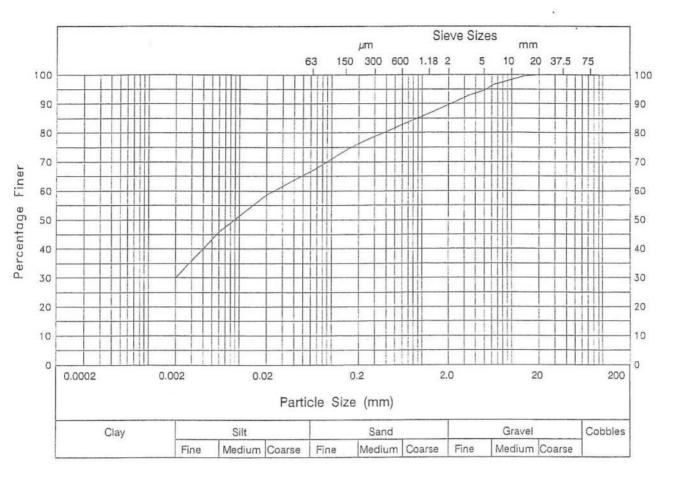


Particle Size	% Passing	Particle Size	% Passing
63 mm	100	600 μm	17
50 mm	96	425 μm	15
37.5 mm	84	300 μm	13
28 mm	73	212 µm	11
20 mm	65	150 μm	10
14 mm	60	63 μm	8
10 mm	55	94	
6.3 mm	47		
5 mm	42		
3.35 mm	36		
2 mm	28		
1.18 mm	22		
Hole	Description		
LWT2	MADE GROUND:	loose dark grey a	nd black
Depth		vey very sandy ang	
5.00 -5.45		of mudstone and	
Туре			
В			
Test Performed Wet	Uniformity	Coefficient = 93	

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/52

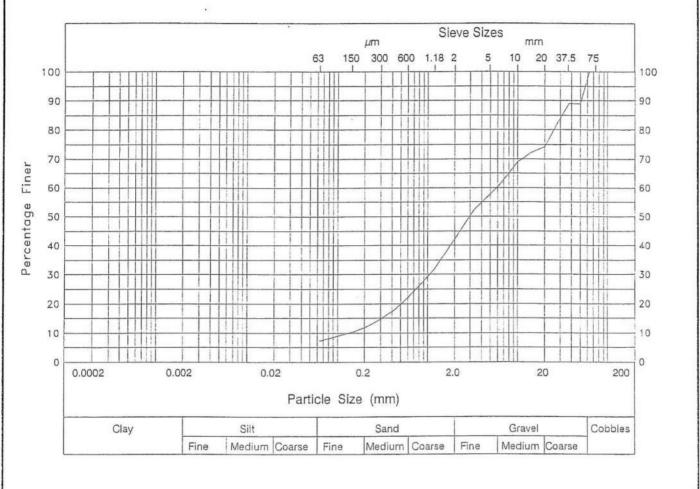


Particle Size	% Passing	Particle Size	% Passing
75 mm	83	1.18 mm	17
63 mm	76	600 μm	15
50 mm	65	425 μm	14
37.5 mm	45	300 μm	12
28 mm	38	212 µm	11
20 mm	33	150 μm	9
14 mm	29	63 μm	6
10 mm	27	2.	
6.3 mm	24		
5 mm	22		
3.35 mm	20		
2 mm	18		
Hole	Description		
LWT2	Medium dense	becoming dense da	rk orange brown
Depth		ey sandy angular	
8.00 -8.45		with occasional	
Туре	7	ltstone and sands	
В			
Test Performed Wet	Uniformity Coefficient = 254		

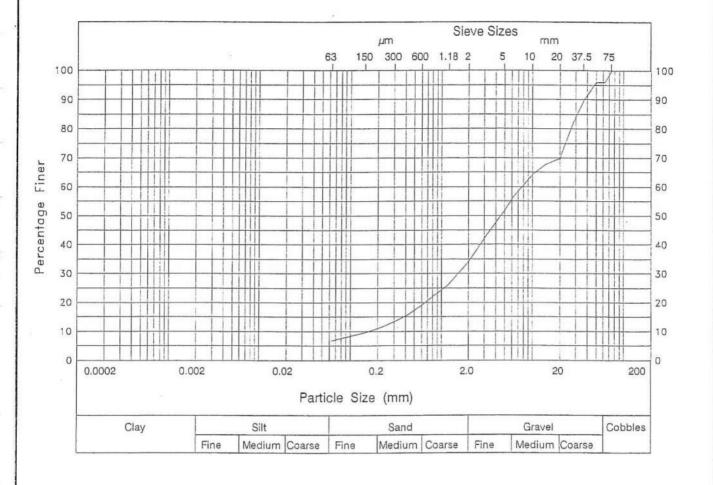


Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 μm	26
37.5 mm	92	300 μm	22
28 mm	82	212 μm	18
20 mm	73	150 μm	16
14 mm	69	63 μm	12
10 mm	67		
6.3 mm	62		
5 mm	59		
3.35 mm	55		
2 mm	48		
1.18 mm	40		
600 μm	31		
Hole	Description		
LWT3		medium dense dark	grey and black
Depth		angular fine to c	
3.00 -3.45	The state of the s	al subangular cob	
Туре	mudstone and	PERSONAL PROPERTY OF THE PROPE	
В			
Test Performed Wet	Uniformity Coefficient not applicable.		

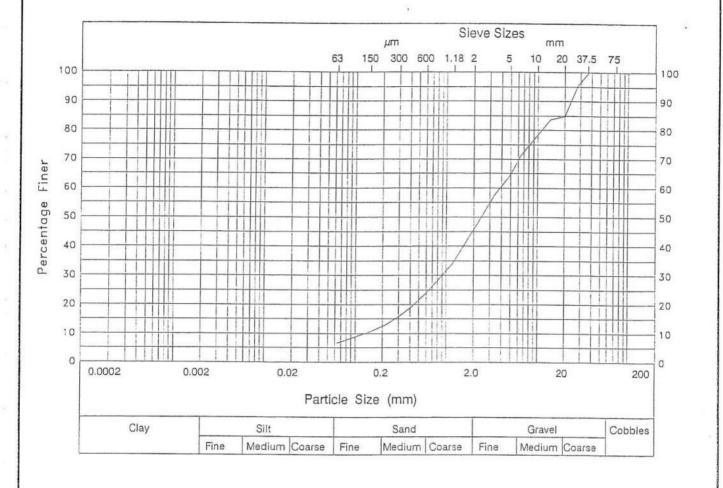
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/54



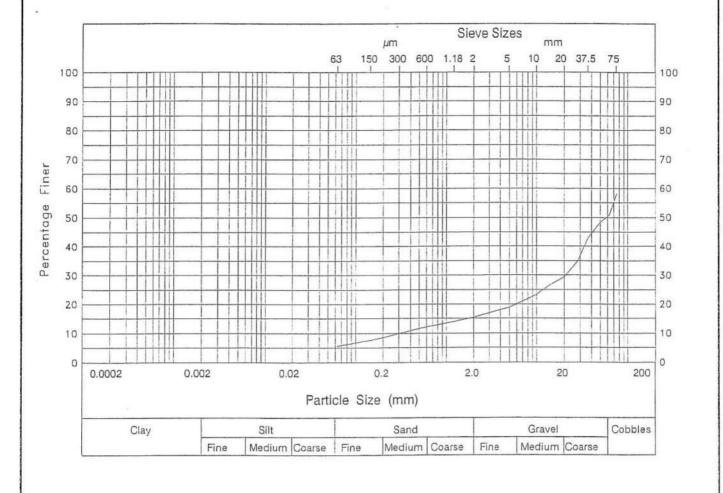
Particle Size	% Passing	Particle Size	% Passing
75 mm	83	1.18 mm	26
63 mm	83	600 µm	20
50 mm	83	425 μm	17
37.5 mm	74	300 μm	15
28 mm	67	212 µm	13
20 mm	56	150 μm	12
14 mm	54	63 μm	10
10 mm	51		
6.3 mm	47		
5 mm	43		
3.35 mm	39		
2 mm	32		
Hole	Description		
LWT3	MADE GROUND: Medium dense dark grey and black		
Depth	clayey sandy angular fine to coarse GRAVEL		
7.75 -8.20	with occasional subangular cobbles of		
Туре	mudstone and coal.		
В			
Test Performed	Uniformity Coefficient = 359		
Wet			



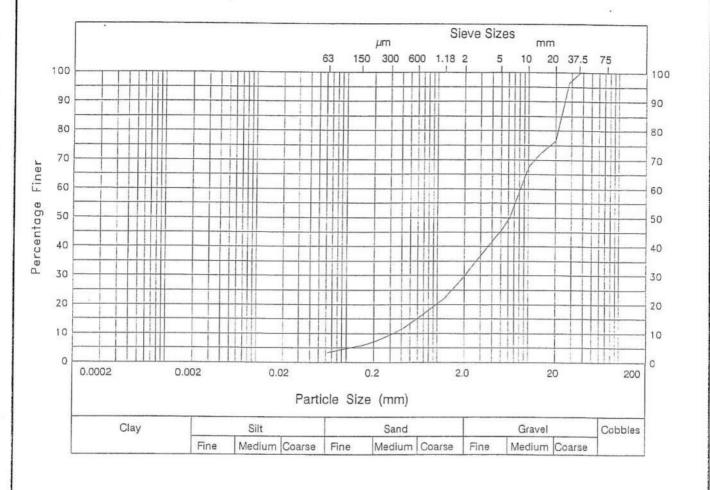
Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	74
14 mm	100	63 μm	67
10 mm	98	20 μm	59
6.3 mm	97	6 μm	46
5 mm	95	2 μm	30
3.35 mm	93		
2 mm	90		
1.18 mm	87		
600 μm	83		
425 μm	81		
300 μm	79		
212 μm	77		
Hole	Description		
LWT3	Very stiff slightly sandy slightly gravelly SILT. Sand is fine to coarse gravel is angular to subangular fine to coarse of siltstone and sandstone.		
Depth			
10.80-11.00			
Туре			
В	Committee Constitution Constitution		
Test Performed Wet	Uniformity Coefficient not applicable.		


	Project	Contract
Laboratory - Particle Size Plot	LLANWONNO TIPS	151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/56

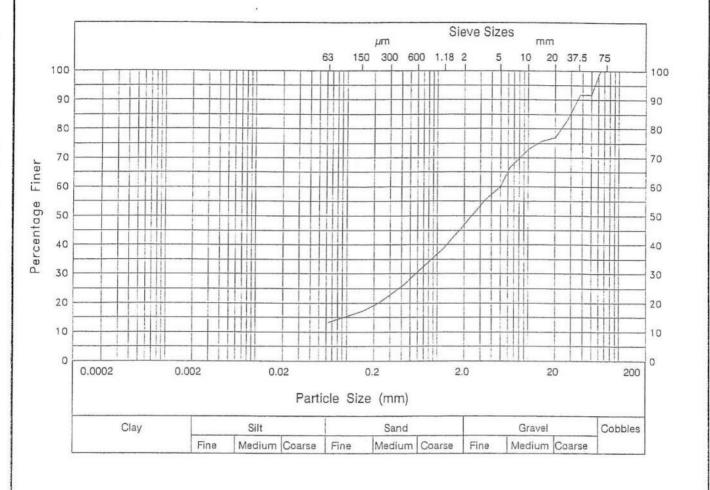
Particle Size	% Passing	Particle Size	% Passing
63 mm	100	600 µm	22
50 mm	89	425 μm	18
37.5 mm	89	300 μm	15
28 mm	82	212 µm	12
20 mm	74	150 μm	10
14 mm	72	63 μm	7
10 mm	69		
6.3 mm	61		
5 mm	58		
3.35 mm	52		
2 mm	42		
1.18 mm	32		
Hole	Description		
LWT4	Medium dense dark grey slightly silty very sandy angular fine to coarse GRAVEL of		y silty very
Depth			
2.75 -3.25	mudstone and coal.		
Туре			
U			
Test Performed Wet	Uniformity	Coefficient = 80	



Particle Size	% Passing	Particle Size	% Passing
75 mm	100	1.18 mm	26
63 mm	96	600 μm	19
50 mm	96	425 μm	16
37.5 mm	90	300 μm	13
28 mm	82	212 μm	11
20 mm	70	150 μm	10
14 mm	68	63 μm	7
10 mm	64		
6.3 mm	57		
5 mm	52		
3.35 mm	44		
2 mm	34		
Hole	Description		
LWT4	Medium dense dark grey slightly silty sandy		
Depth	angular fine to coarse GRAVEL of mudstone and		
6.50 -6.95	coal.		
Туре			
В			
est Performed Wet	Uniformity	Coefficient = 51	


Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 µm	16
28 mm	96	212 µm	13
20 mm	85	150 μm	11
14 mm	84	63 μm	7
10 mm	78	*	
6.3 mm	71		
5 mm	65		
3.35 mm	58		
2 mm	46		
1.18 mm	34		-
600 μm	24		
425 μm	19		
Hole	Description		
LWT4	Medium dense dark grey slightly silty sandy		
Depth	angular fine to coarse GRAVEL of mudstone and		
7.25 -7.75	coal.		
Гуре	-		
υ υ			
est Performed	Uniformity	Coefficient = 52	
Wet			

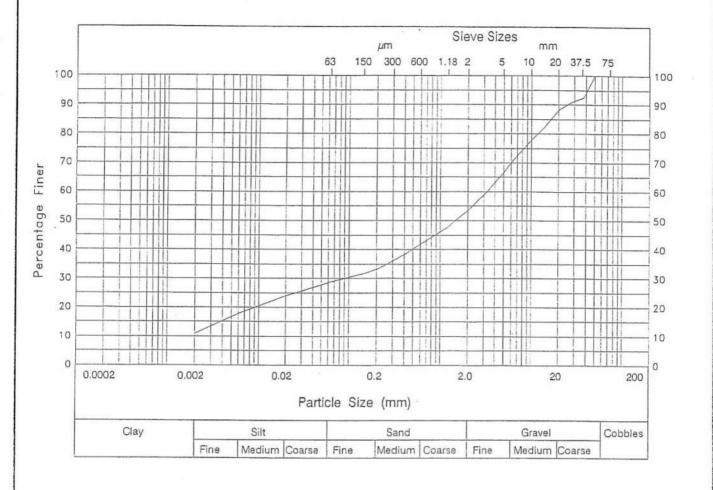
		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/59


Particle Size	% Passing	Particle Size	% Passing
75 mm	58	1.18 mm	14
63 mm	51	600 μm	12
50 mm	48	425 μm	11
37.5 mm	43	300 μm	10
28 mm	35	212 μm	9
20 mm	29	150 μm	8
14 mm	27	63 μm	6
10 mm	23		
6.3 mm	20		
5 mm	19		
3.35 mm	17		
2 mm	15		
Hole	Description		
LWT4		orange brown slig	htly silty
Depth		fine to coarse G	
8.75 -9.20	siltstone and		
Туре			
В			
Test Performed	Uniformity	Coefficient = 252	
Wet	and the second tray		

		Form 25,
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/60

Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	10
28 mm	96	212 µm	7
20 mm	77	150 μm	7 6
14 mm	72	63 μm	3
10 mm	67	1	
6.3 mm	50		
5 mm	45		
3.35 mm	39		
2 mm	30		
1.18 mm	22		
600 μm	15		
425 μm	12		
Hole	Description		
LWT5	MADE GROUND:	medium dense ligh	t and dark
Depth		very silty very s	
10.50-11.00		to coarse, gravel	
Туре		of mudstone silt	
U	and ironstone		
Test Performed Wet	A STATE OF THE STA	Coefficient = 27	

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/61

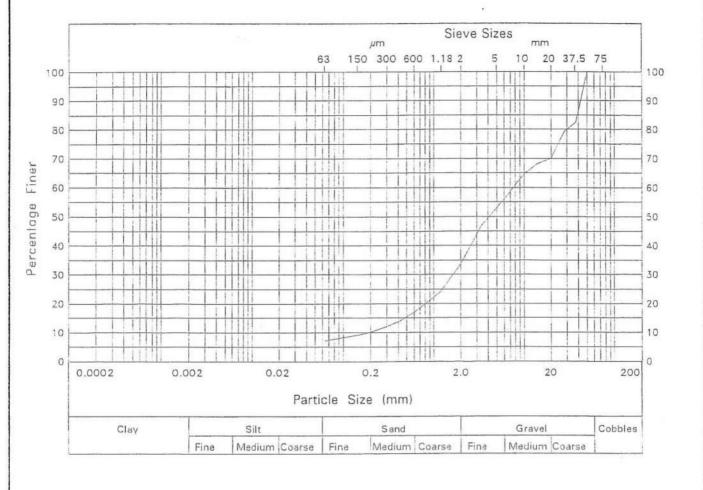


Particle Size	% Passing	Particle Size	% Passing
63 mm	100	600 μm	31
50 mm	92	425 μm	26
37.5 mm	92	300 μm	23
28 mm	84	212 μm	20
20 mm	77	150 μm	17
14 mm	76	63 μm	13
10 mm	73		
6.3 mm	67		
5 mm	60		
3.35 mm	55		
2 mm	47		
1.18 mm	39		
Hole	Description		
LWT5	1	gravelly very sand	iv SILT, verv
Depth	silty SAND.		
11.20-11.65			
Туре	1		
В			
Test Performed	Uniformity	Coefficient not ap	pplicable
Wet		555111515116 1166 ap	

Laboratory - Particle Size Plot

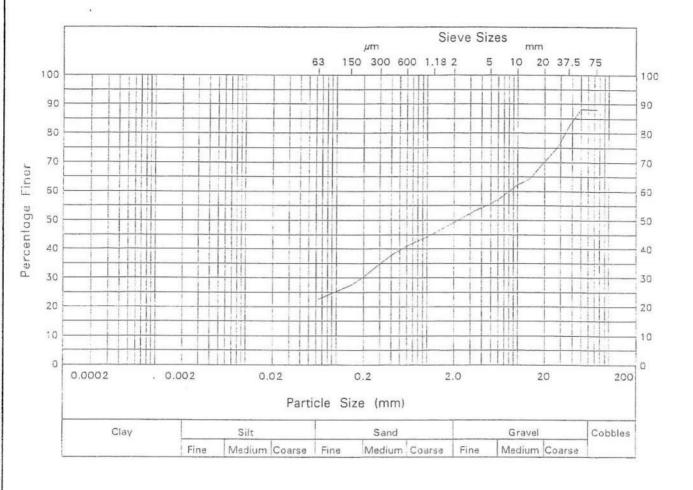
Project
LLANWONNO TIPS
Rhondda Cynon Taff

Sheet
P2/62

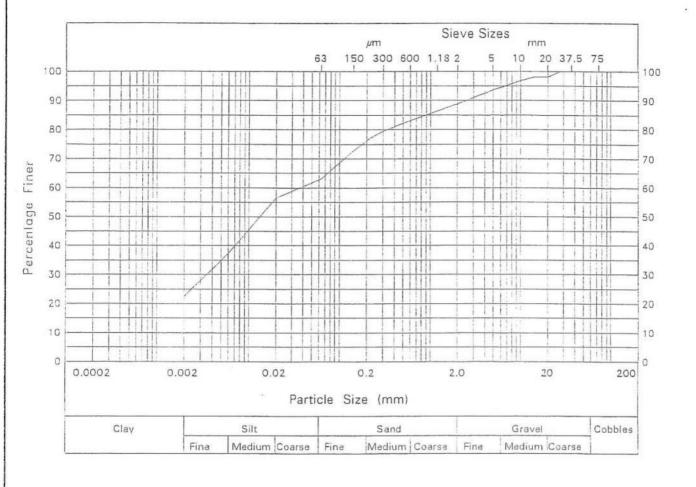


Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 μm	39
37.5 mm	92	300 μm	36
28 mm	91	212 µm	34
20 mm	88	150 μm	32
14 mm	82	63 μm	29
10 mm	78	20 μm	24
6.3 mm	71	6 μm	18
5 mm	67	2 μm	11
3.35 mm	61		
2 mm	53		
1.18 mm	48		
600 μm	42		
Hole	Description		
LWT5	The second secon	rown mottled grey	slightly sandy
Depth		elly CLAY. Sand i	
13.50-14.00		l is angular fine	
Туре	siltstone and		
n N	J. C.	odila o conto	
Test Performed	Uniformity	Coefficient not a	policable.
Wet			

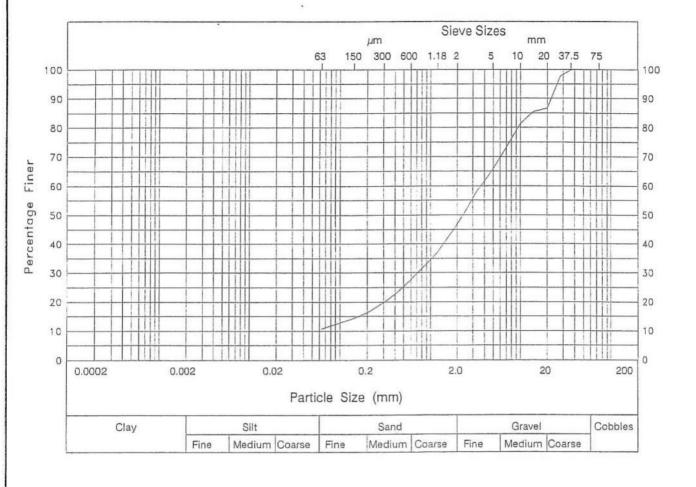
Laboratory - Particle Size Plot


Exploration Associates

Project
LLANWONNO TIPS
Rhondda Cynon Taff
Sheet
P2/63


Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 µm	14
37.5 mm	82	300 μm	12
28 mm	79	212 µm	10
20 mm	70	150 µm	9
14 mm	68	63 µm	7
10 mm	65		
6.3 mm	57		
5 mm	53		
3.35 mm	47		
2 mm	34		
1.18 mm	24		
600 μm	17		
Hole	Description		
LWT6	MADE GROUND:	very loose dark g	rey and black
Depth	slightly silt	y very sandy angu	lar fine to
1.75 -2.25	The state of the s	of mudstone and	
Туре		atvo campanasetatione.	
IJ			
Test Performed	Uniformity	Coefficient = 39	
Wet	Sill for inter	20011101011	

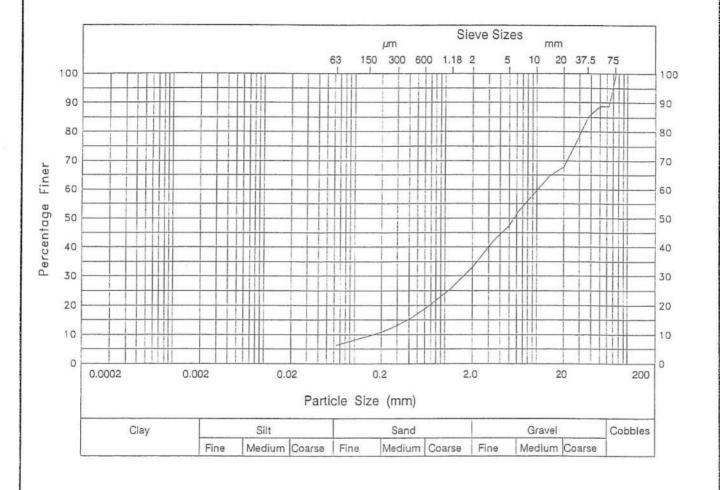
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/64


Particle Size	% Passing	Particle Size	% Passing
75 mm	88	1.18 mm	45
63 mm	88	600 µm	41
50 mm	88	425 µm	38
37.5 mm	83	300 µm	35
28 mm	75	212 µm	31
20 mm	70	150 μm	28
14 mm	65	63 μm	23
10 mm	62	1	
6.3 mm	58	0	
5 mm	56		
3.35 mm	53		
2 mm	49		
Hole	Description	- V	
LWT6	Stiff grey mo	ttled brown sligh	tly sandy
Depth		. Sand is fine to	
8.50 -9.00	1 75 - 77	ne to coarse of mu	
Туре	siltstone and		
U	orrestorie una	odijao e sile i	
Test Performed	Uniformity	Coefficient not ap	oplicable.
Wet			gramman and an analysis of the control of the contr

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/65

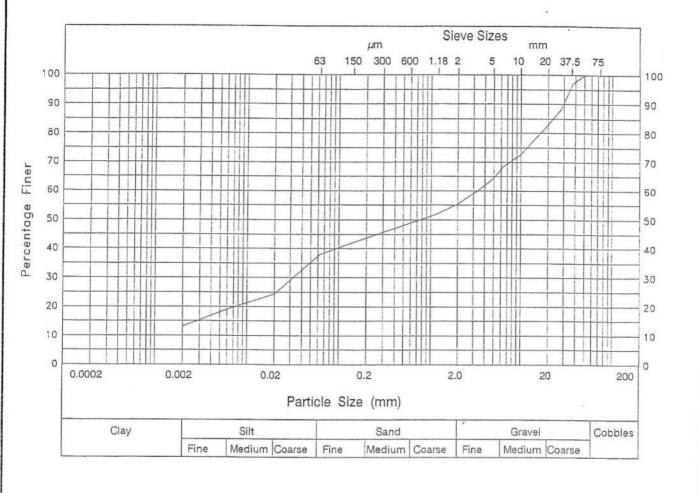
Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	77
20 mm	98	150 µm	73
14 mm	98	63 μm	63
10 mm	97	20 μm	56
6.3 mm	95	6 μm	37
5 mm	94	2 μm	22
3.35 mm	92		
2 mm	89		
1.18 mm	86		1
600 μm	83		1
425 μm	81		
300 μm	79		
Hole	Description		
LWT6	Stiff Light a	nd dark orange bro	own slightly
Depth		y gravelly SILT sa	
10.50-11.00	The second second	is rounded to sub	
Туре	siltstone and		
U U	S. CESTONIC MIN	201100 201101	
Test Performed	Uniformity	Coefficient not as	oplicable.
Wet			

Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract
Exploration Associates	Rhondda Cynon Taff	Sheet P2/66



Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	20
28 mm	98	212 μm	17
20 mm	87	150 μm	15
14 mm	85	63 μm	11
10 mm	81		
6.3 mm	71		
5 mm	66		
3.35 mm	58		
2 mm	47		
1.18 mm	37		
600 μm	28		
425 μm	23		
Hole	Description		
LWT7		ng medium dense da	rk grey and
Depth	black slightl	y silty sandy ang	ular fine to
2.00 -2.45		of ash coal and	
Туре			
В			
Test Performed Wet	Uniformity	Coefficient not a	pplicable.

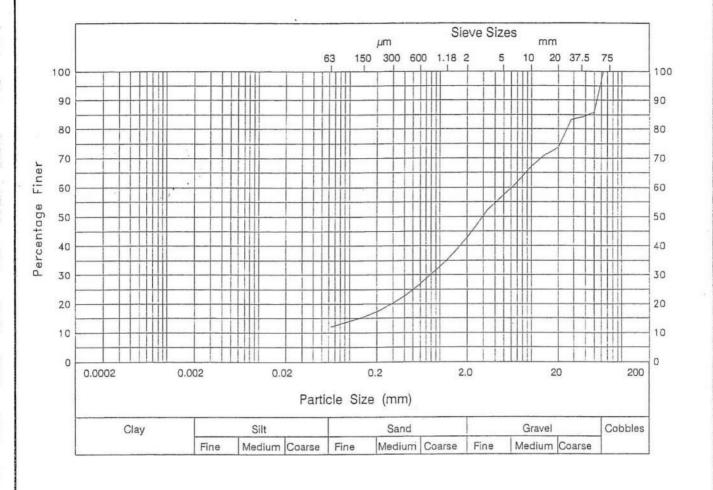
Laboratory - Particle Size Plot


Project
LLANWONNO TIPS
Rhondda Cynon Taff

Sheet
P2/67

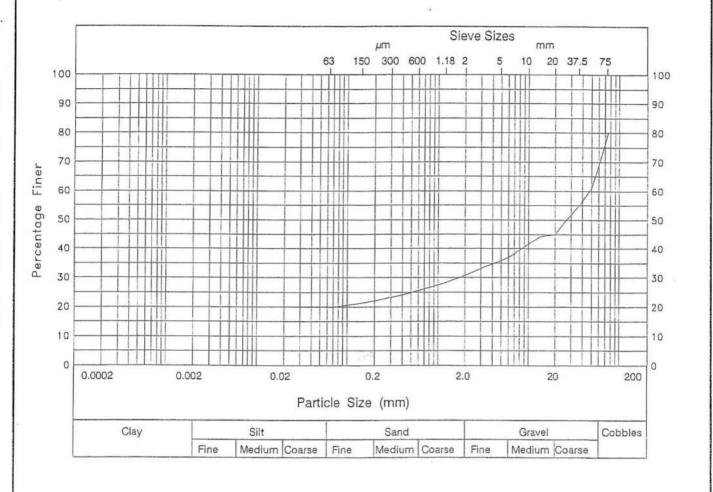
Particle Size	% Passing	Particle Size	% Passing
75 mm	100	1.18 mm	26
63 mm	89	600 μm	19
50 mm	89	425 μm	16
37.5 mm	85	300 μm	13
28 mm	77	212 µm	11
20 mm	68	150 µm	10
14 mm	65	63 μm	6
10 mm	60		
6.3 mm	52		
5 mm	47		
3.35 mm	42		
2 mm	33		
Hole	Description		
LWT7	The same of the sa	g medium dense da	rk grey and
Depth		y clayey sandy an	
5.00 -5.45	The section of the se	of ash coal and	
Туре	1		
В			
Test Performed	Uniformity	Coefficient = 67	
Wet			

	Project	Contract
Laboratory - Particle Size Plot	LLANWONNO TIPS	151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/68

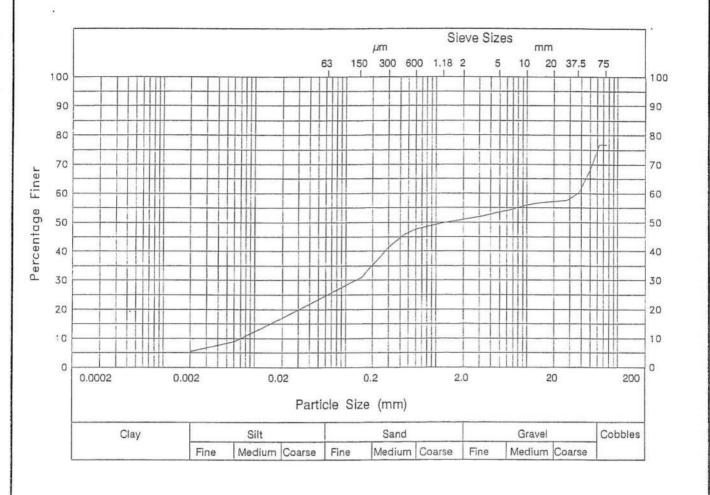


Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 µm	47
37.5 mm	97	300 μm	46
28 mm	88	212 μm	44
20 mm	83	150 μm	42
14 mm	78	63 µm	38
10 mm	73	20 μm	24
6.3 mm	68	6 μm	19
5 mm	64	2 μm	13
3.35 mm	60		
2 mm	55		
1.18 mm	52		
600 μm	49		
Hole	Description		
LWT7	Firm to stiff	orange mottled g	rev slightly
Depth		y CLAY. gravel is	1.61
9.00 -9.45	to coarse of		
Гуре	1		
В.			
Test Performed Wet	Uniformity	Coefficient not ap	oplicable.

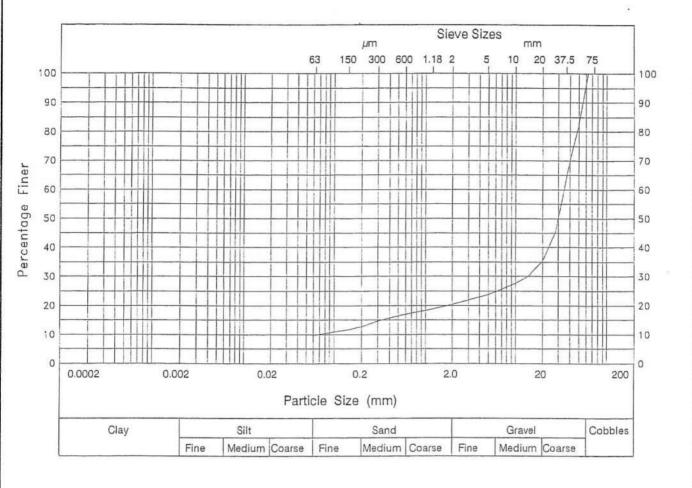
Laboratory - Particle Size Plot


Project
LLANWONNO TIPS
Rhondda Cynon Taff

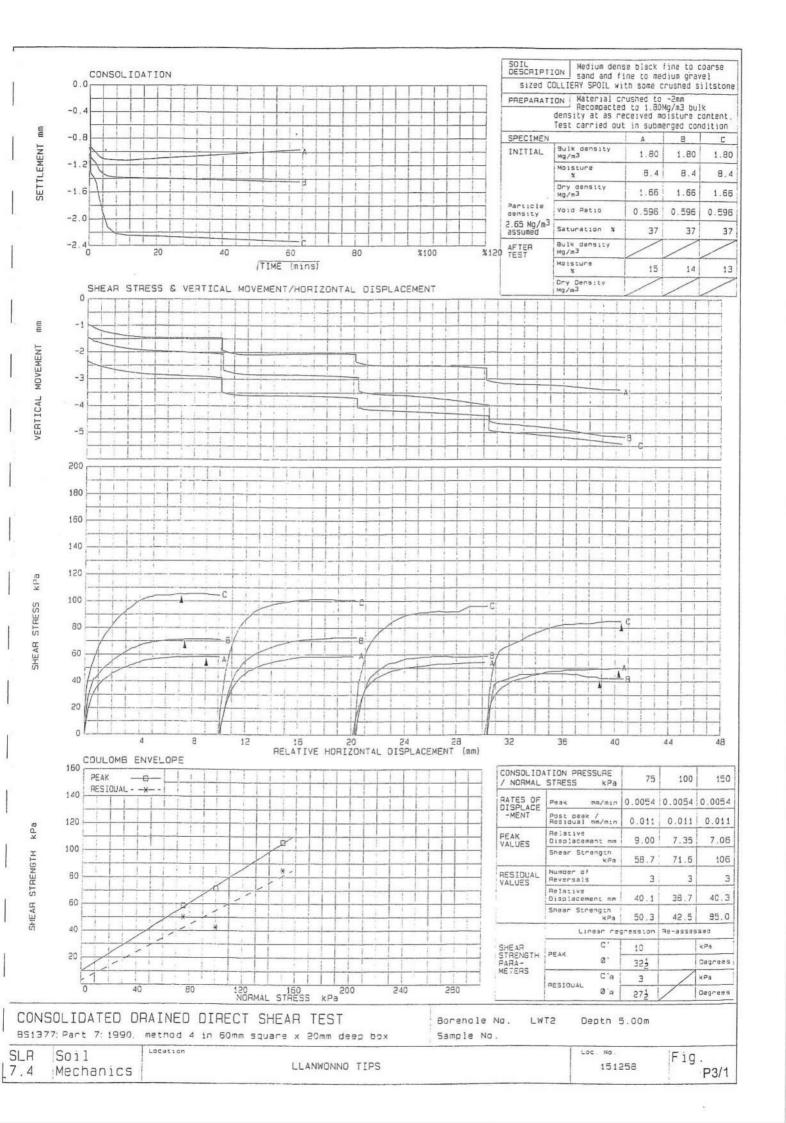
Sheet
P2/69

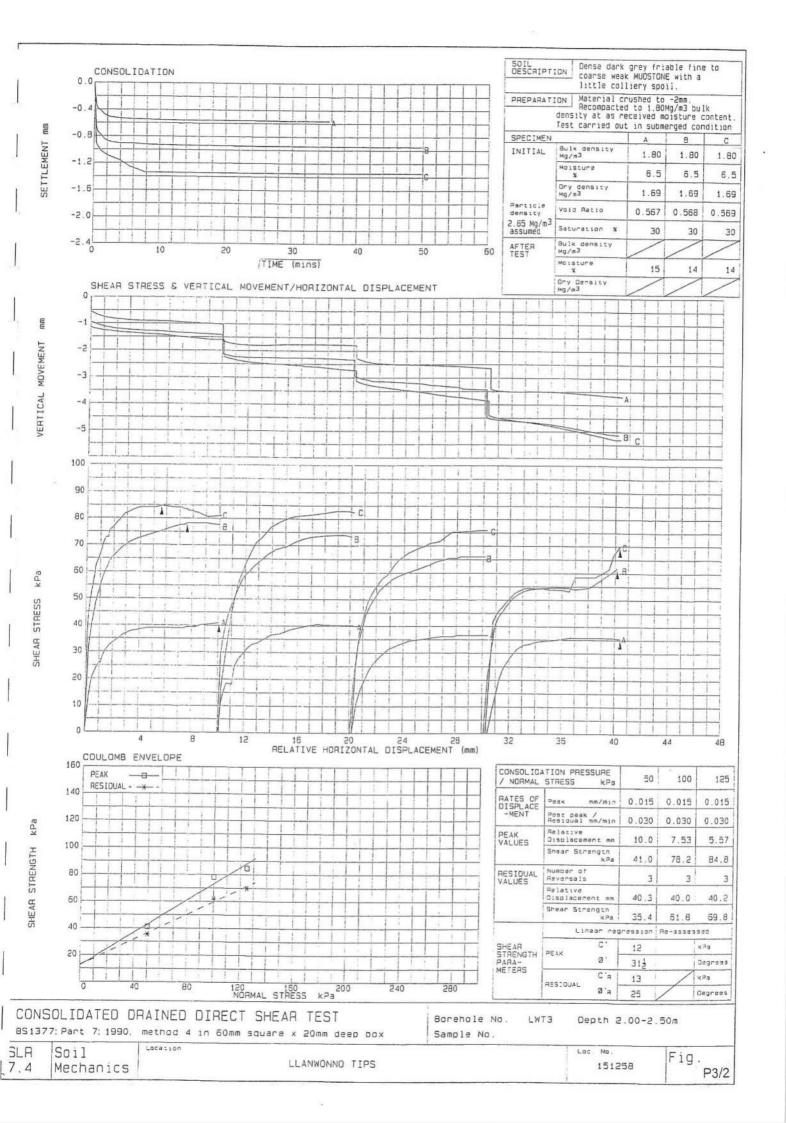

Particle Size	% Passing	Particle Size	% Passing
63 mm	100	600 μm	27
50 mm	86	425 μm	23
37.5 mm	84	300 μm	20
28 mm	83	212 μm	18
20 mm	74	150 μm	16
14 mm	71	63 μm	12
10 mm	67		
6.3 mm	60		
5 mm	58		
3.35 mm	52		
2 mm	43		
1.18 mm	35		
Hole	Description		
LWT8	MADE GROUND:	Medium dense dark	grey and black
Depth		y sandy angular f	
6.75 -7.00	100	stone sandstone a	
Туре	and coal.		
В			
Test Performed Wet	Uniformity	Coefficient not a	pplicable.

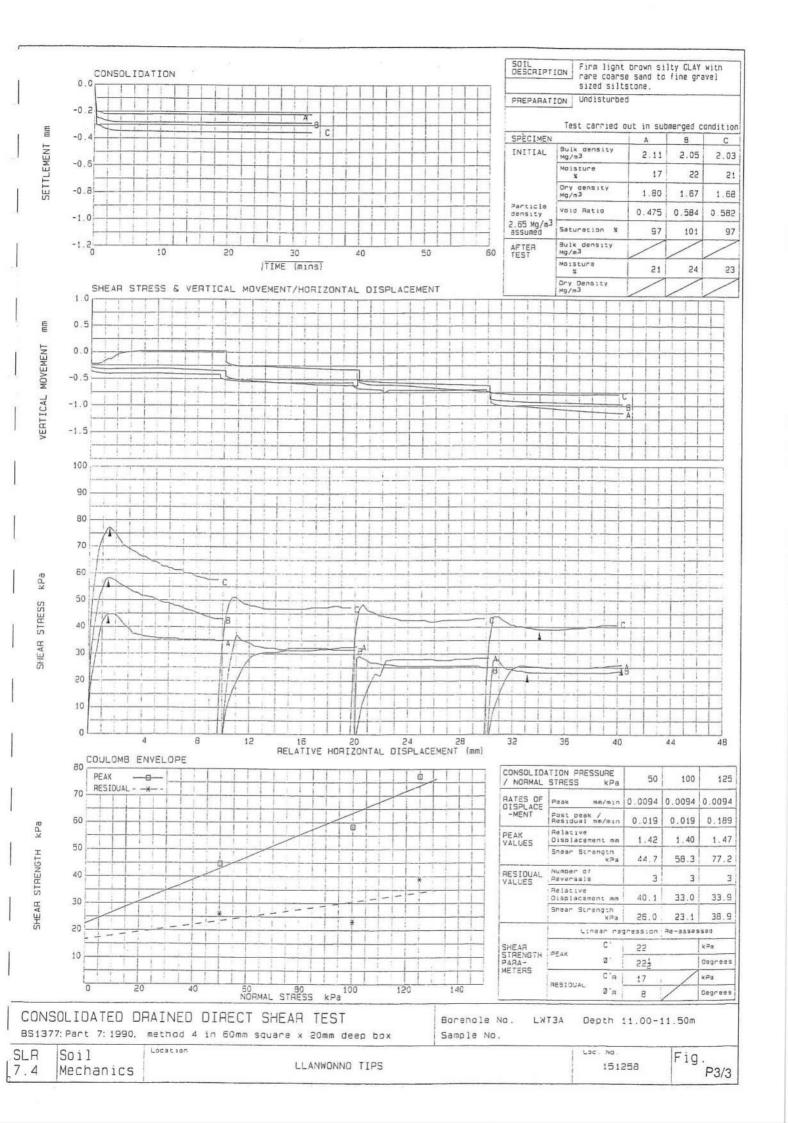
Laboratory - Particle Size Plot	Project	Contract
Exploration Associates	Rhondda Cynon Taff	Sheet P2/70

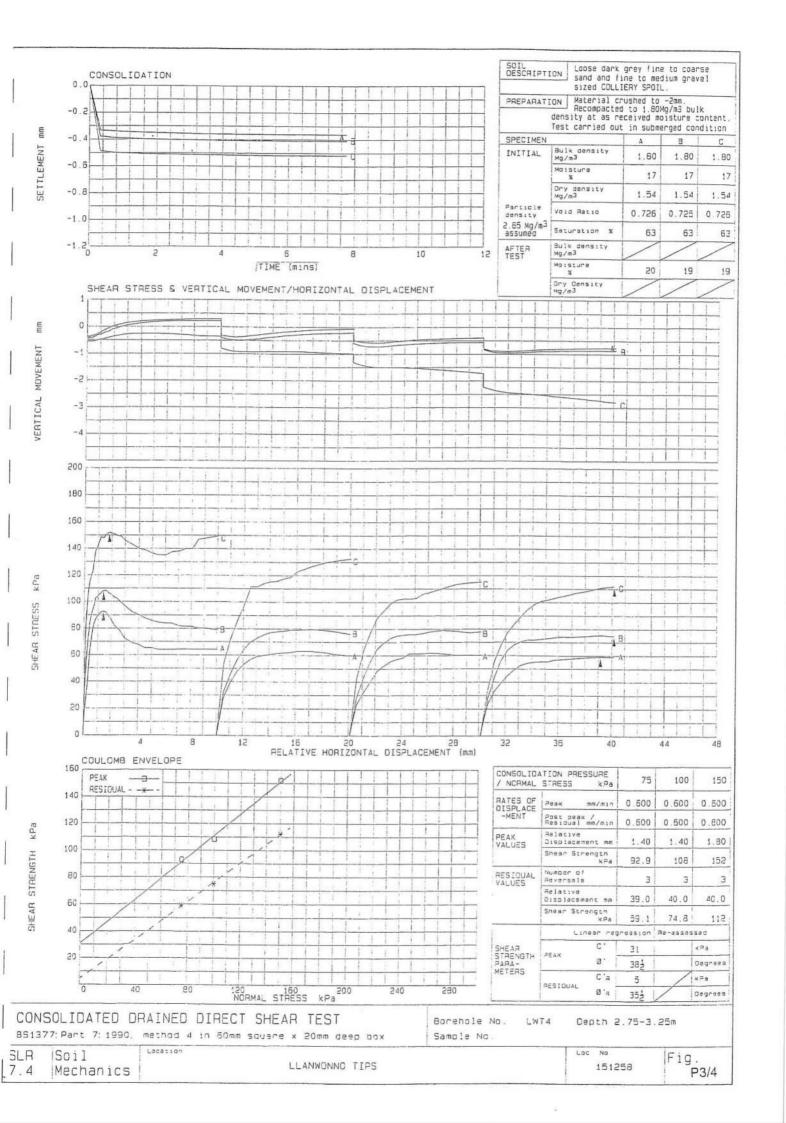

Particle Size	% Passing	Particle Size	% Passing
75 mm	80	1.18 mm	28.
63 mm	71	600 μm	26
50 mm	61	425 μm	24
37.5 mm	55	300 μm	23
28 mm	51	212 μm	22
20 mm	45	150 μm	21
14 mm	44	63 μm	20
10 mm	42		**
6.3 mm	37		
5 mm	36		
3.35 mm	34		
2 mm	31		
Hole	Description		
LWT8	MADE GROUND:	medium dense dark	grey and black
Depth	silty slightl	y sandy angular f	ine to coarse
15.75-16.00	The state of the state of the state of	dstone siltstone	
Туре	The state of the state of		
В			
Test Performed	Uniformity	Coefficient not a	oplicable.
Wet			

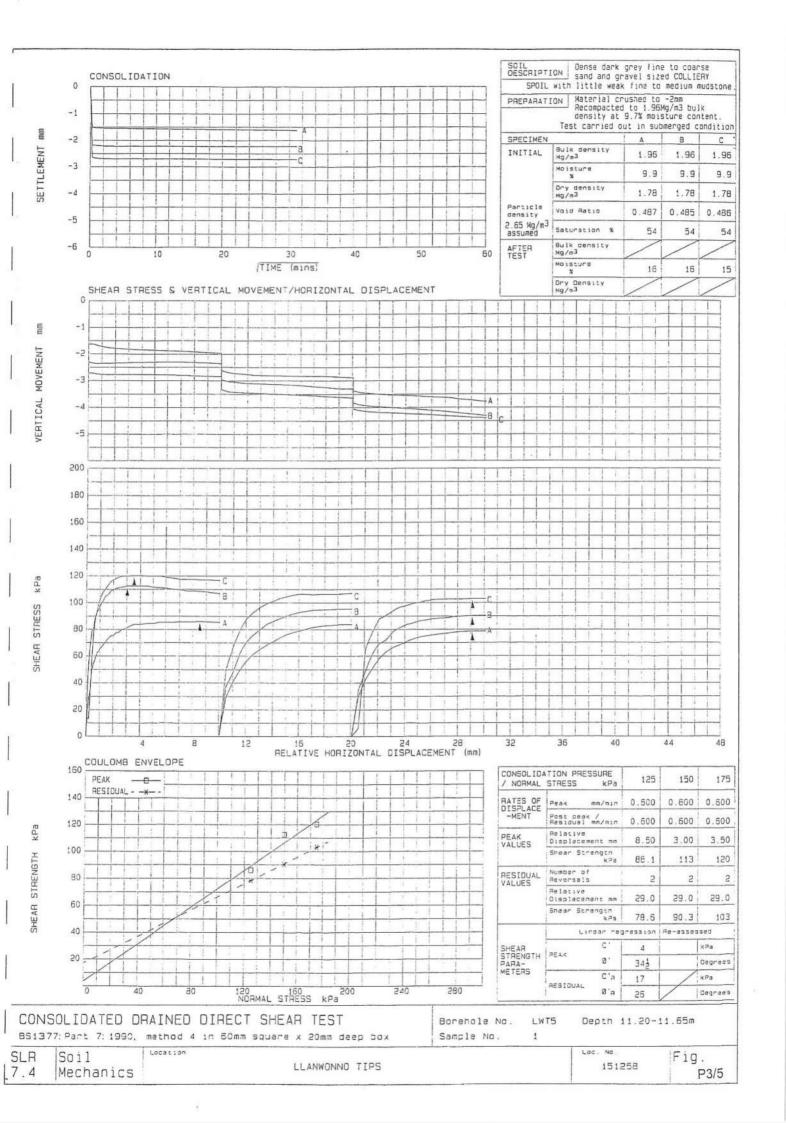
Laboratory - Particle Size Plot
Project
LLANWONNO TIPS
Rhondda Cynon Taff
Contract
151258
Sheet
P2/71

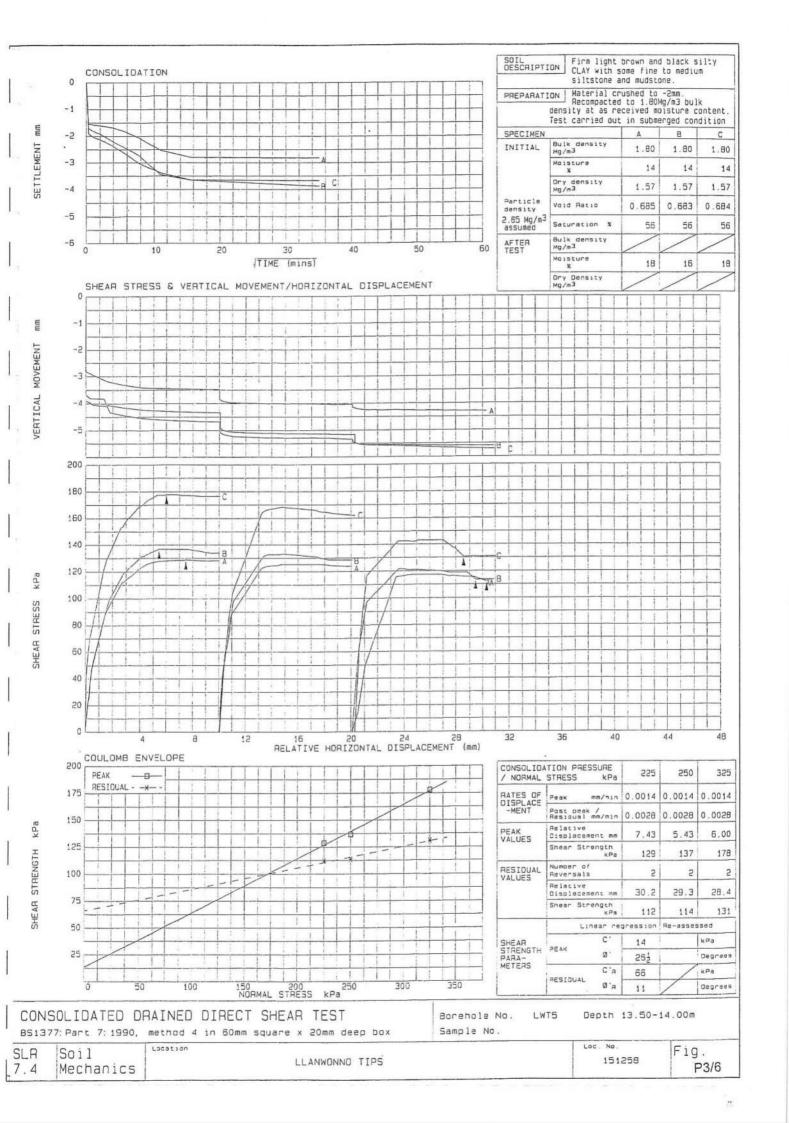

Particle Size	% Passing	Particle Size	% Passing
75 mm	77	1.18 mm	50
63 mm	77	600 µm	48
50 mm	68	425 µm	45
37.5 mm	60	300 μm	41
28 mm	58	212 µm	36
20 mm	57	150 μm	31
14 mm	57	63 μm	25
10 mm	56	20 μm	17
6.3 mm	54	6 μm	9
5 mm	54	2 μm	5
3.35 mm	52		
2 mm	51		
Hole	Description		
LWT8		ightly gravelly s	lightly sandy
Depth	1 5	asional orange bro	
21.70-22.20	partings		
Туре	1		
U			
Test Performed	Uniformity	Coefficient = 527	1
Wet			

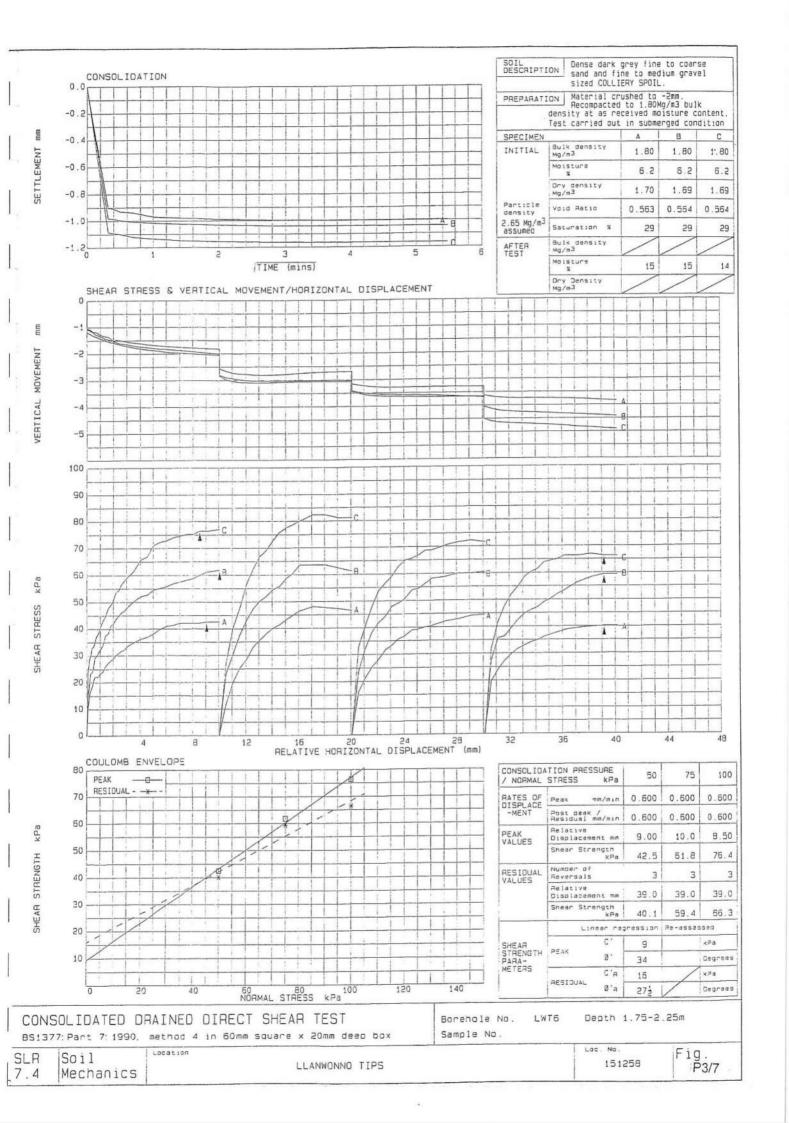

		Form 25/4
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/72

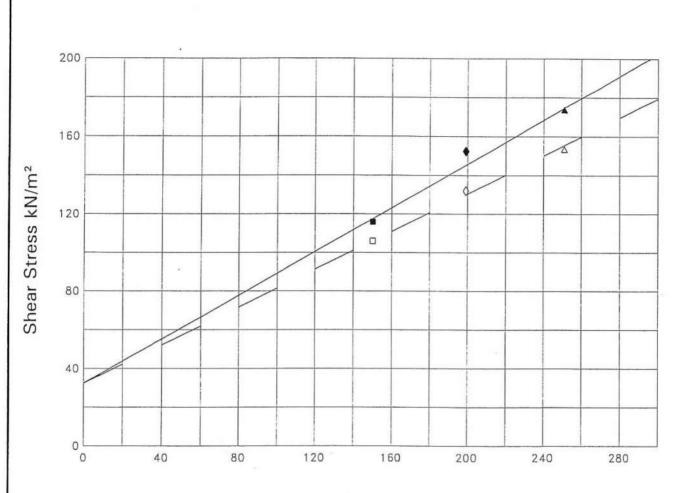


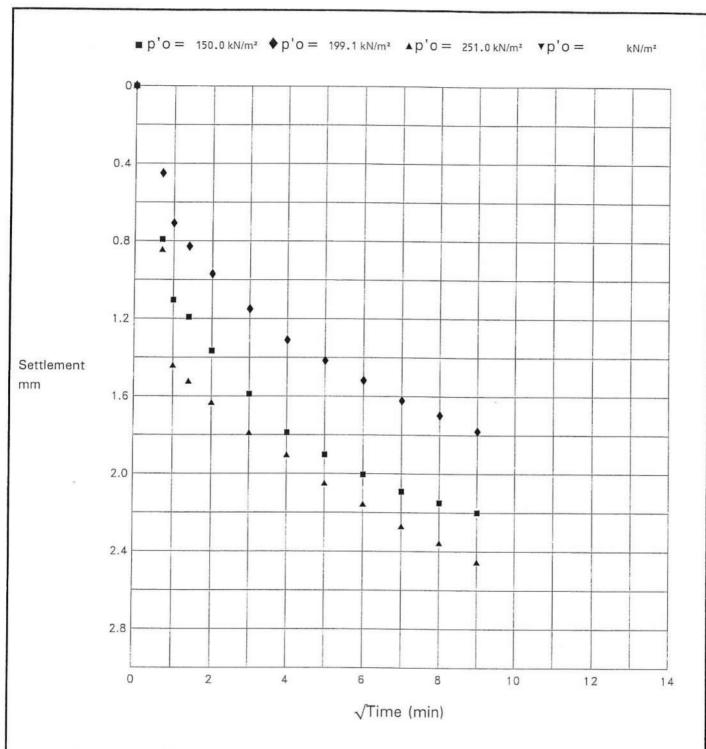

Particle Size	% Passing	Particle Size	% Passing
63 mm	100	600 μm	17
50 mm	83	425 μm	16
37.5 mm	66	300 μm	15
28 mm	45	212 μm	13
20 mm	35	150 μm	12
14 mm	30	63 μm	10
10 mm	28		
6.3 mm	25		
5 mm	24		
3.35 mm	22		
2 mm	20		
1.18 mm	19		
Hole	Description		
LWT8	Very dense br	own very clayey s	lightly sandy
Depth	The second secon	to coarse GRAVEL,	
25.50-26.50	cobbles of sa		
Туре	1	1188.5311.5	
В			
Test Performed Wet	Uniformity	Coefficient = 546	


		Form 25/
Laboratory - Particle Size Plot	Project LLANWONNO TIPS	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Sheet P2/73

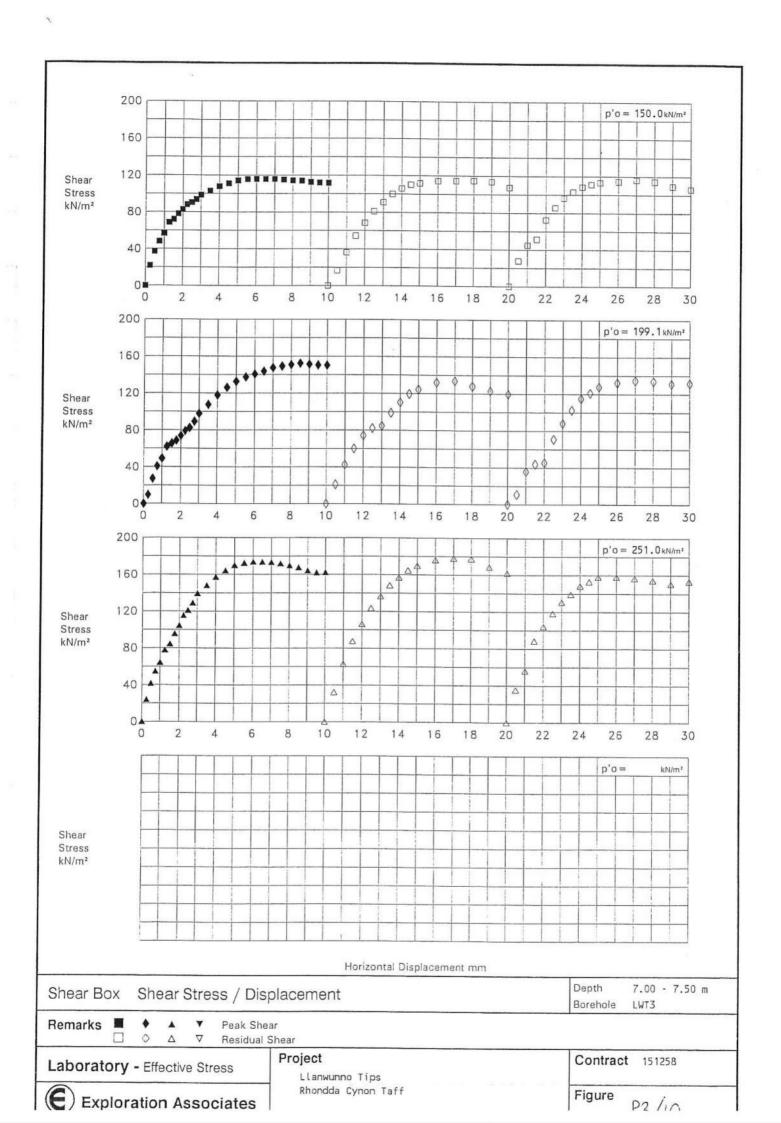


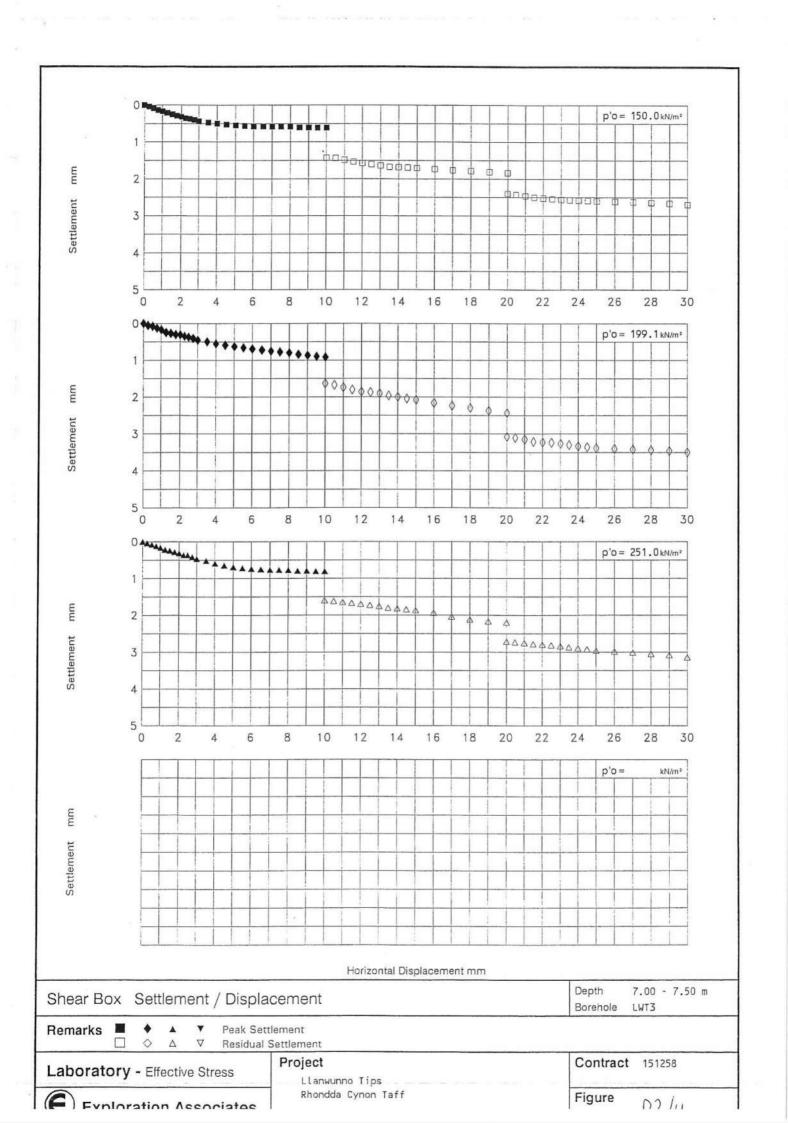


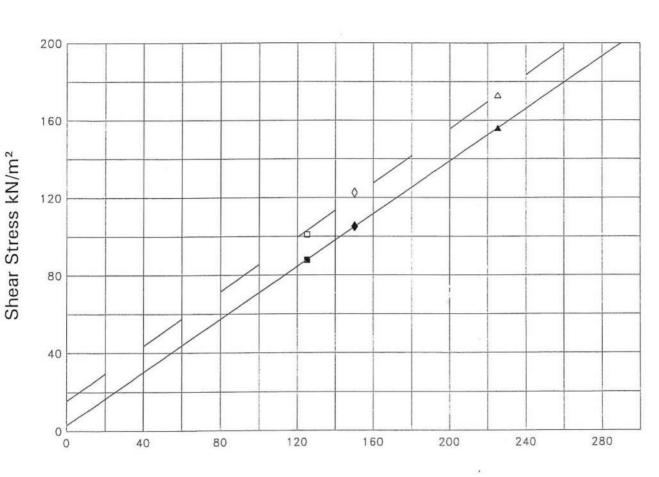




Normal Stress kN/m²

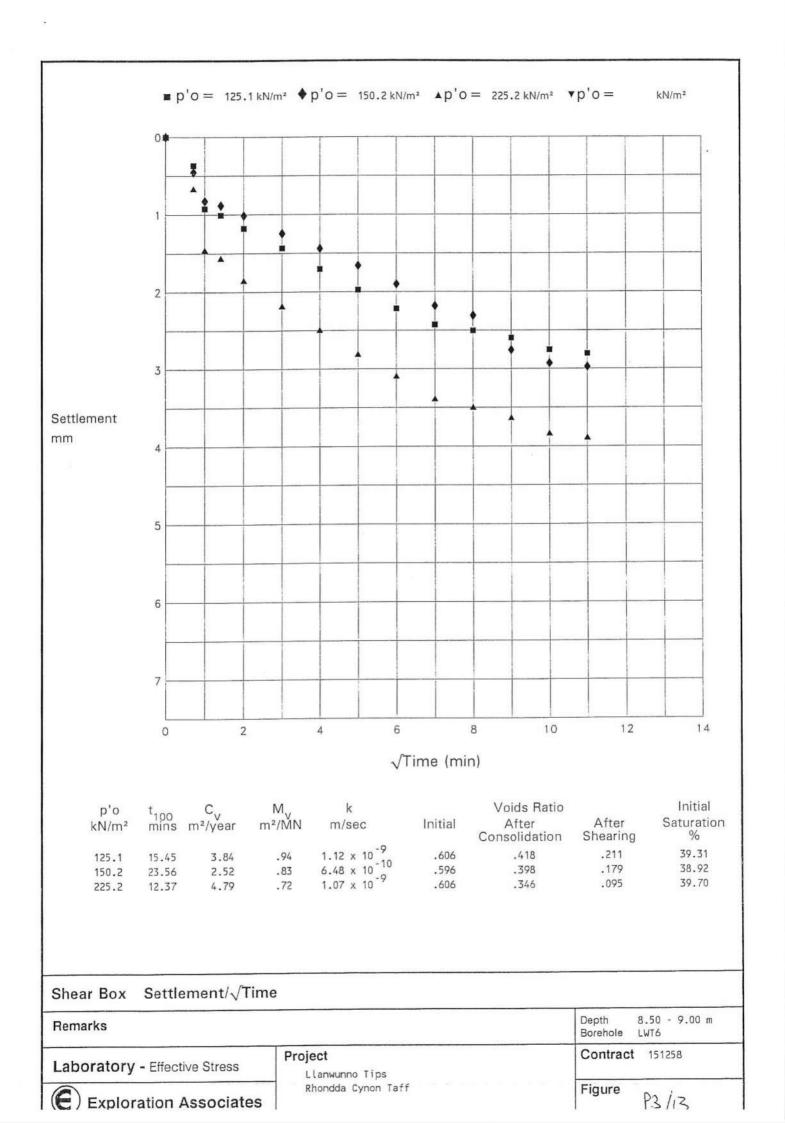

Normal Stress	kN/m²	150.0	199.1	251.0
Peak Shear Stress	kN/m²	116.0	152.5	173.5
Residual Shear Stress	kN/m²	106.0	132.0	153.5
Rate of Strain	mm/min	.02400	.02400	.02400
Strain at Peak Shear Stress	%	10.01	14.17	10.01
Method of Residual Shear Stress Determination			Reve	rsal
Sample Preparation			REM	DULDED

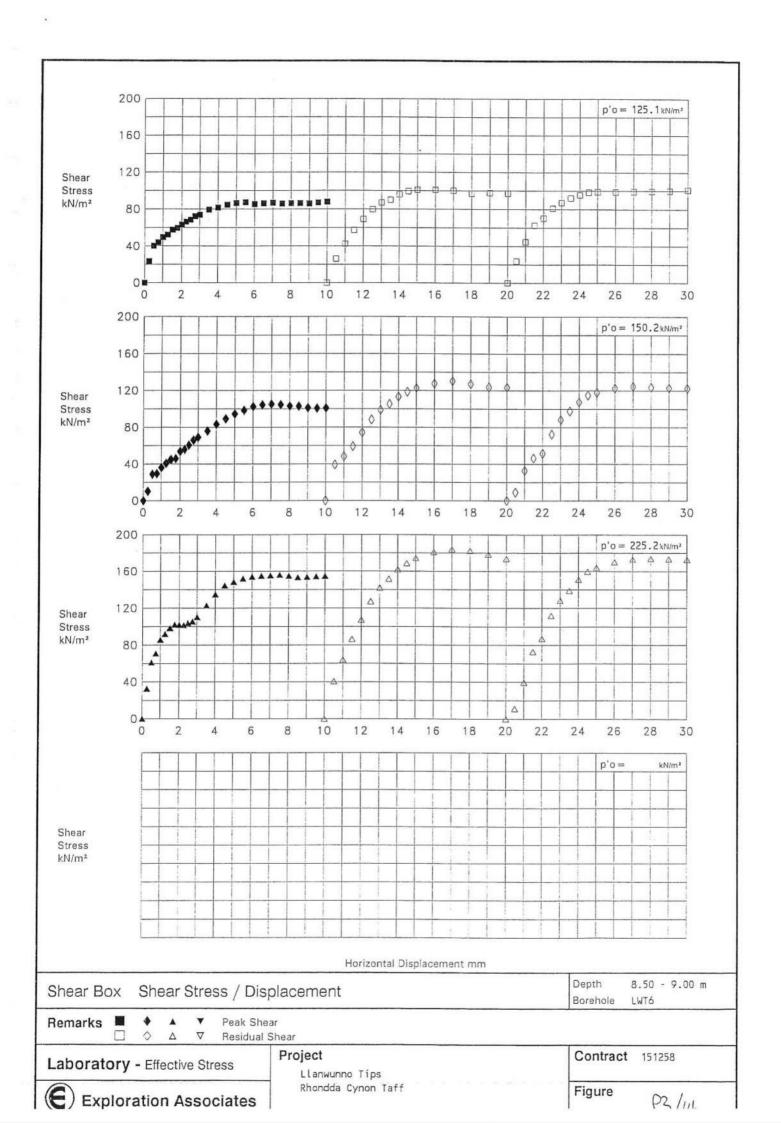

Shear Box	Description Dark brown/black very gravelly slightly sandy CLAY	C' 32.5 C'r 32.5 kN/m ² Ø' 29.5 Ø'r 26 Degrees
Drained	Shear Stress/Normal Stress	Depth 7.00 - 7.50 m Borehole LWT3
Remarks		
Laboratory - Effective Stress	Project Llanwunno Tips	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Figure P3/8

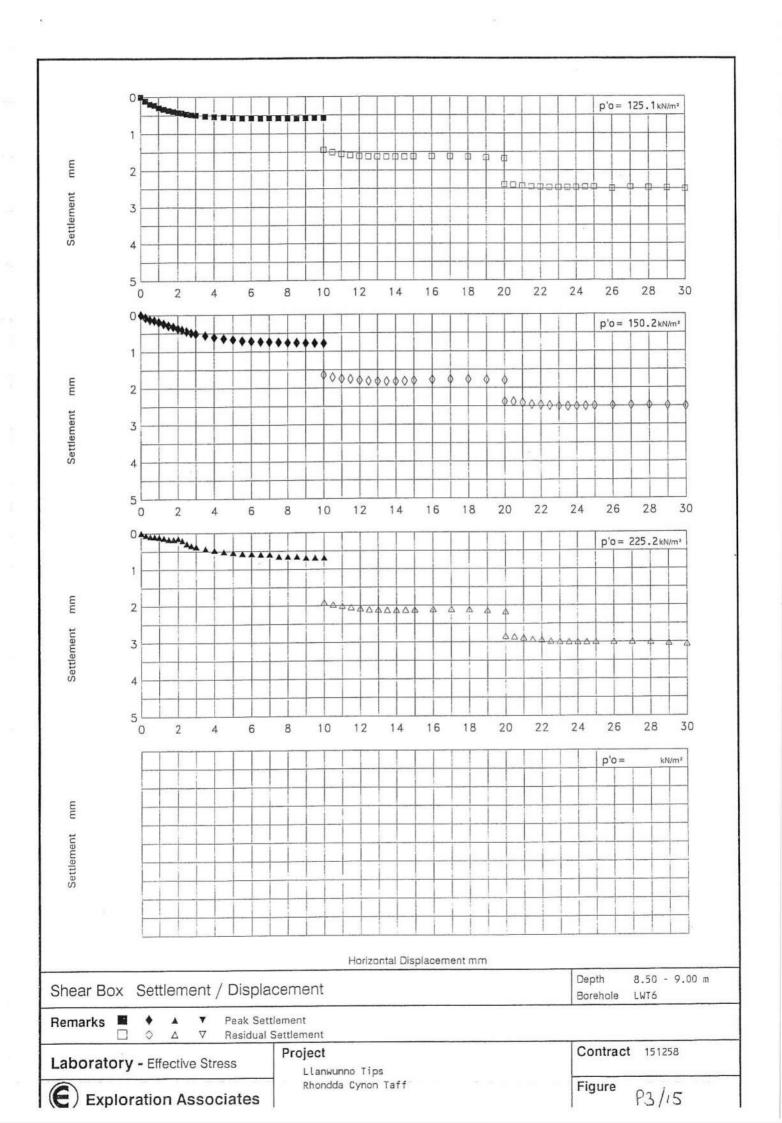


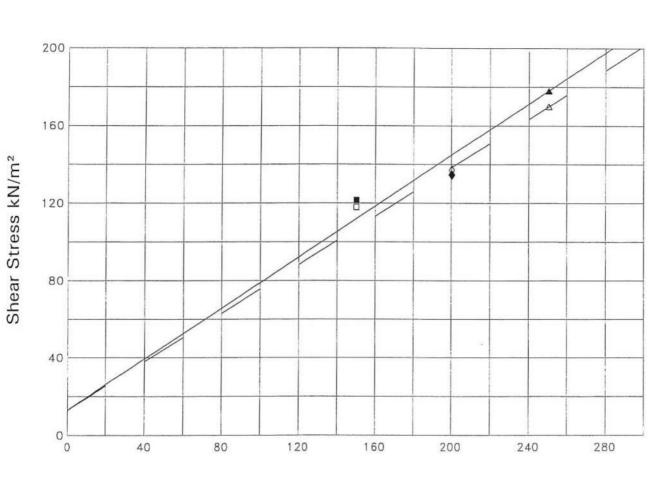
p'o	t ₁₀₀	CV	M	k		Voids Ratio		Initial
kN/m²	mins	m²/year	m²/MN	m/sec	Initial	After Consolidation	After Shearing	Saturation %
150.0	3.97	14.94	.61	2.82 x 10 ⁻⁹	.577	.433	.215	32.31
199.1	6.32	9.38	.37	1.08 x 10 -9	.577	.460	.169	33.69
251.0	2.90	20.45	.41	2.60 x 10 ⁻⁹	.568	.407	.149	31.82

Shear Box Settlement/√Tim	e	
Remarks		Depth 7.00 - 7.50 m Borehole LWT3
Laboratory - Effective Stress	Project Llanwunno Tips	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Figure D2 /a

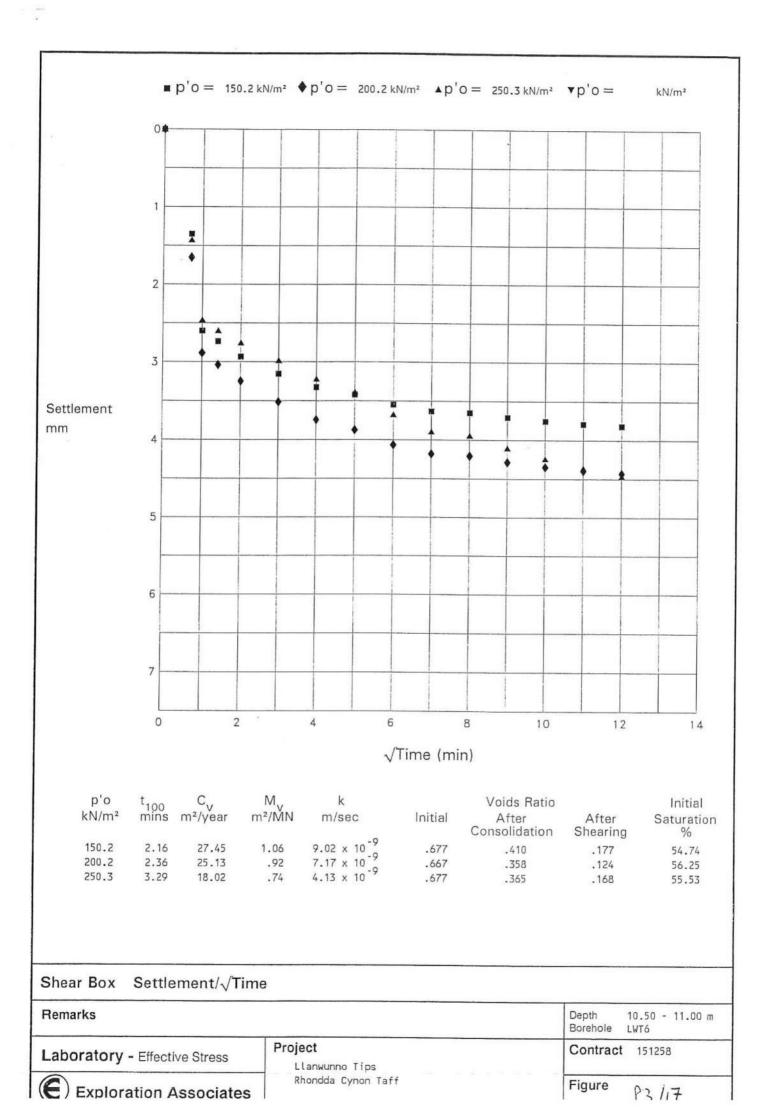


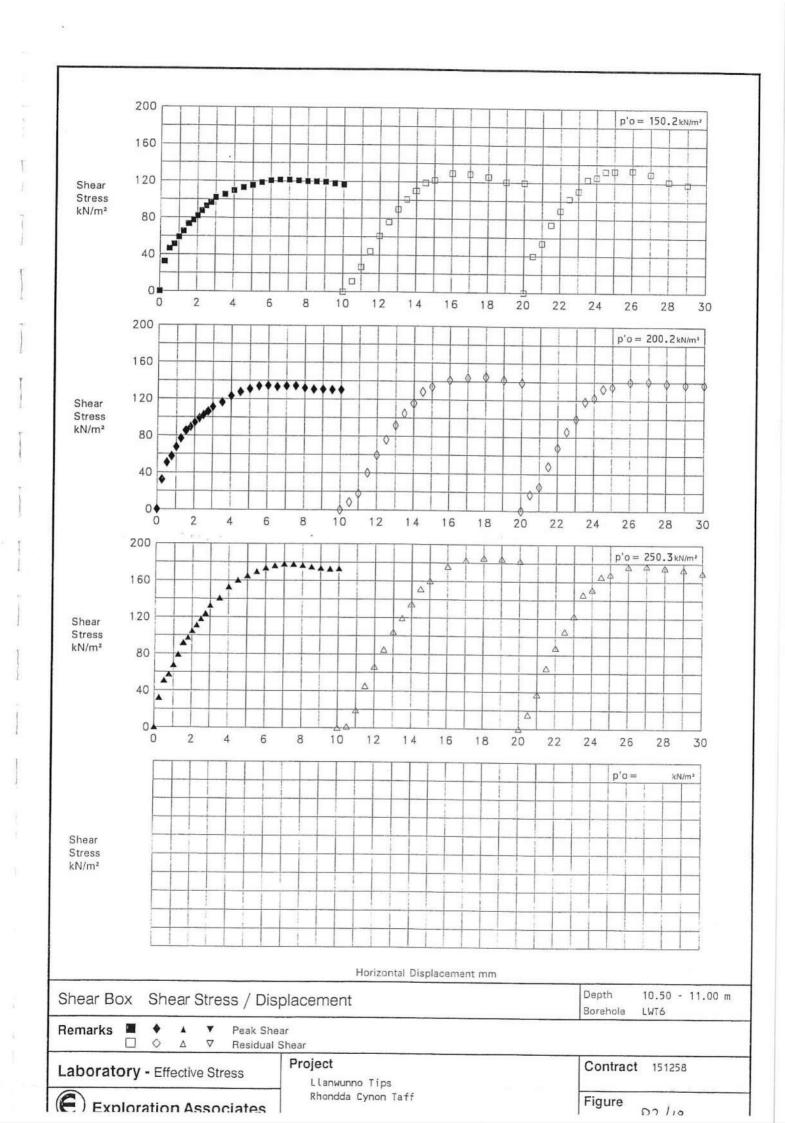


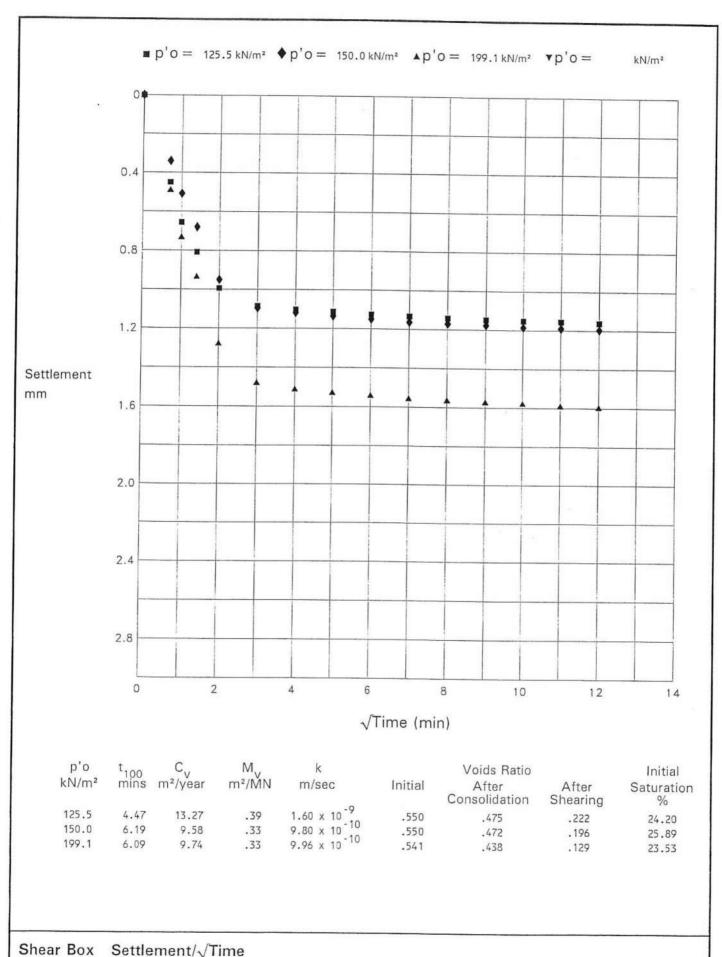

Normal Stress kN/m²


Normal Stress	kN/m²	125.1	150.2	225.2
Peak Shear Stress	kN/m²	88.0	105.0	156.0
Residual Shear Stress	kN/m²	101.0	122.5	173.0
Rate of Strain	mm/min	.02400	.02400	.02400
Strain at Peak Shear Stress	%	16.68	11.67	12.51
Method of Residual Shear Stress Determination			Reve	rsal
Sample Preparation			REM	OULDED

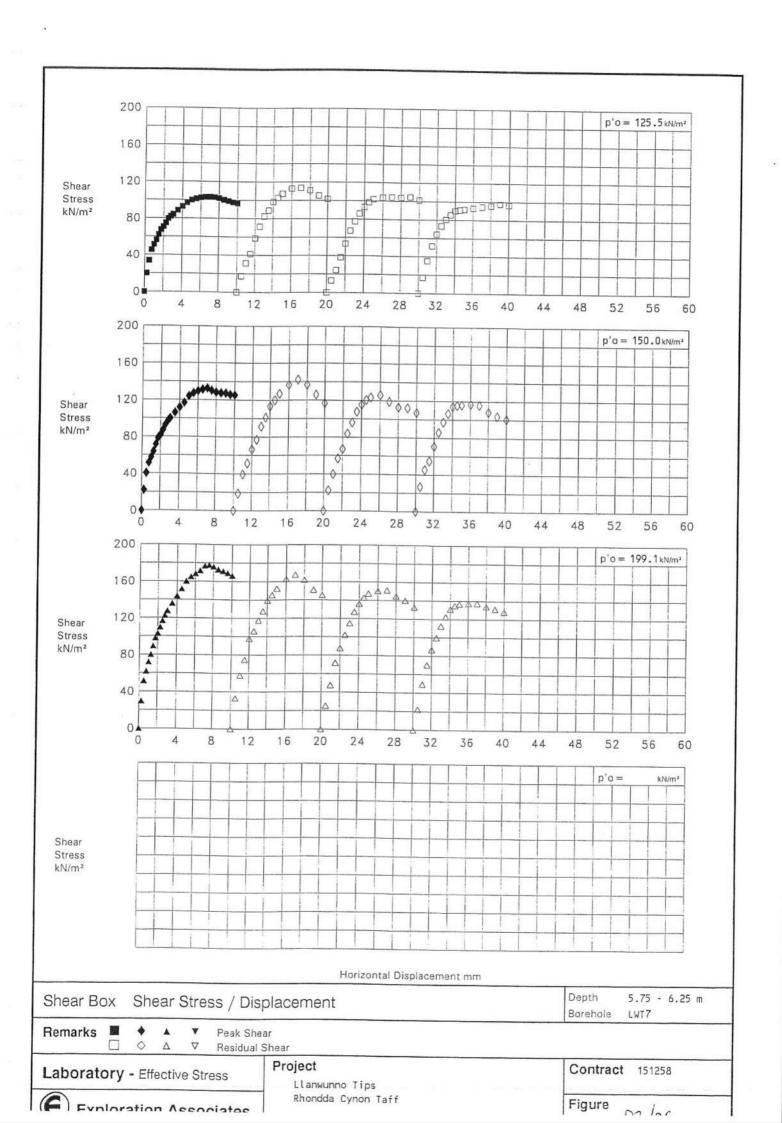
Shear Box	Description Very stiff grey brown gravelly CLAY	C' 3 C'r 15.5 kN/m ² Ø' 34 Ø'r 35 Degrees		
Drained	Shear Stress/Normal Stress	Depth 8.50 - 9.00 m Borehole LWT6		
Remarks				
Laboratory - Effective Stress	Project Llanwunno Tips	Contract 151258		
Exploration Associates	Rhondda Cynon Taff	Figure DR /12		

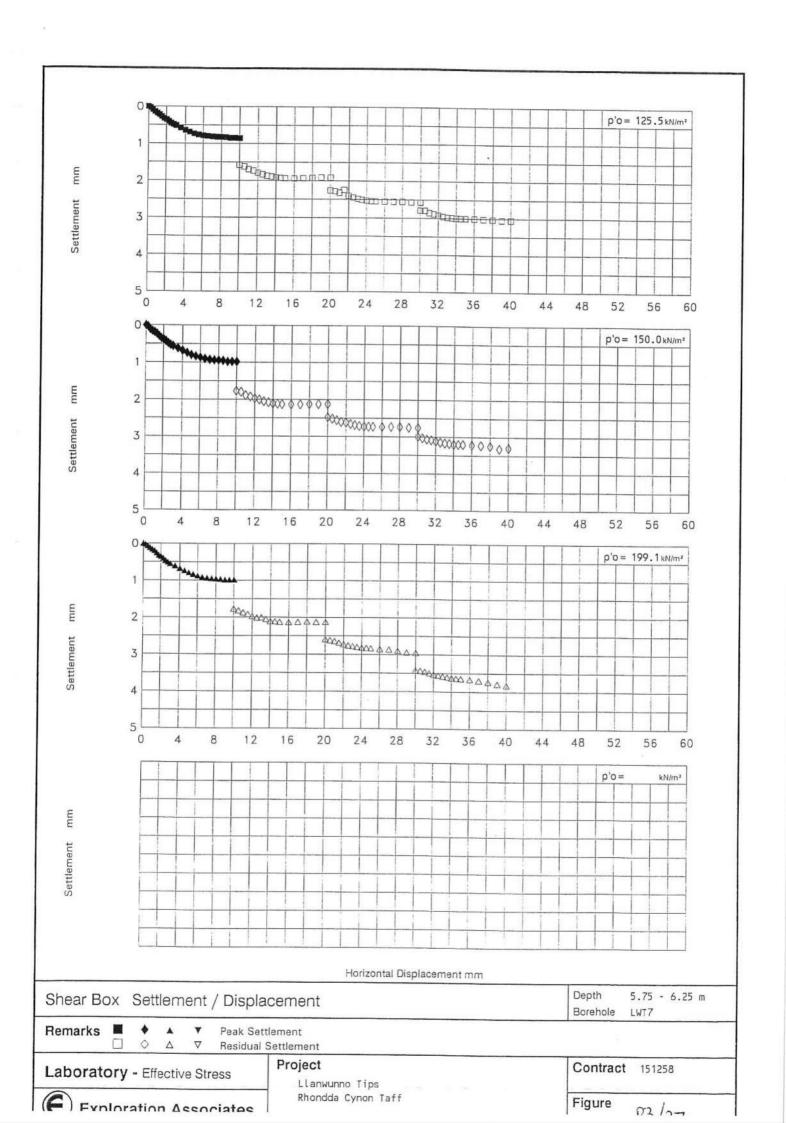


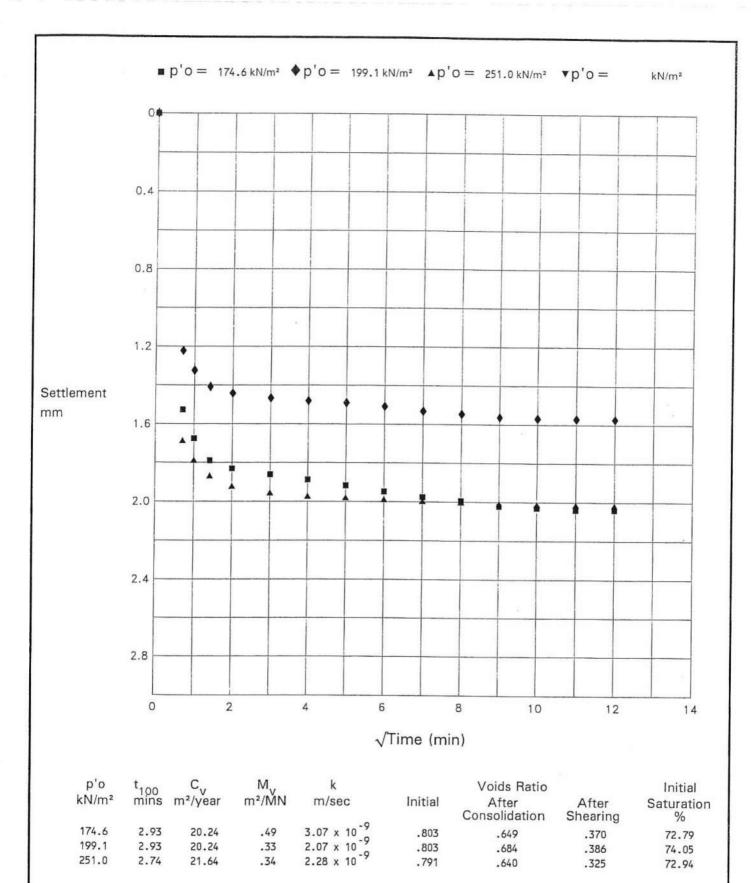


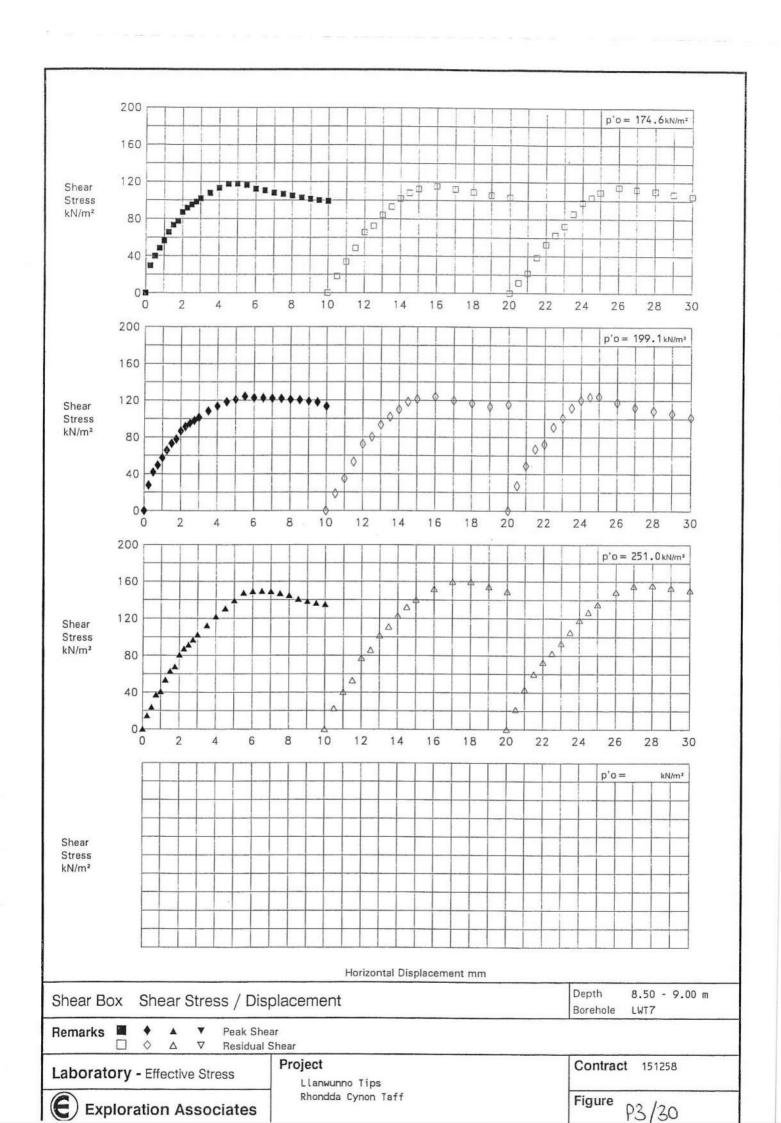

Normal Stress kN/m²

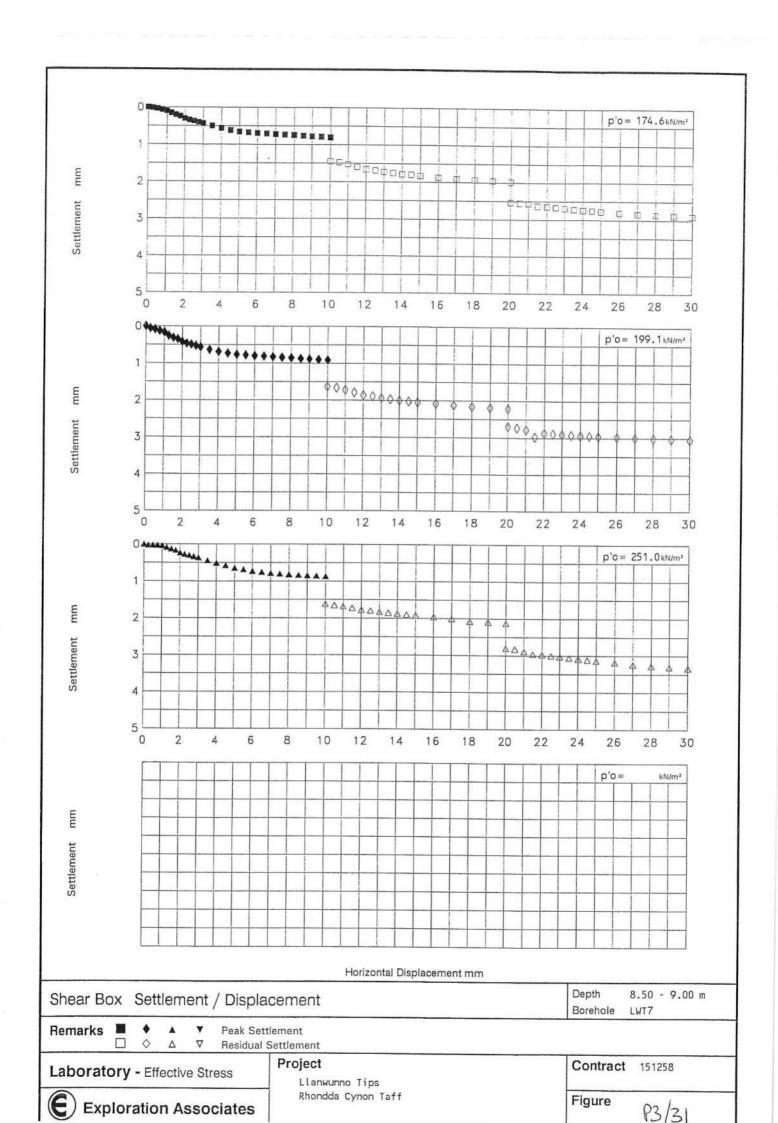
Normal Stress	kN/m²	150.2	200.2	250.3
Peak Shear Stress	kN/m²	121.5	134.5	178.0
Residual Shear Stress	kN/m²	118.0	137.0	170.0
Rate of Strain	mm/min	.12000	.12000	.12000
Strain at Peak Shear Stress	%	10.84	10.01	11.67
Method of Residual Shear Stress Determination			Reve	rsal
Sample Preparation			REMO	OULDED

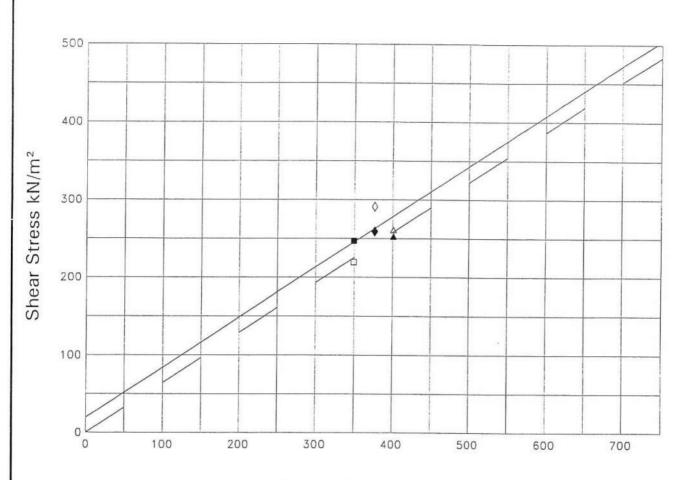

Shear Box	Description Stiff yellow brown slightly sandy slightly gravelly CLAY	C' 13 C'r 13 kN/m ² Ø' 33.5 Ø'r 32 Degrees
Drained	Shear Stress/Normal Stress	Depth 10.50 - 11.00 m Borehole LWT6
Remarks		
Laboratory - Effective Stress	Project Llanwunno Tips	Contract 151258
Evaluration Associates	Rhondda Cynon Taff	Figure D2 /16



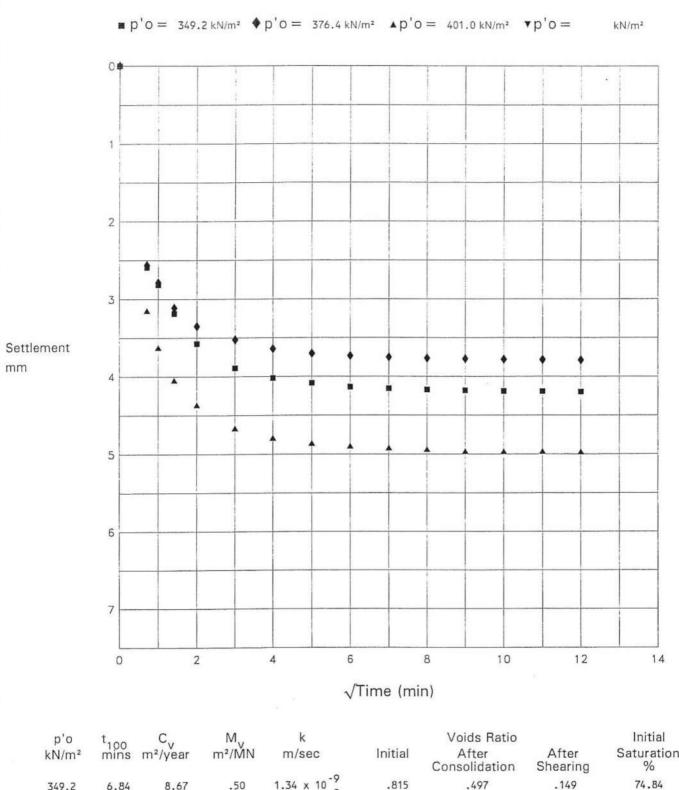



Remarks		Depth 5.75 - 6.25 m Borehole LWT7	
Laboratory - Effective Stress Project Llanwunno Tips		Contract 151258	
Fynloration Associates	Rhondda Cynon Taff	Figure 02 /2/	

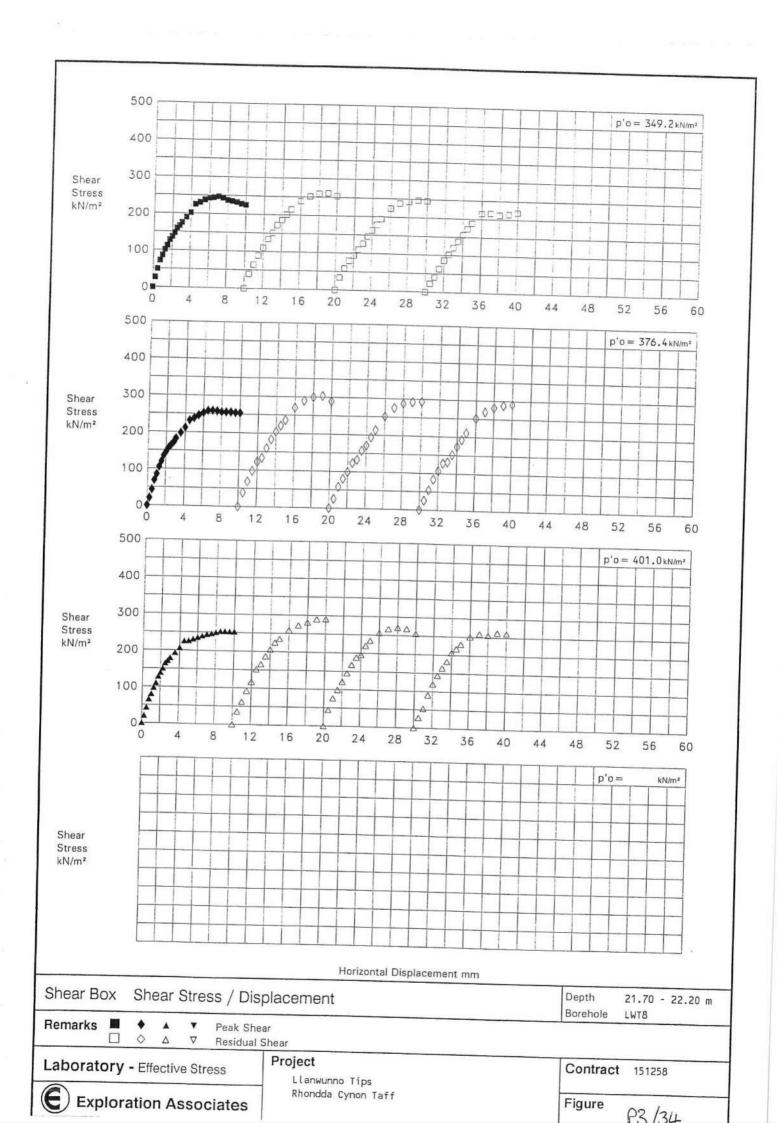


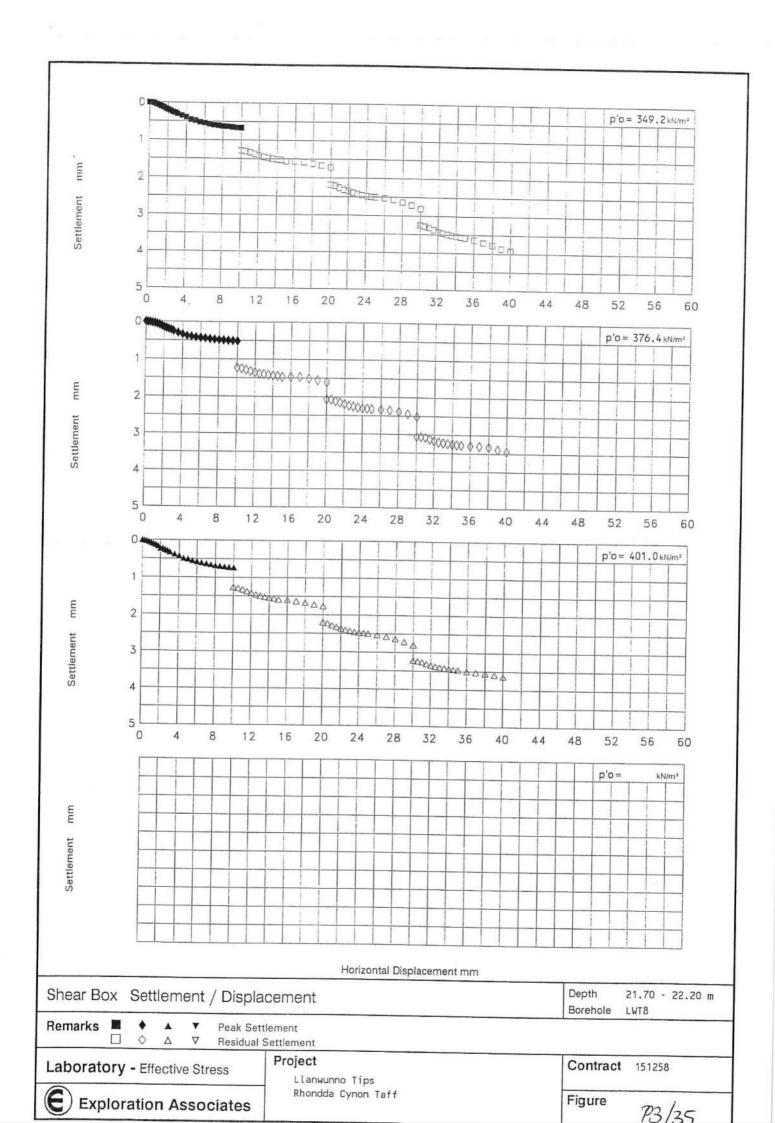


Shear Box Settlement/√Tin	ne	
Remarks		Depth 8.50 - 9.00 m Borehole LWT7
Laboratory - Effective Stress Project Llanwunno Tips		Contract 151258
Exploration Associates	Rhondda Cynon Taff	Figure 93 /29



Normal Stress kN/m²


Normal Stress	kN/m²	349.2	376.4	401.0
Peak Shear Stress	kN/m²	247.0	259.0	252.5
Residual Shear Stress	kN/m²	219.5	291.0	261.0
Rate of Strain	mm/min	.03600	.03600	.03600
Strain at Peak Shear Stress	%	11.67	11.67	14.17
Method of Residual Shear Stress Determination			Reve	rsal
Sample Preparation			REMO	OULDED


Shear Box	Description Grey brown slightly gravelly slightly sandy CLAY with occasional orange brown sand partings	C ¹ 19.5 Ø ¹ 33	C'r 0 kN/m ² Ø'r 33 Degrees
Drained	Shear Stress/Normal Stress	Depth Borehole	21.70 - 22.20 m LWT8
Remarks			
Laboratory - Effective Stress	Project Llanwunno Tips	Contract	151258
Exploration Associates	Rhondda Cynon Taff	Figure	03/32

p'o	t.00	C.,	Μ.,	k		Voids Ratio		Initial
kN/m²	mins	m²/year	m²/Ṁ́N	m/sec	Initial	After Consolidation	After Shearing	Saturation %
349.2	6.84	8.67	.50	1.34 x 10 ⁻⁹	.815	.497	.149	74.84
376.4	5.21	11.38	.42	1.48 x 10 -9	.803	.518	.220	74.71
401.0	4.58	12.95	.52	2.09 x 10 ⁻⁹	.815	.439	.107	76.11

Shear Box Settlement/√Tim	е	
Remarks		Depth 21.70 - 22.20 m Borehole LWT8
Laboratory - Effective Stress	Project Llanwunno Tips	Contract 151258
Exploration Associates	Rhondda Cynon Taff	Figure P3/33

TEST REPORT

SOIL SAMPLE ANALYSIS

Amended Report TES Report No. EFS/020214

Site: Llanwonno Tip

Exploration Associates
Unit 13
Crosby Yard
Wildmill
Bridgend
Mid Glamorgan
CF31 1JZ

The 20 samples described in this report were scheduled for analysis by TES Bretby on Monday, 21 January 2002. This is an amended report which splaces the original version issued 01/02/02. The analysis was completed by Monday, 4 February 2002.

the following tables are contained in this report:

Table 1 Main Analysis Results Table of Report Notes (1 Pages)

On behalf of
TES Bretby: J. Househ
J Hannah Project Co-ordinator

Date of Issue: 04/02/02

	Inits: Method Codes:	: J/kg	ICP/MAJ	ICPMA.I	PPMA I	IC DIAGO	Man.	I gan	lifus.	e e	116111	0%	-	-
	Detection Limits :	_		\vdash	-	30	SOME	1	SSAL1	0.1	WSLM60 0.1	7		
TESI		Amm				Tor.	A	Ava	Av		Ava	Α		
D Number CL/	Client Sample Description	oniacal Nitrogen.	Calcium	Magnesium	Potassium	Phosphorus (PG4)	vallable Calcium	ilable Magnesium	aliable Potassium	organic Matter %	alanie Phosphorus	Total Nitrogen %		
0201455	TP7A	30.9	640	617	2060	27.10		0	9	6				
0201456	TP78	11.4	418	548	1750	846	2 18	101	5.05	90 8	851	103	And the second s	
0201457	TP7C	11.4	803	1120	2070	12.10	203	168	2003	52	1.4	6.74	To the state of th	
0201458	TP7D	10.4	1210	760	1460	958	407	253	259	1 8	0 0 7	800		
0201459	TP7E	8.3	1060	584	1600	633	115	206	250	50	4 6	50.0		
0201460	TP8A	13.7	1280	574	1100	2150	882	255	540	5 15	10.3	1.31		
0201461	TP88	6.8	395	401	973	2540	129	609	410	49 .	32.3	1.29		
0201462	TP8C	3.8	605	537	832	2830	177	117	219	40	85.1	0.72		
0201463	TP80	11.9	179	1190	1630	1470	46	27	218	8.4	33	0.40	The second secon	
0201464	TPBE	12.5	.87	876	696	788	34	30	267	4.5	13.0	0.31	The second secon	
1900	TP9A	29.4	1110	1840	2450	1350	630	518	628	19	42.0	0.69	The state of the s	
0201466	TP9B	16.6	1600	2490	1680	1360	506	468	450	16	-20	0.52		
0201467	TP9C	14.7	1170	1400	1970	1390	503	545	435	17	<2.0	0.53		
0201468	TP9D	13.0	877	1210	2070	824	549	655	409	16	<2.0	0.46		
0201469	TP9E	12.8	835	1300	1680	852	580	700	352	5.8	15.5	0.45		
0201470	TP10A	13.8	587	797	1680	2100	389	148	568	23	9.6	0.58	And the second s	
0201471	TP108	7.8	309	786	1206	1640	170	65	308	11.0	5.4	0.86		
0201472	TP10C	9.2	949	1050	1900	1500	705	50	331	6.3	<2.0	0.43		
0201473	TP10D	14.3	1300	806	1530	1100	847	60	420	5.9	000	0.50		
0201474	TP10E	8.7	96	932	1680	0211	83	30	247	8 2 2	0.25	0.46	The second secon	
TES	TES Bretby	Client Name	ıme	Explorat	Exploration Associates	ciales					(i)	Soils San	Sample Analysis	
	PO Box 100, Bretby Business Park,	Contact		Mr C White		The state of the s						Amen	Amended Report	
Dieloy	Tel 144 100 1000 Errors										Date Prinfed	pe	4 February 2002	
	For 144 (0) 1283 554400										Report Number	mber	EFS/020214	
	Fax *** (U) 1283 554422				A STATE OF THE STA		Det C				Table Number	uber		
					***************************************	The state of a deposit and security as a 10 manual	THE PERSONNEL WAS A STANDARD				Page Mumber	iber	1 of 1	

SONTEX HIGHER TOS

Report Notes

Results expressed as mg/kg air dried unless stated otherwise SO4 analysis not conducted in accordance with BS1377 Water Soluble Sulphate on 2:1 water:soil extract AR denotes analysis conducted on the As Received sample Req Analysis Requested, see attached sheet for results A This analysis was subcontracted to another laboratory. I.S Insufficient sample for analysis

A This analysis was subcontracted to sample Available to analyse due to nature of sample Available Magnesium expressed as mg/l in soil Available Potassium expressed as mg/l in soil Available Calcium expressed as mg/l in soil Available Calcium expressed as mg/l in soil

End of Report

TEST REPORT

SOIL SAMPLE ANALYSIS

Amended Report TES Report No. EFS/020213

Site: Llanwonno Tips

Exploration Associates Unit 15 Crosby Yard Wildmill Bridgend Mid Glamorgan CF31 1JZ

The 30 samples described in this report were scheduled for analysis by TES Bretby on Monday, 21 January 2002. This is an amended report which eplaces the original report issued 31/01/02. The analysis was completed ny Monday, 4 February 2002.

The following tables are contained in this report:

Table 1 Main Analysis Results Table of Report Notes (1 Page)

On behalf of TES Bretby : J. Warran J Hannah

Project Co-ordinator

Date of Issue: 04/02/02

-	Detection Limits :	0.5	-	0		8	17600	1	112000	100	0.1		
TES ID Number CL/	Client Sample Description	Ammoniacal Nitrogen.	Calcium	Magnesium	Potassium	Tot.Phosphorus (PO4)	Avaliable Calcium	Available Magnesium	Available Potassium	Organic Matter %	Available Phosphorus	*Total Hitrogen %	
0201425	TP1A	16.4	372	610	1760	921	251	262	301	11.0	8.0	0.67	
0201426	TP18	15.3	884	2060	1970	988	408	475	267	13.0	3.0	0.28	
0201427	TP1C	10.7	1160	1120	1570	930	558	596	236	7.9	0.1	0.37	
0201428	TP10	22.7	006	1170	2080	725	614	764	301	5,8	0.6	0.33	And in contrast of the contras
0201429	TP1E	14.2	1450	1360	2480	1200	099	866	337	3.4	7.0	0.81	
0201430	TP2A	21.8	387	830	2310	786	344	410	455	3,4	0.7	0.21	
0201431	TP28	11.7	544	843	1750	676	-165	616	212	1.5	9.0	0.29	
0201432	TP2C	9.4	670	1280	2360	991	470	628	198	2.4	5.0	0.27	
0201433	TP2D	31.8	910	1740	2540	786	366	447	424	3.6	40	0.54	
0201434	TP2E	10.2	382	719	1970	1050	225	#10 #10	203	2.4	8.0	0.43	
0201435	TP3A	29.3	4530	3300	2930	1210	2430	2100	763	1.7	0.8	0.79	
0201436	TP3B	42.6	1510	2340	2880	970	934 F	505	804	6.8	10	11.32	
0201437	TP3C	14.7	963	1260	2250	434	713	779	384	3.3	3.0	0.31	
0201438	TP3D	15.6	719	1060	2260	269	581	691	429	2.1	2.0	0.30	The second of th
0201439	TP3E	30.8	626	1120	3120	286	502	633	751	2.0	5.0	0.36	
0201440	TP4A	12.0	2740	2210	1440	1460	1480	906	338	15.0	3.0	0.19	
0201441	TP4B	10.8	2290	1880	1200	1260	1370	855	282	16	5.0	0,49	
0201442	TP4C	14.0	2260	2030	1510	1330	1270	/64	340	15.0	5.0	0.50	
0201443	TP4D	7.7	1640	2030	1940	1190	973	575	298	9.6	9.1	0.55	
0201444	TP4E	6.2	803	1610	1400	. 909	538	35.1	214	3.9	3.0	6.33	
ES	TES Bretby	Client Name	ıme	Explora	Exploration Associates	ciales					U)	oils Samp	Soils Sample Analysis
	PO Box 100, Brelby Business Park,	Contact		Mr C White	æ							Amende	Amended Report
Bretby	Burton-on-Trent, Staffordshire, DE15 0XD Tel +44 (0) 1283 554400										Date Printed Record Number	ed	4 February 2002
	Fax +44 (0) 1283 554422				ullowne!	/outuro/	(A)				Table Mimber	uber	
											Page Mumber	ther	1 of 2

	Inits: Method Codes: Detection Limits:	FIANH3S 0.5	ICP/MAJ 1	ICPMA.J	ICPMA.1	ICPMA.I	SSAL1	SSALT	SSAL1	\$38L	WSLIAGO	0/2		4	
TES ID Number CL/	Client Sample Description		- Calcium	n Magnesium	Potassium	Rot.Phospnorus (PO4)	Avaliable Calcium	Available Magnesium	Available Potassium	Organic Matter %	Available Phosphorus	ATotal Mitrogen %			
0201445	TPSA	26.0	1520	1300	2290	1530	7.40	455	0.57	D.F	0.4	130	All and the second seco		
0201446	TP5B	18.2	2070	1820	2420	1170	723	476	355	6 01	0.00	0.54			
0201447	TP5C	12.4	778	1170	2580	1020	500	518	357	17	3.0	04.0	-		
0201448	TP5D	12.3	688	1280	2380	1030	587	655	312	K 4	000	0.35			
0201449	TP5E	11.7	1180	1340	2580	1180	594	908	341	яв	100	07.0	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
0201450	TP6A	23.1	1070	1270	2200	1930	694	249	455	14.0	13.0	6.57	-		A COLUMN TO SERVICE AND ASSESSMENT OF THE PERSON OF THE PE
0201451	TP6B	12.1	824	1240	1800	1780	505	173	221	9.1	5.0	0.64			
0201452	TP6C	8.9	876	1340	1750	1580	525	173	168	8.1	3.0	0.60			
0201453	TP6D	10.2	862	1420	1940	1510	540	193	219	7.7	4.0	0.43	The second secon		
0201454	TP6E	4.8	339	1890	1800	553	256	137	211	1.9	<2.0	0.30			
					-	7	1								
								-					-		
					-		-			-					
											1				
									*						
						-									
						A - 40 (44) - 11 (44) 44				***************************************		***************************************			
					1		-								
1	S. H.	Client Name	ше	Explorat	Exploration Associates	ciaies	A for it as a presentation of the				J	Griffe Gam	Cample Analysis		
		Contact		Mr C White)	Amend	Anwended Report	2	
Dreiov	Burton-on-Trenl, Staffordshire, DE15 0XD							-			Data Printed	İ	A Fall	2000	
	_			gjin	And the second s		100				Report Humber	mber	4 reb	4 February 2002 EFS/020213	
	Fax +44 (0) 1283 554422					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Table Mumber	vber -		7	
						desire the second second second	personal per		A country of the coun		Page Mumber	ber		2 of 2	

SON SANDIE ALLASIOS

Report Notes

Results expressed as mg/kg air dried unless stated otherwise SO4 analysis not conducted in accordance with BS1377 Water Soluble Sulphate on 2:1 water:soil extract.

AR denotes analysis conducted on the As Received sample Req Analysis Requested, see attached sheet for results.

A This analysis was subcontracted to another laboratory.

I.S Insufficient sample for analysis

NBFO denotes No Bulk Fibres Observed.

\$\$ Unable to analyse due to nature of sample.

Available Magnesium expressed as mg/l in soil.

Available Phosphorus expressed as mg/l in soil.

Available Calcium expressed as mg/l in soil.

End of Report

ENCLOSURE D

Groundwater

Piezometer Water Levels

PIEZOMETER READINGS

BOREHOLE NO.	WATER STRIKES	STANDING WATER	
LWT1A	557	17.71	
LWT1B	DRY	DRY	_
LWT2A		DRY	
LWT2B	DRY	DRY	
LWT3A	0.50	WET	-
LWT3B	9.50m	WET	
LWT4A	551	DRY	1
LWT4B	DRY	DRY	1
LWT5A	D	12.02	1
LWT5B	Damp at 11.5-13.2m	14.70	1
LWT6A	45.40	6.14	
LWT6B	- 15.10m and 6.40m	14.25	
LWT7A	10.00	WET	
LWT7B	10.00m	10.48	
LWT8A	DEV	DRY	
LWT8B	DRY	DRY	

Where WET has been included it represents that the base of the standpipe piezometer is wet.

APPENDIX

General Notes

General Notes

These notes, which accompany the ground investigation report, are intended to assist the user of the information contained in the report. They point out some inevitable shortcomings of any ground investigation and do not constitute a disclaimer of responsibility for the results obtained by Exploration Associates.

- The information in this report is based on the ground conditions encountered during the ground investigation
 work and the results of any field and laboratory testing. The exploratory records describe the ground
 conditions at their specific locations and should not be regarded as representative of the ground as a whole.
- 2. Ground investigations are performed by the company in general accordance with the recommendations in BS 5930 (1981) "Code of Practice for Site Investigations". The testing of soils, rocks and aggregates generally follow the recommendations of BS 1377 (1990) "Methods of test for soils for Civil Engineering Purposes", the International Society of Rock Mechanics (Brown, 1981) "Rock characterisation, testing and monitoring, ISRM suggested methods", and BS 812 (1975) "Methods of sampling and testing of mineral aggregates, sands and filters", respectively.
- 3. The primary purpose of ground investigation boreholes and trial pits is to probe the stratified sequences of soil and/or rock. From the results of these probings no conclusions should be drawn concerning the presence of size, lithological nature and numbers per unit volume of ground of cobbles and boulders in soil types such as glacial till (boulder clay).
- 4. When cable percussion boring techniques are used in superficial and drift deposits some mixing of thin-layered soils inevitably occurs. If strong randomly-occurring pieces of rock are encountered in soil material then the rock may be either pushed aside or penetrated and broken up in which case the arisings that are recovered may not be indicative of the nature of the material in situ.
- 5. Rotary drilling techniques may sometimes be used for drilling through superficial deposits and rocks in order to provide a very general indication of the nature of the ground. Where open-hole methods have been used for the ground investigation the description of the ground is based on the cuttings recovered from the flushing medium and the rate of progress in advancing the hole. Descriptions of strata and the depths of changes in strata may not be accurate under these conditions.
- 6. Groundwater conditions noted during boring may be subject to change through seasonal and/or other effects such as, for example, boring and constructional excavation. When a groundwater inflow is encountered during boring, work on the hole is suspended, typically for 20 minutes, and any change in level is recorded. The groundwater level recorded on resumption of boring may not be the natural pre-boring standing water level. When piezometers are installed in boreholes the reported groundwater levels may also be subject to variation due to seasonal and/or other effects.
- 7. The factual information contained within the ground investigation report should not be used for any purpose other than for the development project for which it was prepared unless a check has been carried out on its applicability. Where the ground investigation report contains an interpretation of the factual information that interpretation must be considered in the context of the stated development proposals and should not be used in any other context.
- 8. This report is for the use of the person or organisation that commissioned the work. Exploration Associates accepts no responsibility if the information is used by any other party. The information is the property and copyright of the person or organisation that commissioned the investigation. It should not be reproduced or transmitted in any form without the owner's written permission.

March 2002

Intégral Géotechnique

Intégral House 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Tel: 029 20807991 mail@integralgeotec.com

12651/JJ

13 May 2020

Walters Group Hirwaun House, Hirwaun, Aberdare, CF44 9UL

For the attention of Mr Luke Holmes

Dear Sirs,

Tylorstown Landslip - Factual Report on Ground Conditions

We have now completed the intrusive ground investigation works at the above site and can report as follows.

This report (including all appendices to it and any subsequent addendums or correspondence) has been prepared for the sole benefit, use and information Walters Group and no third party is entitled to rely on it. This report may not be used, reproduced or circulated (in whole or part) for any purpose without the written consent of Intégral Géotechnique (Wales) Limited. Intégral Géotechnique (Wales) Limited shall not be liable to any third party who does not have such written permission to rely on the report for any losses they may suffer.

Introduction

During the height of Storm Dennis, on 16th February 2020, a large landslip occurred at the site of a former coal tip on the north-eastern valley side of the Rhondda Fach, near Tylorstown. The slip resulted in the deposition of significant landslip materials at the toe of the valley slope, inundating the Rhondda Fach River.

Walters Group (Walters) have been appointed as the earthworks contractor to excavate and remove the slip deposits from the toe of the slope and from the riverbed. Capita are the consulting engineers for the scheme.

Intégral Géotechnique (Wales) Limited (IG) were instructed by Walters to attend site to inspect the make-up of landslip deposits, take representative soil samples for laboratory chemical and geotechnical testing (in accordance with a specification provided by Capita), and to factually report on the findings.

12651 Tylorstown Landslip Page 2

Site Description

The intrusive investigation was undertaken across an area of landslip deposits situated at the toe of the Rhondda Fach valley slope, see Figure 1. At the time of the site works, the Rhondda Fach River had cut a new path through the slip deposits and was flowing.

The deposition of the slip material had resulted in a variable surface across the investigation area.

The north-western and south-eastern areas, although covered by landslip deposits, were generally level. The central area was highly undulating and was characterised by a number of large heaps of more recent slip deposits.

A site plan is presented in Figure 2.

Upon initial inspection, following a period of dry weather, during a site walkover, the site surface appeared relatively firm / desiccated underfoot. However, upon being tracked across with a 5-tonne excavator, following minimal disturbance, the site surface rapidly deteriorated, and the excavator quickly became 'bogged' on numerous occasions.

Site Works

A Geotechnical Engineer from Intégral Géotechnique (Wales) Limited attended site on 20th April 2020.

6 No. trial pits (referenced TP1 to TP6) were excavated across the landslip deposits using a 5-tonne tracked excavator provided by Walters. The locations of the trial pits were communicated by Capita. The approximate locations of the trial pits are indicated on Figure 2 enclosed.

TP1 and TP2 were excavated across the south-eastern area, on generally level ground. TP3 and TP4 were excavated across the central area, on more elevated ground formed by large heaps of slip deposits. TP5 and TP6 were excavated across the north-western area, on generally level ground.

The trial pits were terminated at depths ranging between approximately 1.5m and 3.0m below existing ground level (bgl). The reason for termination was due to significant spalling and collapse of the excavation sides.

Representative soil samples were taken from the trial pits for laboratory chemical testing (including WAC analysis) and geotechnical testing. The soil samples were placed in the appropriate sample containers deemed suitable for the analysis required. Strict protocols were adopted during this process to limit the cross contamination of samples.

The trial pit logs are presented in Appendix A. A selection of trial pit photographs are presented in Appendix B.

Summary of Ground Conditions

The landslip deposits encountered within the trial pits typically comprised a thin crust of desiccated material consisting of (loose) grey silty sandy gravel (between approximately 0.1m and 0.2m thick), over (very loose) dark grey or grey brown variably silty variably sandy fine to coarse gravel with variable cobble and boulder content, or locally soft grey brown sandy gravelly clay/silt with variable cobble and boulder content.

12651 Tylorstown Landslip Page 3

The coarse constituents (i.e. gravel, cobbles and boulders) comprised variable amounts of mudstone, coal and sandstone.

Occasional organic matter, including roots and branches, was noted.

Although no groundwater inflows were noted within the excavations, the arisings were notably wet.

All excavations were unstable. Significant spalling and collapse of the sides was noted, often to ground level.

It was not possible to prove the depth to natural strata within any of the trial pits due to instability of the excavations.

Laboratory Chemical Testing (including WAC analysis)

A total of 7 No. soil samples were taken from the trial pits, stored at the appropriate temperature and dispatched to the UKAS and MCERTS accredited laboratories of i2 Analytical for laboratory chemical testing within 24 hours.

The samples were tested for a range of contaminants, in accordance with a testing specification provided by Capita.

A list of the soil testing carried out is given below:

General Inorganics

рН	Total Sulphur	Water Soluble Nitrate (2:1)
Total Sulphate	Water Soluble Fluoride	Carbonate as CaCO ₃
Water Soluble Sulphate	Ammonium as NH ₄	Calorific Value
Water Soluble Chloride	Loss on Ignition	Asbestos in Soil

Metals and Metalloids

Antimony	Copper	Tin
Arsenic	Iron	Vanadium
Barium	Lead	Zinc
Beryllium	Manganese	Calcium
Boron	Mercury	Magnesium
Cadmium	Molybdenum	Potassium
Chromium (hexavalent)	Nickel	Sodium
Chromium	Selenium	

Organics (PAHs and TPH)

Organics (1 Alls and 11 II)		
Acenaphthene	Benzo(ghi)perylene	Indeno(123cd)pyrene
Acenaphthylene	Benzo(k)fluoranthene	Naphthalene
Anthracene	Chrysene	Phenanthrene
Benzo(a)anthracene	Dibenzo(ah)anthracene	Pyrene
Benzo(a)pyrene	Fluoranthene	
Benzo(b)fluoranthene	Fluorene	

TPH (C6-C40)

12651 Tylorstown Landslip Page 4

Semi Volatile Organic Compounds (SVOCs)

Aniline 2-Nitrophenol 2,6-Dinitrotoluene
Phenol 2,4-Dimethylphenol 2,4-Dinitrotoluene
2-Chlorophenol Bis(2chloroethoxy)methane Dibenzofuran

Pis(2chloroethoxy) at least the state of the s

Bis(2chloroethyl)ether 1,2,4-Trichlorobenzene 4-Chlorophenylphenyl ether

1,3-Dichlorobenzene2,4-DichlorophenolDiethyl phthalate1,2-Dichlorobenzene4-Chloroaniline4-Nitroaniline1,4-DichlorobenzeneHexachlorobutadieneAzobenzene

Bis(2chloroisopropyl)ether 4-Chloro-3-methylphenol Bromophenyl phenyl ether

2-Methylphenol 2,4,6-Trichlorophenol Hexachlorobenzene

Hexachloroethane 2,4,5-Trichlorophenol Carbazole

Nitrobenzene 2-Methylnaphthalene Dibutyl phthalate 4-Methylphenol 2-Chloronaphthalene Anthraquinone

Is phorone Dimethylphthalate Butyl benzyl phthalate

In addition to the above, all 7 No. soil samples were also scheduled for Full Waste Acceptance Criteria (WAC) testing.

The results of the laboratory chemical testing (including the WAC testing results) are presented in Appendix D.

Laboratory Geotechnical Testing

A total of 7No. bulk soil samples were dispatched to the UKAS accredited laboratories of GEO Site and Testing Services (GSTL) Limited for laboratory geotechnical testing, in accordance with a testing specification provided by Capita.

A summary of the laboratory geotechnical testing undertaken on each sample is as follows:

- Moisture content
- Atterberg limits (4-point liquid and plastic limit)
- Particle size distribution (wet sieve method) and sedimentation
- Compaction testing (dry density/moisture content using 4.5kg rammer method in proctor mould)

The laboratory geotechnical testing results are presented in Appendix B.

We trust the above and enclosed are to your satisfaction. However, if you have any queries or require any further information, please do not hesitate to contact us.

Yours faithfully,

Jack Jones

For

Intégral Géotechnique (Wales) Limited

Encl.

Appendix A – Trial Pit Logs

Appendix B – Trial Pit Photographs

Appendix C – Laboratory Chemical Test Results (including WAC analysis)

Appendix D – Laboratory Geotechnical Test Results

Figures

APPENDIX A

TRIAL PIT LOGS

Int Géotech	t égral nique	Intégral House, 7 Beddau Wi Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeotec.com	ay	Project Tylors		andslip	Project No.: 12651	Trial Pit No.: TP1 Sheet 1 of 1
Location:				Client	: Wal	ters Group	Logged By:	Scale
Tylorstowi	n, Rhor	ndda Fach		0			JJ	1:25
Equipment:	5 tonn	e tracked excavator.		Coordir	nates:		Dimensions	2.50m
Date Excava		20/04/2020		Level:			Depth: 50 1.50m C	
Sam Depth (m)	ples & In Type	-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum De		
1.00 1.00	Type B ES	Results		(m AOD)		(Loose) grey slightly silty slightly sandy fine to or Gravel and cobbles are sub-angular to angular of deposits] - dessicated crust. (Very loose) dark grey slightly silty sandy fine to boulder content. Gravel, cobbles and boulders a and sandstone. With occasional organic matter End of Trialpit	parse GRAVEL with mediur of mudstone, coal and sand for mudstone, coal and sand coarse GRAVEL with medi re sub-angular to angular of [landslip deposits] - very we	um cobble and of mudstone, coal
Remarks:	ningted of	1.5m hal due to instabil		Groundwa	ter:	Soils very wet throughout. No groundwater inflows seepage observed.	key: D - Small disturbed samp	-5
Irial pit tern excavation sid		1.5m bgl due to instabil	· -	tability:	Unsta sides.	ble. Continuous spalling and collapse of excavation	B - Bulk disturbed sample	ACC

Intégral House, 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Géotechnique Fax. 029 20862176 mail@integralgeotec.com				Project Tylor s		andslip	Project No.: 12651	Trial Pit No.: TP2 Sheet 1 of 1
Location:				Client	: Wal	ters Group	Logged By:	Scale
Tylorstown, Rhondda Fach							JJ	1:25
Equipment: 5 tonne tracked excavator.				Coordin	nates:		Dimensions	2.50m
Date Excavated: 20/04/2020				Level:			Depth : 50 1.50m 2:	
Sam Depth (m)	ples & In Type	-situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum De		
				(m AOD)	Legend O O O O O O O O O O O O O O O O O O O	(Loose) grey slightly silty slightly sandy fine to or Gravel and cobbles are sub-angular to angular of deposits] - dessicated crust. (Very loose) dark grey silty slightly sandy fine to boulder content. Gravel, cobbles and boulders a and sandstone. With occasional organic matter. End of Trialpit.	parse GRAVEL with mediun of mudstone, coal and sand coarse GRAVEL with medi re sub-angular to angular of [landslip deposits] - very wo	Istone [landslip
Remarks:			[6	Groundwa	ter:	Soils very wet throughout. No groundwater inflows	·/ Key:	-5
Trial pit terminated at 1.5m bgl due to instability of executation sides.				Stability:		seepage observed. ble. Continuous spalling and collapse of excavation	D - Small disturbed samp	ACC

Intégral House, 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeote.com				Project Tylor s		andslip	Project No.: 12651	Trial Pit No.: TP3 Sheet 1 of 1	
Location: Tylorstown, Rhondda Fach				Client	: Wal	ters Group	Logged By: JJ	Scale 1:25	
Equipment: 5 tonne tracked excavator.				Coordin	nates:		Dimensions	2.50m	
Date Excavated: 20/04/2020				Level:			Depth : 507 3.00m 7.		
Sam Depth (m)	Samples & In-situ Testing Depth Depth (m) Type Results (m)				Legend	Stratum D	escription		
1.00 B 1.00 ES					N - 5 N - 5	content. Gravel is fine to coarse sub-angular an			
			3.00			(Very loose) dark grey very silty slightly sandy fi and boulder content. Gravel, cobbles and bould coal and sandstone. With occasional organic management of the same series of the same	ers are sub-angular to angu atter [landslip deposits] - ve	ılar of mudstone,	
Remarks:			10	Groundwa	ter:	Soils very wet throughout. No groundwater inflow:	s/ Key:		
Trial pit terminated at 3.0m bgl due to instability of average tion sides.				seepage observed. Stability: Unstable. Continuous spalling and collapse of excavat sides.			D - Small disturbed sample	ACC	


Intégral House, 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Géotechnique Fax. 029 20862176 mail@integralgeotec.com				Project Tylor :		andslip	Project No.: 12651	Trial Pit No.: TP4 Sheet 1 of 1
Location: Tylorstown, Rhondda Fach				Client	:: Walt	ters Group	Logged By: JJ	Scale 1:25
				Coordii	notos:		Dimensions	
Equipment: 5 tonne tracked excavator.				Coordii	iales.		Depth: E0	2.50m
Date Excavated: 20/04/2020				Level:			1.90m $\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}$	
Samples & In-situ Testing Depth Depth (m) Type Results (m)				Level (m AOD)	Legend	Stratum Do (Loose) slightly silty sandy GRAVEL and COBB		ontent Gravel is
1.00 1.00	B ES		1.40			fine to coarse sub-angular to angular of mudsto boulders are sub-angular of sandstone and mud matter [landslip deposits]. (Very loose) dark grey silty sandy fine to coarse content. Gravel, cobbles and boulders are sub-sandstone. With occasional organic matter [landslip deposits].	ne, coal and sandstone. Co istone. With occasional brain grant of the state of the same of	bbles and nches and organic
1.80 1.80	B ES		1.90			End of Trialp	it at 1.90 m	-2
								- 3
								-4
Trial pit terminated at 1.9m bgl due to instability of excavation sides.				Groundwater: Soils very wet throughout. No groundwater inflows/ seepage observed. Stability: Unstable. Continuous spalling and collapse of excavation sides.			D - Small disturbed sample	ACC

ntégra Castiegate Business Park				Project Tylors		_andslip	Project No.: 12651	Trial Pit No.: TP5 Sheet 1 of 1
Location: Tylorstown, Rhondda Fach				Client	: Wal	ters Group	Logged By: JJ	Scale 1:25
Equipment: 5 tonne tracked excavator.				Coordir	nates:		Dimensions	2.50m
Date Excavated: 20/04/2020				Level:			Depth : 57 1.20m 75	
			Depth (m)	Level (m AOD)	Legend	Stratum De	escription	
Depth (m)	Туре	Results	0.15	(IIIAOB)		(Loose) grey slightly silty slightly sandy fine to concave and cobbles are sub-angular to angular deposits] - dessicated crust. (Very loose) dark grey slightly silty sandy fine to boulder content. Gravel, cobbles and boulders a and sandstone. With occasional organic matter	of mudstone, coal and sand coarse GRAVEL with mediate sub-angular to angular of	stone [landslip
1.00 1.00	B ES		1.20			End of Trialp	t at 1.20 m	-1
								-3
								-4
Remarks:	ain at- 1 ·	4.0m halding to the total		Groundwa	ter:	Soils very wet throughout. No groundwater inflows seepage observed.	Key: D - Small disturbed sampl	
Trial pit terminated at 1.2m bgl due to instability of excavation sides.				tability:	Unsta	ble. Continuous spalling and collapse of excavation	B - Bulk disturbed sample	ACC

Intégral House, 7 Beddau Way Castlegate Business Park Caerphilly CF83 2AX Tel. 029 20807991 Fax. 029 20862176 mail@integralgeote.com				Project Tylor :		_andslip	Project No.: 12651	Trial Pit No.: TP6 Sheet 1 of 1
Location: Tylorstown, Rhondda Fach				Client	:: Wal	ters Group	Logged By: JJ	Scale 1:25
Equipment: 5 tonne tracked excavator.				Coordii	nates:		Dimensions	2.50m
Date Excavated: 20/04/2020				Level:			Depth : E 2.00m 2.	
Samples & In-situ Testing Depth Depth (m) Type Results (m)				Level (m AOD)	Legend	Stratum D	escription	
1.00 1.00	B ES	Results	0.20			(Loose) grey slightly slity slightly sandy fine to or Gravel and cobbles are sub-angular to angular deposits] - dessicated crust. (Very loose) dark grey slightly silty sandy fine to boulder content. Gravel, cobbles and boulders and sandstone. With occasional organic matter	of mudstone, coal and sand coarse GRAVEL with medi are sub-angular to angular of [andslip deposits] - very we	Istone [landslip um cobble and sf mudstone, coal
								-3
								- 4
				Groundwa	ter:	Soils very wet throughout. No groundwater inflow seepage observed.	S/ Key: D - Small disturbed samp	- 5
Trial pit terminated at 2.0m bgl due to instability of excavation sides.				Stability:	Unsta sides	ble. Continuous spalling and collapse of excavatio	B - Bulk disturbed sample	ACC

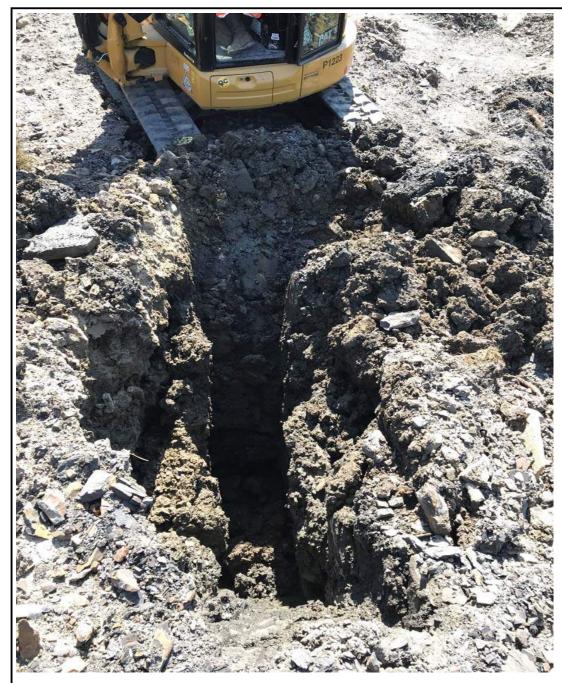
APPENDIX B

TRIAL PIT PHOTOGRAPHS

Appendix B - Trial Pit Photographs (TP1)

Tylorstown Landslip

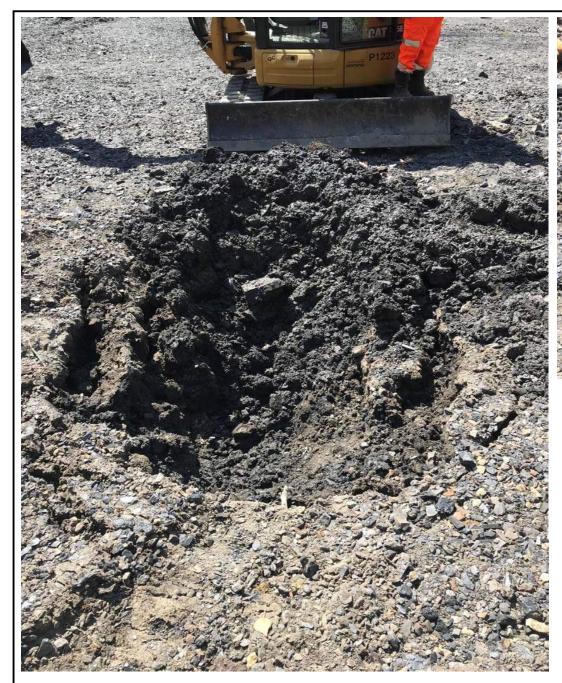
Intégral Géotechnique



Appendix B - Trial Pit Photographs (TP2)

Tylorstown Landslip

Intégral Géotechnique



Appendix B - Trial Pit Photographs (TP3)

Tylorstown Landslip

Intégral Géotechnique

Appendix B - Trial Pit Photographs (TP5)

Tylorstown Landslip

APPENDIX **C** LABORATORY CHEMICAL TEST RESULTS (INCLUDING WAC ANALYSIS)

Jack Jones

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 **f:** 02920862176

e: jack@integralgeotec.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-97228

Replaces Analytical Report Number: 20-97228, issue no. 1

Client references/information amended.

Project / Site name: Tylorstown Samples received on: 23/04/2020

Your job number: 12651 Samples instructed on: 24/04/2020

Your order number: Analysis completed by: 06/05/2020

Report Issue Number: 2 **Report issued on:** 06/05/2020

Samples Analysed: 7 soil samples

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1497741	1497742	1497743	1497744	1497745
Sample Reference				TP1	TP2	TP3	TP4	TP4
Sample Number				None Supplied				
Depth (m)				1.00 20/04/2020	1.00 20/04/2020	1.00 20/04/2020	1.00 20/04/2020	1.80 20/04/2020
Date Sampled Time Taken				1015	1100	1145	1230	1245
Time raken			_	1013	1100	1113	1230	12.13
	_	de L	Accreditation Status					
Analytical Parameter	Units	Limit of detection	edit					
(Soil Analysis)	W	g 약	us					
			ä					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	12	13	8.7	15
Total mass of sample received	kg	0.001	NONE	2.0	2.0	2.0	2.0	2.0
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
A3DC3C03 III 30II	Турс	NA	130 17023	Not detected				
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.7	6.6	6.5	6.6	7.8
Total Sulphate as SO ₄	%	0.005	MCERTS	0.048	0.047	0.081	0.067	0.107
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	~ //	0.00125	MCERTS	0.043	0.10	0.17	0.16	0.37
Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MICERIS	0.043	0.10	U.17	0.10	0.37
Equivalent)	mg/l	1.25	MCERTS	42.8	101	168	159	367
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	6.6	5.2	6.9	4.3	12
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	3.3	2.6	3.4	2.1	6.0
Total Sulphur	%	0.005	MCERTS	0.136	0.113	0.104	0.128	0.158
Water Soluble Fluoride (2:1) Ammonium as NH ₄	mg/kg mg/kg	0.5	NONE MCERTS	< 1.0 < 0.5	< 1.0 < 0.5	< 1.0 2.3	< 1.0 < 0.5	< 1.0 < 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	0.23	< 0.05	< 0.05
Loss on Ignition @ 450°C	%	0.2	MCERTS	9.0	9.3	6.9	8.7	11.5
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Carbonate as CaCO ₃	% M3///-	0.1	NONE	2.0 3.00	2.4 2.78	2.4	2.0	2.4 3.92
Calorific Value	MJ/Kg	0.12	ISO 17025	3.00	2./8	2.09	2.78	3.92
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	1.9	2.9	2.2	2.6	2.8
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	12	11	13	20
Barium (aqua regia extractable)	mg/kg	1	MCERTS	63	62	53	66	77
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.95	1.0	0.88	1.1	1.1
Boron (water soluble) Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	0.5 < 0.2	0.5 < 0.2	0.5 < 0.2	0.6 < 0.2	0.7 < 0.2
Chromium (hexavalent)	mg/kg mg/kg	4	MCERTS MCERTS	< 4.0	< 0.2 < 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	11	11	12	13	13
Copper (aqua regia extractable)	mg/kg	1	MCERTS	33	34	26	34	43
Iron (aqua regia extractable)	mg/kg	40	MCERTS	29000	49000	34000	42000	36000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	19	20	21	28
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	420	920	470	730	690
Mercury (aqua regia extractable)	mg/kg	0.3 0.25	MCERTS	0.3	< 0.3 < 0.25	< 0.3 < 0.25	< 0.3 < 0.25	0.4 0.44
Molybdenum (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 0.25 38	< 0.25 36	< 0.25 33	< 0.25 40	40
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	2.5	< 1.0	< 1.0	2.3	2.2
Tin (aqua regia extractable)	mg/kg	1	MCERTS	5.6	< 1.0	< 1.0	< 1.0	1.2
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	16	17	18	18	20
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	70	74	66	80	88
Calairum (agus ugais tt-t-l-)		20	100 1===	1200	1400	1200	1000	2200
Calcium (aqua regia extractable) Magnesium (agua regia extractable)	mg/kg	20	ISO 17025 ISO 17025	1300	1400 2000	1200 2000	1600 2100	2300 2200
Magnesium (aqua regia extractable) Magnesium (water soluble)	mg/kg mg/kg	5	NONE	1800 32	2000 61	100	100	2200
Magnesium (leachate equivalent)	mg/l	2.5	NONE	16	31	52	52	100
Potassium (aqua regia extractable)	mg/kg	20	ISO 17025	1300	1500	1100	1400	1500
Sodium (aqua regia extractable)	mg/kg	20	ISO 17025	140	170	150	160	160
Petroleum Hydrocarbons								
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TDL CC CAO	ma - #	10	NONE	z 10	- 10	. 10	- 10	< 10
TPH C6 - C40	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10

Lab Sample Number				1497741	1497742	1497743	1497744	1497745
Sample Reference				TP1	TP2	TP3	TP4	TP4
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	1.00	1.00	1.00	1.80
Date Sampled				20/04/2020	20/04/2020	20/04/2020	20/04/2020	20/04/2020
Time Taken				1015	1100	1145	1230	1245
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Lab Sample Number				1497741	1497742	1497743	1497744	1497745
Sample Reference				TP1	TP2	TP3	TP4	TP4
Sample Number				None Supplied				
Depth (m)				1.00	1.00	1.00	1.00	1.80
Date Sampled				20/04/2020	20/04/2020	20/04/2020	20/04/2020	20/04/2020
Time Taken			1	1015	1100	1145	1230	1245
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2	< 0.1 < 0.2
Bis(2-chloroisopropyl)ether	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dimethylphenol Bis(2-chloroethoxy)methane	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3 < 0.3	< 0.3 < 0.3	< 0.3 < 0.3	< 0.3 < 0.3	< 0.3 < 0.3
1,2,4-Trichlorobenzene	mg/kg mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	1.7	0.87	0.62	0.96	1.0
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol 2-Methylnaphthalene	mg/kg mg/kg	0.2	MCERTS NONE	< 0.2 < 0.1	< 0.2 < 0.1	< 0.2 < 0.1	< 0.2 < 0.1	< 0.2 < 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
4-Chlorophenyl phenyl ether Diethyl phthalate	mg/kg mg/kg	0.3	ISO 17025 MCERTS	< 0.3 < 0.2	< 0.3 < 0.2	< 0.3 < 0.2	< 0.3 < 0.2	< 0.3 < 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene Carbazole	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.3	< 0.05 < 0.3	< 0.05 < 0.3	< 0.05 < 0.3	< 0.05 < 0.3
Dibutyl phthalate	mg/kg mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Anthraquinone	mg/kg	0.2	MCERTS	< 0.3	< 0.2	< 0.3	< 0.3	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Danie (I.) fl. caranthana			MOFETT					
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg mg/kg	0.05 0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	mg/kg	0.05						

							_	_
Lab Sample Number				1497746	1497747			
Sample Reference Sample Number				TP5 None Supplied	TP6 None Supplied		1	
Depth (m)				1.00	1.00			
Date Sampled				20/04/2020	20/04/2020			
Time Taken				1330	1415			
			>					
Annalistical Barrers store	_	Li	Accreditation Status					
Analytical Parameter	Units	Limit of detection	tat edit					
(Soil Analysis)	S	of	atio					
			š					
Stone Content	%	0.1	NONE	< 0.1	< 0.1			
Moisture Content	%	N/A	NONE	11	10			
Total mass of sample received	kg	0.001	NONE	2.0	2.0			
	1 _							T
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected			
Conoral Ingrapaics								
General Inorganics pH - Automated	pH Units	N/A	MCERTS	8.0	8.0			I
Total Sulphate as SO ₄	%	0.005	MCERTS	0.094	0.087			
Water Soluble SO4 16hr extraction (2:1 Leachate								
Equivalent)	g/l	0.00125	MCERTS	0.31	0.37		Į	
Water Soluble SO4 16hr extraction (2:1 Leachate		1.25	MCFDTO	240	272			
Equivalent) Water Soluble Chloride (2:1)	mg/l	1.25	MCERTS	310 4.9	372 7.3		1	1
Water Soluble Chloride (2:1) Water Soluble Chloride (2:1) (leachate equivalent)	mg/kg mg/l	0.5	MCERTS MCERTS	4.9 2.4	7.3 3.7		1	
Total Sulphur	mg/i %	0.005	MCERTS	0.267	0.104		1	
Water Soluble Fluoride (2:1)	mg/kg	1	NONE	2.9	1.3		1	1
Ammonium as NH ₄	mg/kg	0.5	MCERTS	< 0.5	< 0.5			
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05			
Loss on Ignition @ 450°C	%	0.2	MCERTS	13.3	7.2			
				2.0	2.0			
Water Soluble Nitrate (2:1) as N (leachate equivalent) Carbonate as CaCO3	mg/l %	0.1	NONE NONE	< 2.0 2.0	< 2.0 3.2			
Calorific Value	MJ/Kg	0.12	ISO 17025	4.51	2.24			
Caloffic Value	MJ/Kg	0.12	150 17025	4.51	2.24		<u> </u>	<u> </u>
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.5	2.1			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	9.6			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	86	130			
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	0.97			
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.7			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0			
Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	6.4 55	8.8 43			
Iron (aqua regia extractable)	mg/kg mg/kg	40	MCERTS	25000	24000			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	28	24000		1	1
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	400	410		Ì	
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		Î	
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.51	< 0.25	-		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	45	36			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	2.8	1.8		.	
Tin (aqua regia extractable)	mg/kg	1	MCERTS	1.0	< 1.0		.	
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	14	15		1	<u> </u>
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	85	83		J	I
Calcium (aqua regia extractable)	mg/kg	20	ISO 17025	2300	3000			
Magnesium (aqua regia extractable)	mg/kg mg/kg	20	ISO 17025	1600	1600		1	
Magnesium (water soluble)	mg/kg	5	NONE	170	200		Ì	İ
Magnesium (leachate equivalent)	mg/l	2.5	NONE	83	100			
Potassium (aqua regia extractable)	mg/kg	20	ISO 17025	2000	1500			
Sodium (aqua regia extractable)	mg/kg	20	ISO 17025	160	170			
								<u> </u>
Petroleum Hydrocarbons								
TOU 010 010							ı	1
TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10		<u> </u>	<u> </u>
TDH2 (CC C10)	ma = N	0.1	MCEDIC	- 0 1	-01		I	
TPH2 (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		ı	1
TPH C6 - C40	mg/kg	10	NONE	< 10	< 10		I	Ι
55 610	mg/kg	10	HONL	` 10	· 10		1	

Lab Sample Number				1497746	1497747		
Sample Reference				TP5	TP6		
Sample Number				None Supplied	None Supplied		
Depth (m)				1.00	1.00		
Date Sampled				20/04/2020	20/04/2020		
Time Taken				1330	1415		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				

Lab Sample Number Sample Reference Sample Number Depth (m) Date Sampled				1497746 TP5	1497747 TP6		
Sample Number Depth (m)				195			
Depth (m)				None Supplied			
				1.00	None Supplied 1.00		
				20/04/2020	20/04/2020		
Time Taken				1330	1415		
Time Taken				1330	1413		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
<u> </u>			n				
SVOCs						_	
Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1		
Phenol 3. Chlorophonol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2		
2-Chlorophenol Bis(2-chloroethyl)ether	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.1 < 0.2	< 0.1 < 0.2		
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
1,2-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.1	< 0.1		
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2		
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Naphthalene	mg/kg	0.05	MCERTS	1.6	1.3		
2,4-Dichlorophenol 4-Chloroaniline	mg/kg	0.3	MCERTS NONE	< 0.3 < 0.1	< 0.3 < 0.1		
Hexachlorobutadiene	mg/kg mg/kg	0.1	MCERTS	< 0.1	< 0.1		
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	< 0.1		
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	
4-Chlorophenyl phenyl ether Diethyl phthalate	mg/kg	0.3	ISO 17025	< 0.3 < 0.2	< 0.3 < 0.2	-	
4-Nitroaniline	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2	< 0.2	 	
Fluorene	mg/kg	0.05	MCERTS	< 0.2	< 0.25		
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	i	
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Carbazole	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	ļ	
Pyrene Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	-	
Benzo(a)anthracene Chrysene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	< 0.05 < 0.05	 	
Cnrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05 < 0.05	 	
Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	i	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1497741	TP1	None Supplied	1.00	Grey clay and sand with vegetation.
1497742	TP2	None Supplied	1.00	Grey clay with gravel.
1497743	TP3	None Supplied	1.00	Grey clay with gravel.
1497744	TP4	None Supplied	1.00	Grey sand with gravel.
1497745	TP4	None Supplied	1.80	Grey clay with gravel and vegetation.
1497746	TP5	None Supplied	1.00	Grey sandy gravel.
1497747	TP6	None Supplied	1.00	Grey clay with gravel and vegetation.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Calorific Value of soil	Determination of the calorific value of soil by combustion in a controlled environment.	Calorific Value of Soil by Bomb Calorimeter	L013-PL	D	ISO 17025
Carbonate in soil	Determination of Carbonate by extraction with 1M HCl followed by titration with 1M NaOH.	In house method.	L034-PL	D	NONE
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	ISO 17025
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Fluoride, water soluble, in soil	Determination of fluoride in soil by water extraction followed by 1:1 ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	W	MCERTS
TPH C6 - C40 (soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method.	L076-PL	W	NONE
TPH2 (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Jack Jones

Integral Geotechnique Integral House 7 Beddau Way Castlegate Business Park CF83 2AX

t: 02920807991 **f:** 02920862176

e: jack@integralgeotec.com

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 20-97229

Project / Site name: Tylorstown Samples received on: 23/04/2020

Your job number: 12651 Samples instructed on: 24/04/2020

Your order number: Analysis completed by: 04/05/2020

Report Issue Number: 1 **Report issued on:** 04/05/2020

Samples Analysed: 7 10:1 WAC samples

Signed: Va. Crerwins Ka

Agnieszka Czerwińska

Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical		20-97229				
report no:		20-9/229		+		
				Client:	INTEGGEO	
				Circita	INTEGGEO	
Location		Tylorstown		1		
		7.0.00		Landfill	Waste Acceptan	ce Criteria
Lab Reference (Sample Number)		1497748 / 14977	749		Limits	
Sampling Date		20/04/2020			Stable Non-	
Sample ID		TP1			reactive	
Depth (m)		1.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfi
Solid Waste Analysis						
TOC (%)**	2.1			3%	5%	6%
Loss on Ignition (%) **	9.0					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) **	< 0.007			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	< 0.9			100		
pH (units)**	8.3				>6	
Acid Neutralisation Capacity (mol / kg)	4.4				To be evaluated	To be evaluate
Eluate Analysis	10:1		10:1	Limit value	es for compliance l	eaching test
				using BS FN	I 12457-2 at L/S 10) l/ka (ma/ka)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using bs En	12137 2 40 2/3 10	, i,kg (iiig/kg)
Arsenic *	< 0.0011		< 0.0110	0.5	2	25
Barium *	0.0074		0.0635	20	100	300
Cadmium *	< 0.0001		< 0.0008	0.04	1	5
Chromium *	0.0005		0.0042	0.5	10	70
Copper *	0.010		0.088	2	50	100
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2
Molybdenum *	0.0004		< 0.0040	0.5	10	30
Nickel *	0.0025		0.022	0.4	10	40
Lead *	< 0.0010		< 0.010	0.5	10	50
Antimony *	< 0.0017		< 0.017	0.06	0.7	5
Selenium *	< 0.0040		< 0.040	0.1	0.5	7
Zinc *	0.042		0.36	4	50	200
Chloride *	0.75		6.4	800	15000	25000
Fluoride	0.25		2.2	10	150	500
Sulphate *	9.6		82	1000	20000	50000
TDS*	25		220	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-
DOC	8.59		73.6	500	800	1000
Leach Test Information				+		
Stone Content (%)	< 0.1					
Sample Mass (kg)	2.0					
Dry Matter (%)	86					
Moisture (%)	14					-
				1		
				1		
	i l		1	1	1	1

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	ixesuits				1		
Report No:		20-9	97229				
					Client:	INTEGGEO	
					Chefft.	INTEGGEO	
Location		Tylo	rstown				
					Landfill \	Waste Acceptance	e Criteria
Lab Reference (Sample Number)		1497750	/ 1497751			Limits	
Sampling Date		20/0	4/2020			Stable Non-	
Sample ID		T	P2		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		1	.00		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	2.2				3%	5%	6%
Loss on Ignition (%) **	9.3						10%
BTEX (μg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.9				100		
pH (units)**	8.6					>6	
Acid Neutralisation Capacity (mol / kg)	13					To be evaluated	To be evaluate
Eluate Analysis	10:1			10:1	Limit value	s for compliance le	eaching test
(PC EN 124E7 2 proparation utilizing and over and leaching					using BS EN	12457-2 at L/S 10	I/kg (mg/kg)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg			
Arsenic *	0.0043			0.0371	0.5	2	25
Barium *	0.0072			0.0618	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0013			0.011	0.5	10	70
Copper *	0.014			0.12	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0009		1	0.0076	0.5	10	30
Nickel *	0.0025		+	0.022	0.4	10	40
Lead *	< 0.0010		1	< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium * Zinc *	< 0.0040 0.014			< 0.040 0.12	0.1 4	0.5 50	7 200
Chloride *	0.86		+	7.4	800	15000	25000
Fluoride	0.20		1	1.7	10	15000	500
Sulphate *	5.0			43	1000	20000	50000
TDS*	19			170	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	10.7			92.7	500	800	1000
Leach Test Information	+						
Stone Content (%)	< 0.1						
Sample Mass (kg)	2.0						
Dry Matter (%)	88						
Moisture (%)	12						
Results are expressed on a dry weight basis, after correction for mo						ed (liquid eluate and	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20-	97229				
Report No:		20-	37223				
					Client:	INTEGGEO	
Location		Tylo	rstown				
Lab Reference (Sample Number)		4 40775	/ / / / / / / / / / / / / / / / / / / /		Landfill	Waste Acceptan	e Criteria
			/ 1497753			Limits Stable Non-	
Sampling Date			4/2020				
Sample ID			ГР3		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		;	1.00		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	3.2				3%	5%	6%
Loss on Ignition (%) **	6.9						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1 500		
Mineral Oil (mg/kg)	< 10			+	500		
Total PAH (WAC-17) (mg/kg)	< 0.9 7.0			+	100	>6	
pH (units)**							
Acid Neutralisation Capacity (mol / kg)	0.00					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit valu	es for compliance l	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)
Arsenic *	0.0016			0.0135	0.5	2	25
Barium *	0.0010			0.0337	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0011			0.0093	0.5	10	70
Copper *	0.013			0.11	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0005			0.0044	0.5	10	30
Nickel *	0.0015			0.013	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.015			0.13	4	50	200
Chloride *	0.82			7.0	800	15000	25000
Fluoride	0.10			0.90	10	150	500
Sulphate *	7.4			63	1000	20000	50000
TDS* Phenol Index (Monhydric Phenols) *	19 < 0.010		-	160 < 0.10	4000 1	60000	100000
Prierioi Iridex (Morinyaric Prieriois) "	< 0.010			< 0.10	1	-	-
DOC	10.9			93.2	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1		<u> </u>				
Sample Mass (kg)	2.0						
Dry Matter (%)	87	-					
Moisture (%)	13		<u> </u>				
Results are expressed on a dry weight basis, after correction for mo	isture content whe	re applicable.			*= UKAS accredi	ted (liquid eluate an	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-972	229				
					Client:	INTEGGEO	
					Cilett.	INTEGGEO	
Location		Tylorst	own				
Lab Reference (Sample Number)		1407754 / 1	407755		Landfill	Waste Acceptano	ce Criteria
		1497754 / 1				Limits	
Sampling Date		20/04/2 TP4				Stable Non- reactive	
Sample ID		1174	1		Inert Waste	HAZARDOUS	Hazardous
Depth (m)	1.00			Landfill	waste in non- hazardous Landfill	Waste Landfi	
Solid Waste Analysis							
ГОС (%)**	3.2				3%	5%	6%
oss on Ignition (%) **	8.7						10%
BTEX (μg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1 500		
Mineral Oil (mg/kg) Fotal PAH (WAC-17) (mg/kg)	< 10 < 0.9				500 100		
otal PAH (WAC-17) (Hig/kg) oH (units)**	6.5					>6	
Acid Neutralisation Capacity (mol / kg)	-9.5					To be evaluated	To be evaluat
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN 12457-2 at L/S 10 l/kg (mg/kg		
procedure)	mg/l			mg/kg			
Arsenic *	0.0013			0.0117	0.5	2	25
Barium *	0.0052			0.0468	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	< 0.0004			< 0.0040	0.5	10	70
Copper *	0.0066			0.059	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Vickel *	0.0003			0.0031	0.4	10	40
_ead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5 7
Selenium * Zinc *	< 0.0040 0.0044			< 0.040 0.040	0.1 4	0.5 50	200
Chloride *	0.50			4.4	800	15000	25000
Fluoride	0.16			1.4	10	150	500
Sulphate *	5.5			49	1000	20000	50000
rds*	17			150	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
poc	7.45			66.7	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	2.0						
Ory Matter (%)	91						
Moisture (%)	8.7						
					1		
	isture content where				<u> </u>	ed (liquid eluate and	L

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-97	229				
					Client:	INTEGGEO	
					Cilett.	INTEGGEO	
Location		Tylors	town				
Lab Reference (Sample Number)		1407756 /	1407757		Landfill	Waste Acceptant	e Criteria
		1497756 /				Limits	
Sampling Date Sample ID		20/04/ TP			-	Stable Non- reactive	
Sample 10			T		Inert Waste	HAZARDOUS	Hazardous
Depth (m)	1.80			Landfill	waste in non- hazardous Landfill	Waste Landfi	
Solid Waste Analysis							
TOC (%)**	2.9				3%	5%	6%
oss on Ignition (%) **	11.5						10%
BTEX (μg/kg) **	< 10			1	6000		
Sum of PCBs (mg/kg) **	< 0.007			 	1 500		
Mineral Oil (mg/kg) Fotal PAH (WAC-17) (mg/kg)	< 10 < 0.9			+	500 100		
otal PAH (WAC-17) (Hig/kg) oH (units)**	7.1			 		>6	
	0.00					To be evaluated	To be evaluate
Acid Neutralisation Capacity (mol / kg)	0.00						
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN 12457-2 at L/S 10 l/kg (mg/kg		
procedure)	mg/l			mg/kg			
Arsenic *	< 0.0011			< 0.0110	0.5	2	25
Barium *	0.0029			0.0248	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0005			0.0041	0.5	10	70
Copper *	0.0081			0.069	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0011			0.0095	0.5	10	30
Vickel *	0.0008			0.0066	0.4	10	40
.ead *	< 0.0010			< 0.010	0.5	0.7	50 5
Antimony * Selenium *	< 0.0017			< 0.017 < 0.040	0.06	0.7	7
Zinc *	< 0.0040 0.0082			0.040	4	50	200
Chloride *	0.75			6.4	800	15000	25000
Fluoride	0.17			1.5	10	150	500
Sulphate *	6.3			54	1000	20000	50000
TDS*	18			160	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
poc	9.76			83.6	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	2.0						
Ory Matter (%)	85						
Moisture (%)	15						
						-	
				 	 		
					l .		alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		20-9	7229				
					Client:	INTEGGEO	
Location		Tulo					
Location	Tylorstown					Waste Acceptance	e Criteria
Lab Reference (Sample Number)		1497758	/ 1497759			Limits	
Sampling Date			1/2020			Stable Non- reactive	
Sample ID		Т	P5		Inert Waste	HAZARDOUS	Hazardous
Depth (m)	1.00				Landfill	waste in non- hazardous Landfill	Waste Landf
Solid Waste Analysis							
ГОС (%)**	1.8				3%	5%	6%
oss on Ignition (%) **	13.3						10%
BTEX (μg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Fotal PAH (WAC-17) (mg/kg)	< 0.9				100		
oH (units)**	7.0					>6	
Acid Neutralisation Capacity (mol / kg)	0.00					To be evaluated	To be evaluat
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
Arsenic *	< 0.0011			< 0.0110	0.5	2	25
Barium *	0.0052			0.0466	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	< 0.0004			< 0.0040	0.5	10	70
Copper *	0.0064			0.058	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0005			0.0048	0.5	10	30
Nickel *	0.0011			0.010	0.4	10	40
_ead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0064			0.058	4	50	200
Chloride *	0.59		-	5.3	800	15000	25000
Fluoride Sulphate *	0.28 7.6			2.5 68	10 1000	150 20000	500 50000
TDS*	24			210	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	8.02			72.3	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	2.0			+		1	
Ory Matter (%)	89 11						
Moisture (%)	11						
						ed (liquid eluate and	<u> </u>

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		20	-97229				
					Client:	INTEGGEO	
Location		Tyle	orstown				
Lab Reference (Sample Number)		149776	0 / 1497761		Landfill	Waste Acceptant	e Criteria
Compline Date			04/2020			Limits Stable Non-	
Sampling Date Sample ID			TP6		_	reactive	
Sumple 15					Inert Waste	HAZARDOUS	Hazardous
Depth (m)			1.00		Landfill	waste in non- hazardous Landfill	Waste Landfi
Solid Waste Analysis							
TOC (%)**	1.6				3%	5%	6%
Loss on Ignition (%) **	7.2						10%
BTEX (μg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.9				100		
pH (units)**	7.3					>6	
Acid Neutralisation Capacity (mol / kg)	12					To be evaluated	To be evaluate
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN	12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	< 0.0011			< 0.0110	0.5	2	25
Barium *	0.0062			0.0533	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0007			0.0059	0.5	10	70
Copper *	0.011			0.096	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0008			0.0072	0.5	10	30
Nickel *	0.0056			0.049	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.031			0.27	4	50	200
Chloride *	0.62		+	5.4	800	15000	25000
Fluoride	0.22		+	1.9	10	150	500
Sulphate * TDS*	7.3			63 190	1000 4000	20000 60000	50000 100000
Phenol Index (Monhydric Phenols) *	< 0.010		+	< 0.10	1	-	100000
,							
DOC	8.87			76.8	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	2.0						
Dry Matter (%)	90						
Moisture (%)	10						
Results are expressed on a dry weight basis, after correction for mo	sisture content whe	re annlicable			*= LIKAS accredit	ed (liquid eluate and	alvsis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1497748	TP1	None Supplied	1.00	Grey clay and sand with vegetation.
1497750	TP2	None Supplied	1.00	Grey clay with gravel.
1497752	TP3	None Supplied	1.00	Grey clay with gravel.
1497754	TP4	None Supplied	1.00	Grey sand with gravel.
1497756	TP4	None Supplied	1.80	Grey clay with gravel and vegetation.
1497758	TP5	None Supplied	1.00	Grey sandy gravel.**
1497760	TP6	None Supplied	1.00	Grey clay with gravel and vegetation.

^{**} Non MCERTS Matrix

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Iss No 20-97229-1 Tylorstown 12651

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX **D**

LABORATORY GEOTECHNICAL TEST RESULTS

Contract Number: 48483

Client Ref: Report Date: 12-05-2020

Client PO:

Client Integral Geotechnique (Wales) Limited
7 Beddau Way
Castlegate Business Park
Caerphilly
Cardiff

Contract Title: **Tylerstown**For the attention of: **Jack Jones**

CF83 2AX

Date Received: **21-04-2020**Date Completed: **12-05-2020**

Test Description	Qty
Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	7
4 Point Liquid & Plastic Limit BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	7
PSD Wet Sieve method BS 1377:1990 - Part 2: 9.2 - * UKAS	7
PSD: Sedimentation by pipette carried out with Wet Sieve (Wet Sieve must also be selected) BS 1377:1990 - Part 2: 9.4 - * UKAS	1
Dry Den/MC (4.5kg Rammer Method 1 Litre Mould) BS 1377:1990 - Part 4: 3.5 - * UKAS	7
Disposal of samples for job	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

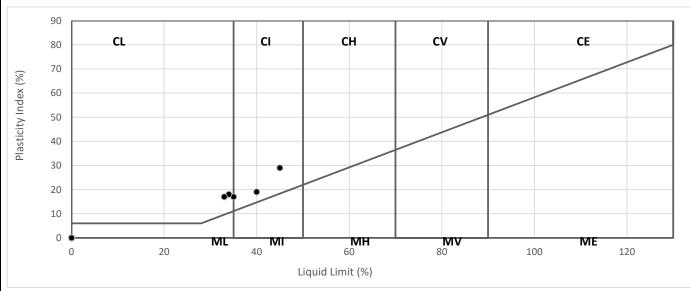
Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) Sean Penn (Administrative/Accounts Assistant) - Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	48483	
Site Name	Tylerstown	
Date Tested	30/04/2020	
	DESCRIPTIONS	

Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		Descriptions
TP1		В	1.00	-	Grey slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL
TP2		В	1.00	-	Grey silty/clayey fine to coarse sandy fine to coarse GRAVEL
TP3		В	1.00	-	Greyish brown silty clayey fine to coarse gravelly fine to coarse SAND
TP4		В	1.00	-	Grey slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL
TP4		В	1.80	-	Grey silty/clayey fine to coarse sandy fine to coarse GRAVEL
TP5		В	1.00	-	Grey slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL
TP6		В	1.00	-	Grey slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
	1			-	
	1			-	

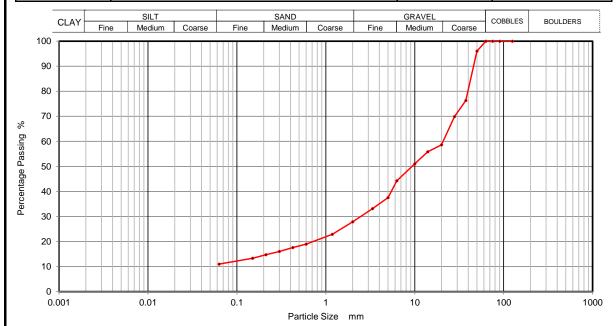
Operators	Checked	12/05/2020	Wayne Honey (Administrative/Quality Assistant)
Luke Williams	Approved	12/05/2020	Paul Evans (Quality/Technical Manager)



GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	48483	
Project Location	Tylerstown	
Date Tested	30/04/2020	

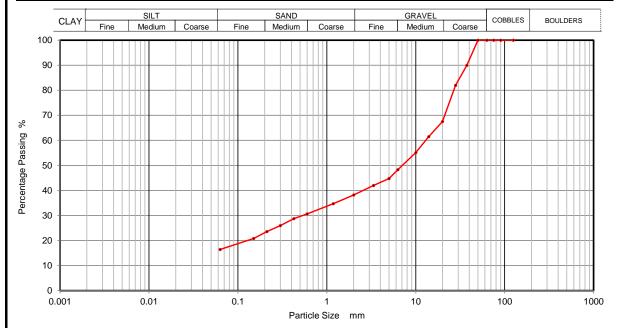
Sample/Hole Reference	Sample Number	Sample Type	D	epth (r	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
TP1		В	1.00	-		16	35	18	17	18	CL/I Low/Inter. Plasticity
TP2		В	1.00			16	45	16	29	29	CI Intermediate Plasticity
TP3		В	1.00			15	34	16	18	56	CL Low Plasticity
TP4		В	1.00	-		8.0		NP		18	
TP4		В	1.80	-		20	40	21	19	23	CI Intermediate Plasticity
TP5		В	1.00	-		10		NP		14	
TP6		В	1.00	-		14	33	16	17	14	CL Low Plasticity
				-							
				-							
				•							
				•							
				•							
				ı							
				ı							
				-							

Symbols: NP : Non Plastic # : Liquid Limit and Plastic Limit Wet Sieved


PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	12/05/2020	Wayne Honey (Administrative/Quality Assistant)
Luke Williams	Approved	12/05/2020	Paul Evans (Quality/Technical Manager)

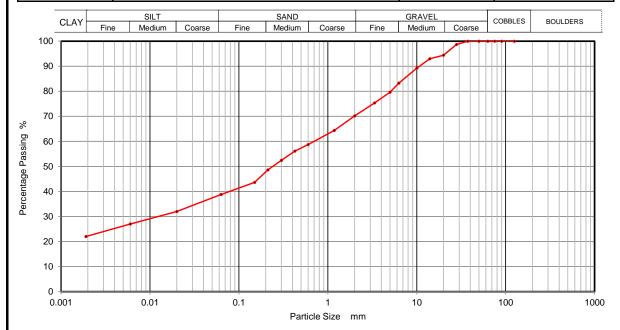
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48483
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP1
Site Name	Tylerstown	Sample No.	
Call Danadation	Grey slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	1.00
Soil Description	Grey singriting singrolayey line to coarse sarriay line to coarse GNAVEL	Depth Base	
Date Tested	05/05/2020	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	76		
28	70		
20	59		
14	56		
10	51		
6.3	44		
5	38		
3.35	33		
2	28		
1.18	23		
0.6	19		
0.425	18		
0.3	16		<u> </u>
0.212	15		
0.15	13		
0.063	11		

Sample Proportions	% dry mass		
Cobbles	0		
Gravel	72		
Sand	17		
Silt and Clay	11		

Operators	Checked	11/05/2020	Wayne Honey	W. Honey
RO/MH	Approved	12/05/2020	Paul Evans	DP Grons

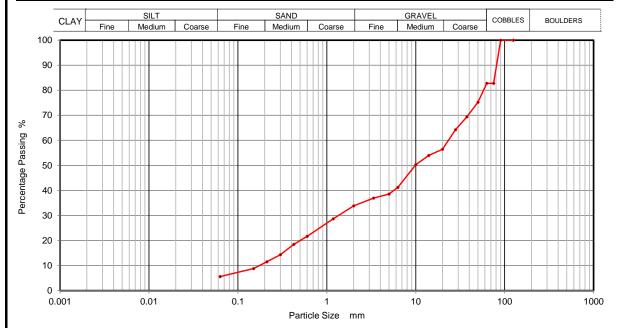
CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		48483
GOIL			TP2
Site Name	Tylerstown	Sample No.	
Oall Dan winting	Grey silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	1.00
Soil Description	Grey Silly/clayey line to coalse Salidy line to coalse GNAVEL	Depth Base	
Date Tested	05/05/2020	Sample Type	В


Sie	ving	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	90			
28	82			
20	67			
14	61			
10	55			
6.3	48			
5	45			
3.35	42			
2	38			
1.18	35			
0.6	31			
0.425	29			
0.3	26	_	<u> </u>	
0.212	24			
0.15	21			
0.063	16			

Sample Proportions	% dry mass
Cobbles	0
Gravel	62
Sand	22
Silt and Clay	16

Operators	Checked	11/05/2020	Wayne Honey	W. Honey
RO/MH	Approved	12/05/2020	Paul Evans	DP Grons

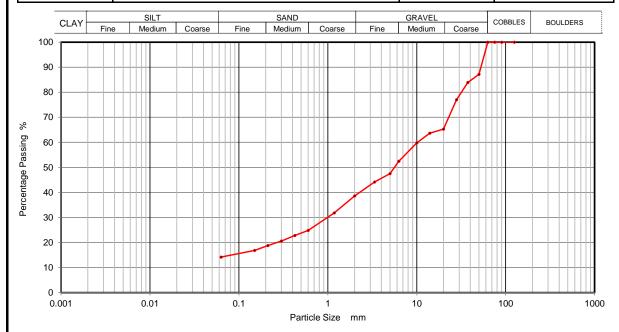
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48483
USIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	TP3
Site Name	Tylerstown	Sample No.	
Soil Description	Greyish brown silty clayey fine to coarse gravelly fine to coarse	Depth Top	1.00
	SAND	Depth Base	
Date Tested	05/05/2020	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	32
90	100	0.0060	27
75	100	0.0020	22
63	100		
50	100		
37.5	100		
28	99		
20	94		
14	93		
10	89		
6.3	83		
5	80		
3.35	75		
2	70		
1.18	64		
0.6	59		
0.425	56		
0.3	52		
0.212	49		
0.15	44		
0.063	39		

Sample Proportions	% dry mass		
Cobbles	0		
Gravel	30		
Sand	31		
Silt	17		
Clay	22		

Operators	Checked	11/05/2020	Wayne Honey	W. Honey
RO/MH	Approved	12/05/2020	Paul Evans	DP Grons

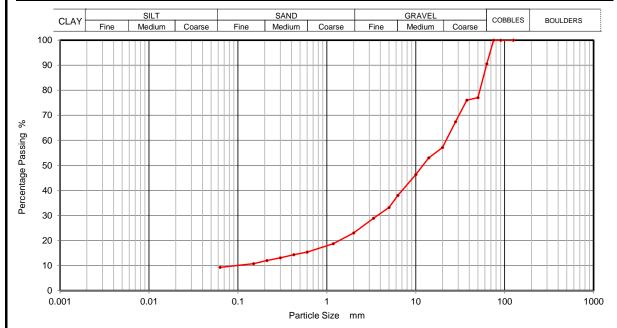
CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	48483
GOIL		Borehole/Pit No.	TP4
Site Name	Tylerstown	Sample No.	
Soil Description	Grey slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	1.00
		Depth Base	
Date Tested	05/05/2020	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	83		
63	83		
50	75		
37.5	69		
28	64		
20	56		
14	54		
10	50		
6.3	41		
5	39		
3.35	37		
2	34		
1.18	29		
0.6	22		
0.425	18		
0.3	14		
0.212	12		
0.15	9		
0.063	6		

Sample Proportions	% dry mass	
Cobbles	17	
Gravel	49	
Sand	28	
Silt and Clay	6	

Operators	Checked	11/05/2020	Wayne Honey	W. Honey
RO/MH	Approved	12/05/2020	Paul Evans	DP Grons

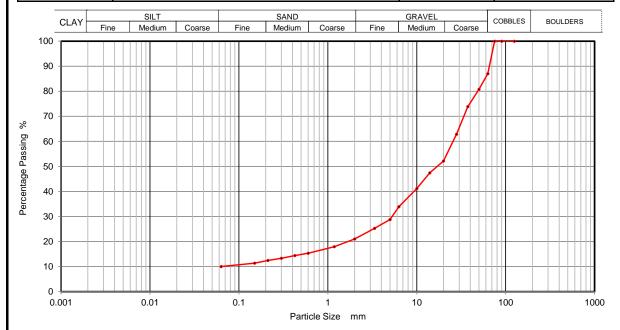
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48483
USIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP4
Site Name	Tylerstown	Sample No.	
Soil Description	Grey silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	1.80
		Depth Base	
Date Tested	05/05/2020	Sample Type	В


Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	87		
37.5	84		
28	77		
20	65		
14	64		
10	60		
6.3	52		
5	48		
3.35	44		
2	39		
1.18	32		
0.6	25		
0.425	23		
0.3	21		•
0.212	19		
0.15	17		
0.063	14		

Sample Proportions	% dry mass	
Cobbles 0		
Gravel	61	
Sand	25	
Silt and Clay	14	

Operators	Checked	11/05/2020	Wayne Honey	W. Honey
RO/MH	Approved	12/05/2020	Paul Evans	8 P Grans

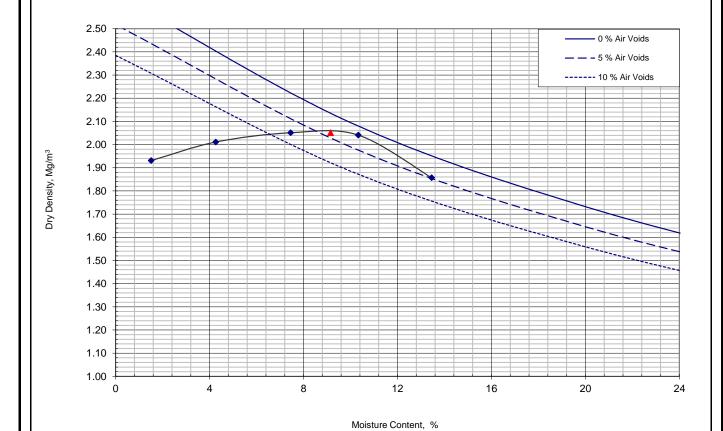
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	48483
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP5
Site Name	Tylerstown	Sample No.	
Soil Description	Grey slightly clayey/silty fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	1.00
		Depth Base	
Date Tested	05/05/2020	Sample Type	В


Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	91		
50	77		
37.5	76		
28	67		
20	57		
14	53		
10	46		
6.3	38		
5	33		
3.35	29		
2	23		
1.18	19		
0.6	15		
0.425	14		
0.3	13		
0.212	12		
0.15	11		
0.063	9		

Sample Proportions	% dry mass
Cobbles	9
Gravel	68
Sand	14
Silt and Clay	9

Operators	Checked	11/05/2020	Wayne Honey	W. Honey
RO/MH	Approved	12/05/2020	Paul Evans	DP Grons

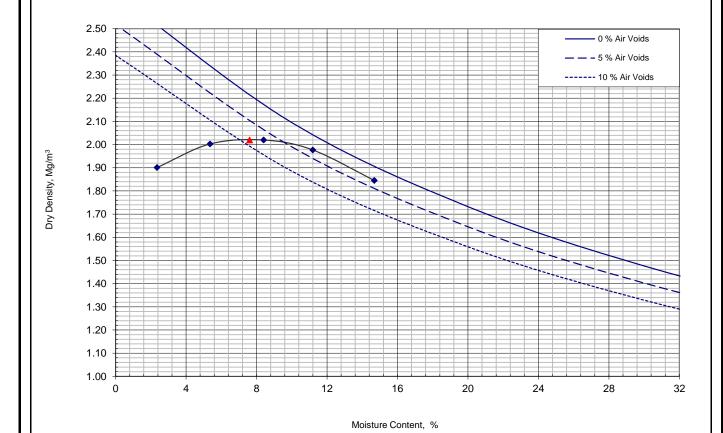
GSTL	PARTICLE SIZE DISTRIBUTION	Contract Number	48483
	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TP6
Site Name	Tylerstown	Sample No.	
Soil Description	Grey slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	1.00
	(with cobbles)	Depth Base	
Date Tested	05/05/2020	Sample Type	В


Sie	ving	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
125	100						
90	100						
75	100						
63	87						
50	81						
37.5	74						
28	63						
20	52						
14	47						
10	41						
6.3	34						
5	29						
3.35	25						
2	21						
1.18	18						
0.6	15						
0.425	14						
0.3	13		_				
0.212	12						
0.15	11						
0.063	10						

Sample Proportions % dry mass			
Cobbles	13		
Gravel	66		
Sand	11		
Silt and Clay	10		

Operators	Checked	11/05/2020	Wayne Honey	W. Honey
RO/MH	Approved	12/05/2020	Paul Evans	DP Grons

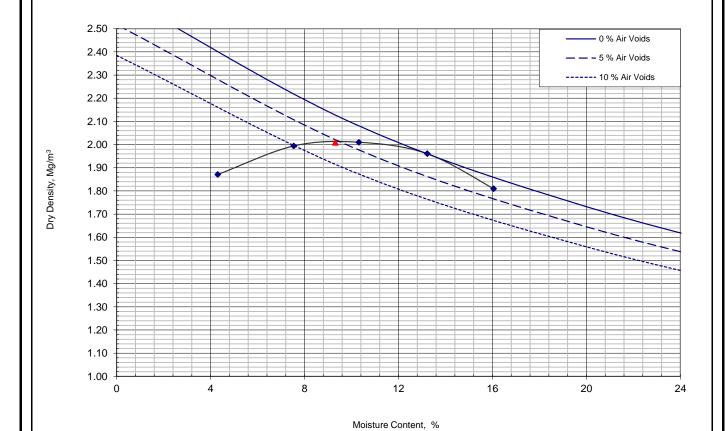
CCTI	Dry Density / Moisture Content Relationship	Contract Number	48483
GOIL	BS 1377:Part 4:1990	Borehole / Pit No	TP1
Project Location	Tylerstown	Sample No	
Date Tested	07/05/2020	Depth Top	1.00
Compaction Method	4.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.5	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	1.5	4.3	7.5	10	13				
Bulk Density	1.96	2.10	2.20	2.25	2.11				
Dry Density	1.93	2.01	2.05	2.04	1.86				

Initial Moisture Content	13	%
Maximum Dry Density	2.05	Mg/m3
Optimum Moisture Content	9	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	24	%
Material Retained 20mm	17	%

Operators	Checked	11/05/2020	Emma Sharp	Eud
CA	Approved	12/05/2020	Paul Evans	DP Grons

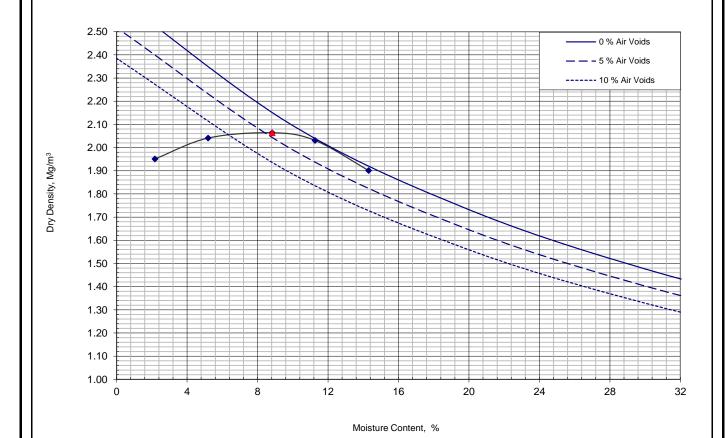
CCTI	Dry Density / Moisture Content Relationship	Contract Number	48483
GSIL	BS 1377:Part 4:1990	Borehole / Pit No	TP2
Project Location	Tylerstown	Sample No	
Date Tested	07/05/2020	Depth Top	1.00
Compaction Method	4.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.5	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	2.4	5.4	8.4	11	15				
Bulk Density	1.95	2.11	2.19	2.20	2.12				
Dry Density	1.90	2.00	2.02	1.98	1.85				

Initial Moisture Content	15	%
Maximum Dry Density	2.02	Mg/m3
Optimum Moisture Content	8	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	10	%
Material Retained 20mm	23	%

Operators	Checked	11/05/2020	Emma Sharp	Sud
CA	Approved	12/05/2020	Paul Evans	DP Grons

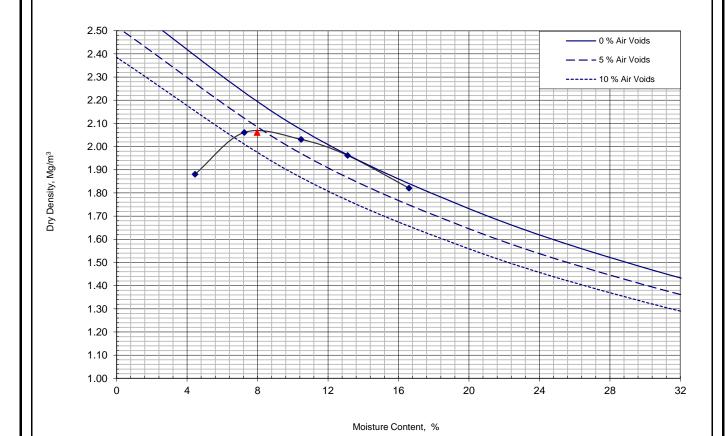
CCTI	Dry Density / Moisture Content Relationship	Contract Number	48483
GJIL	BS 1377:Part 4:1990	Borehole / Pit No	TP3
Project Location	Tylerstown	Sample No	
Date Tested	07/05/2020	Depth Top	1.00
Compaction Method	4.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.5	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	4.3	7.5	10	13	16				
Bulk Density	1.95	2.14	2.22	2.22	2.10				
Dry Density	1.87	1.99	2.01	1.96	1.81				

Initial Moisture Content	16	%
Maximum Dry Density	2.01	Mg/m3
Optimum Moisture Content	9	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	0	%
Material Retained 20mm	6	%

Operators	Checked	11/05/2020	Emma Sharp	Eud
CA	Approved	12/05/2020	Paul Evans	DP Grons

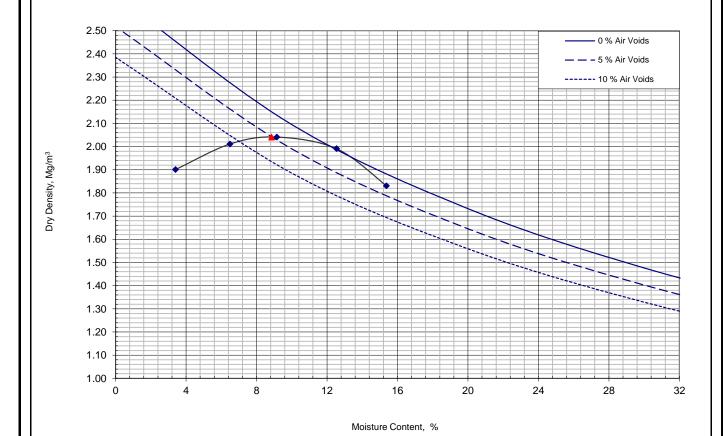
CCTI	Dry Density / Moisture Content Relationship	Contract Number	48483
GOIL	BS 1377:Part 4:1990	Borehole / Pit No	TP4
Project Location	Tylerstown	Sample No	
Date Tested	07/05/2020	Depth Top	1.00
Compaction Method	4.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.5	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	2.2	5.2	8.8	11	14				
Bulk Density	1.99	2.15	2.25	2.26	2.17				
Dry Density	1.95	2.04	2.06	2.03	1.90				

Initial Moisture Content	8.8	%
Maximum Dry Density	2.06	Mg/m3
Optimum Moisture Content	9	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	31	%
Material Retained 20mm	13	%

Operators	Checked	11/05/2020	Emma Sharp	Eud
CA	Approved	12/05/2020	Paul Evans	DP Grons

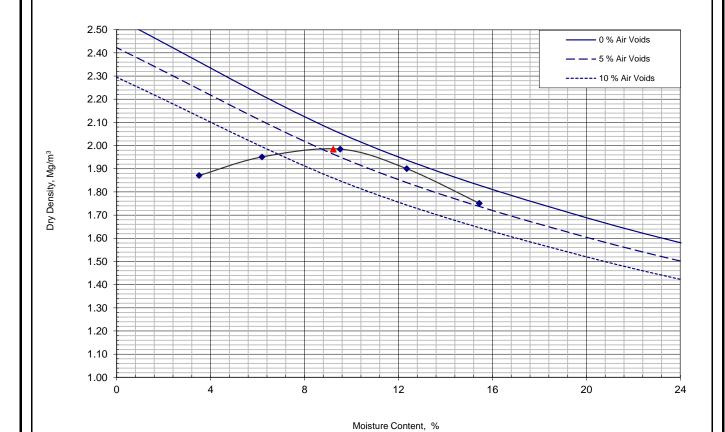
CCTI	Dry Density / Moisture Content Relationship	Contract Number	48483
GOIL	BS 1377:Part 4:1990	Borehole / Pit No	TP4
Project Location	Tylerstown	Sample No	
Date Tested	07/05/2020	Depth Top	1.80
Compaction Method	4.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.5	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	4.5	7.3	10	13	17				
Bulk Density	1.96	2.21	2.24	2.22	2.12				
Dry Density	1.88	2.06	2.03	1.96	1.82				

Initial Moisture Content	17	%
Maximum Dry Density	2.06	Mg/m3
Optimum Moisture Content	8	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	16	%
Material Retained 20mm	19	%

Operators	Checked	11/05/2020	Emma Sharp	Eud
CA	Approved	12/05/2020	Paul Evans	SP Gons

CCTI	Dry Density / Moisture Content Relationship	Contract Number	48483
GOIL	BS 1377:Part 4:1990	Borehole / Pit No	TP5
Project Location	Tylerstown	Sample No	
Date Tested	07/05/2020	Depth Top	1.00
Compaction Method	4.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.5	Sample Type	В
Sample Description			


Compaction Point	1	2	3	4	5				
Moisture Content	3.4	6.5	9.2	13	15				
Bulk Density	1.97	2.14	2.23	2.24	2.11				
Dry Density	1.90	2.01	2.04	1.99	1.83				

Initial Moisture Content	9.2	%
Maximum Dry Density	2.04	Mg/m3
Optimum Moisture Content	9	%
Particle Density	2.65 Assumed	Mg/m3
Material Retained 37.5mm	24	%
Material Retained 20mm	19	%

Operators	Checked	11/05/2020	Emma Sharp	Eud
CA	Approved	12/05/2020	Paul Evans	DP Gons

CCTI	Dry Density / Moisture Content Relationship	Contract Number	48483
GOIL	BS 1377:Part 4:1990	Borehole / Pit No	TP6
Project Location	Tylerstown	Sample No	
Date Tested	07/05/2020	Depth Top	1.00
Compaction Method	4.5 Kg Rammer	Depth Base	
Compaction Clause	BS1377:Part 4:1990, Clause 3.5	Sample Type	В
Sample Description			

Compaction Point	1	2	3	4	5				
Moisture Content	3.5	6.2	9.5	12	15				
Bulk Density	1.94	2.07	2.17	2.13	2.02				
Dry Density	1.87	1.95	1.98	1.90	1.75				

Initial Moisture Content	12	%
Maximum Dry Density	1.98	Mg/m3
Optimum Moisture Content	9	%
Particle Density	2.55 Assumed	Mg/m3
Material Retained 37.5mm	26	%
Material Retained 20mm	22	%

Operators	Checked	11/05/2020	Emma Sharp	Sud
CA	Approved	12/05/2020	Paul Evans	DP Grons

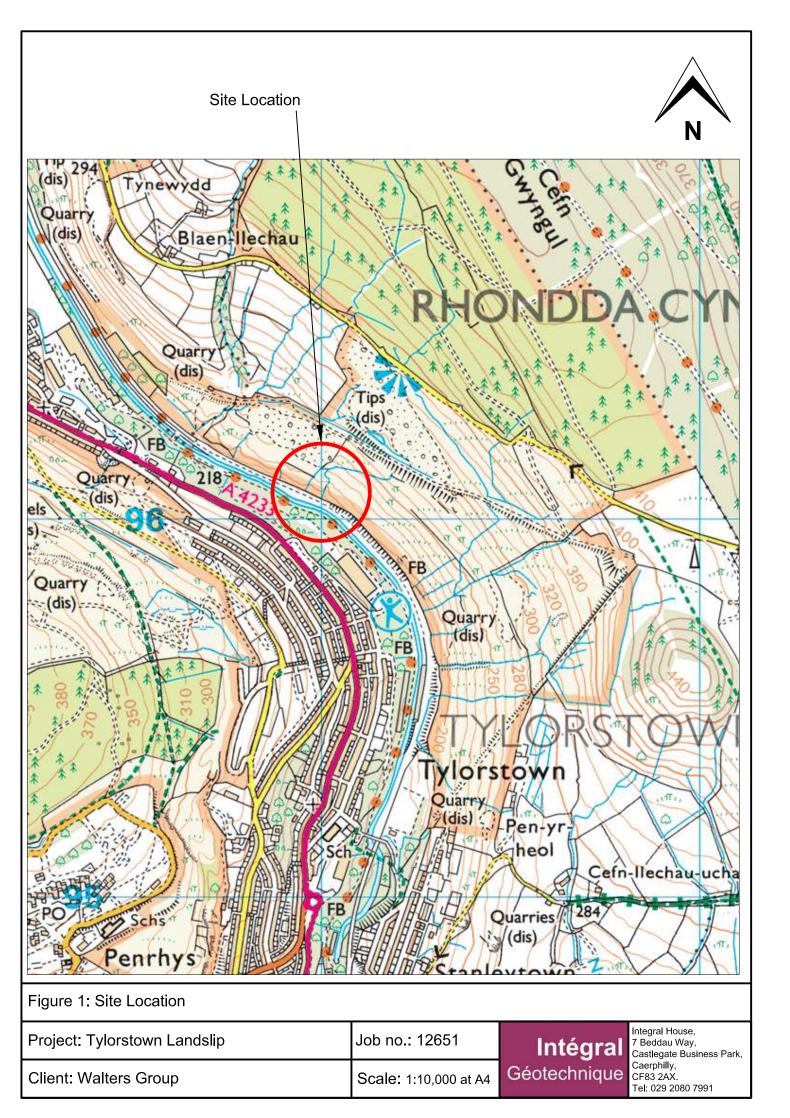


Figure 2: Trial Pit Location Plan

Project: Tylorstown Landslip

Job No.: 12651

Scale: NTS

Intégral House,
7 Beddau Way,
Castlegate Business Park,
Caerphilly,
CF83 2AX,
Tel: 029 2080 7991

Client: Walter Group

Tylorstown Tip - Phase 4 Ground Investigation

GROUND INVESTIGATION FACTUAL REPORT

Factual Report

Report No. Q0463/FR

April 2021

DOCUMENT CONTROL

Contract Name: Tylorstown Phase 4 GI

Contract Reference: Q0463

Report Type: Ground Investigation Factual Report

Report Reference: Q0463/FR

Date of Report Production: April 2021

Client: Redstart

Version:	Date:	Prepared by:	Checked by:	Approved by:
		Steffan Picton	P. Darby	R. McDermott
Draft	09/04/21	b. L. lite	that his	2 months.
		Engineering Geologist B.Sc. (Hons.),	Senior Engineering Geologist B.Sc.(Hons.),M.Sc., C.Geol., F.G.S.	Company Manager B.Sc.(Hons.),M.Sc., C.Geol., F.G.S.

Disclaimer: Quantum Geotechnic Limited has prepared this report in accordance with the instructions of the above named Client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

Quantum Geotechnic Ltd, Plas Newydd, Llanedi, Pontarddulais, Swansea, SA4 0FQ T: 01554 744880 E: enquiries@quantumgeotech.co.uk

CONTENTS

0.	FOREWORD	1
1.	INTRODUCTION	2
1.1.	General	2
1.2.	Purpose of Ground Investigation	
1.3.	Scope of Work	
2.	SITE DETAIL	4
2.1.	Site Description	4
2.2.	Statutory Service Information	
2.3.	Published Geology	5
3.	FIELDWORK	6
3.1.	General	6
3.2.	Exploratory Hole Locations	
3.3.	Boreholes	8
3.4.	Window Sample Holes	9
3.5.	Trial Pits	
3.6.	Land gas and Groundwater Standpipe Installations	11
3.7.	In-Situ Testing	12
3.8.	Soil, Rock and Groundwater Sampling	
3.9.	Ground Gas and Water Monitoring	13
4.	LABORATORY TESTING	14
4.1.	Geotechnical Laboratory Testing	14
4.2.	Geo-Environmental Laboratory Testing	
5.	REFERENCES	15

APPENDICES

APPENDIX I – SITE PLANS	
APPENDIX II – ENGINEERING GEOLOGIST'S ROTARY BOREHOLE LOGS	
APPENDIX III – ENGINEERING GEOLOGIST'S WINDOW SANPLE HOLE LOGS	III
APPENDIX IV – ENGINEERING GEOLOGIST'S TRIAL PIT LOGS	IV
APPENDIX V – CBR TEST RESULTS	v
APPENDIX VI – POST FIELDWORK MONITORING RESULTS	VI
APPENDIX VII – GEOTECHNICAL LABORATORY TEST CERTIFICATES	VII
APPENDIX VIII – GEO-ENVIRONMENTAL LABORATORY TEST CERTIFICATES	VIII

0. FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

0.1. General

Recommendations made and opinions expressed in the report are based on the strata observed in the excavations, together with the results of site and laboratory tests. No responsibility can be held for conditions which have not been revealed by the Exploratory Holes or which occur between Exploratory Holes. Whilst the report may suggest the likely configuration of strata, both between Exploratory Holes and below the maximum depth of investigation, this is only indicative and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

0.2. Investigation Procedures

Rotary borehole drilling, window sampling and trial pitting techniques for ground investigation have been employed within the project. All Exploratory Hole operations, sampling and logging of soils, rocks and in-situ testing complies with the recommendations of the British Code of Practice BS 5930:2015, 'Site Investigations', British Code of Practice BS 10175: 2011 + A1:2013, 'Investigation of Potentially Contaminated Sites' and BS 1377: 1990, 'Methods of Test for Soils for Engineering Purposes'.

0.3. Routine Sampling

Representative bulk, undisturbed, disturbed and environmental samples of the different strata are taken following completion of logging. These samples are sealed and labelled in clear plastic bags and 2kg plastic tubs. Soil samples obtained for environmental testing are sampled and sealed in borosilicate amber jars or in specialist vessels where required. All samples are returned from site to QGL's laboratory for controlled storage within 24 hours of sampling to await test scheduling /requirements.

0.4. In-Situ Testing

In-situ testing comprised:

- Standard Penetration Tests (SPTs/CPTs) in Boreholes and Window Sample holes
- In-Situ CBR tests

0.5. Groundwater

Where possible, the depth of entry of any influx of groundwater is recorded during the course of excavation or boring operations. The rate of inflow into the excavation or borehole is monitored during the course of the excavation or during boring procedures. Upon encountering any water strikes, work is temporarily halted and the water levels monitored for a standard twenty-minute period recording the change in water level at the end of the twenty minutes.

Groundwater conditions observed in the excavations are those appertaining to the period of investigation. It should be noted, however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions or other causes.

0.6. Retention of Samples

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded. Further to notifying the Engineer/ Client with one week's notice all soil and/or rock samples will be discarded 28 days after submission of the approved final report.

1. INTRODUCTION

1.1. General

Upon the instructions of Redstart, the Scheme Engineer / Investigation Supervisor / Client, Quantum Geotechnic Limited was commissioned to undertake a ground investigation for the proposed phase 4 reprofiling works of the collery spoil tips located on the eastern side of the Rhondda Fach valley, close to the centre of the South Wales Coal Field. The purpose of this ground investigation is to determine the existing ground and groundwater conditions on the site to allow the design to proceed.

The approximate Ordnance Survey National Grid Reference of the site is 302027,195772.

A Site Location Plan is presented as Figure 1 in Appendix I.

Other available sources of information that have been consulted in the preparation of this Factual Report include the published geological maps for the area and online databases.

General notes on the techniques employed by QGL are described in the Foreword together with the limitations inherent in carrying out site investigation work.

Full on site gas monitoring was carried out through the duration of the drilling works.

1.2. Purpose of Ground Investigation

The purpose of the ground investigation is to determine the existing ground conditions on the site to allow the design of the proposed works to proceed. The proposed works will comprise of building a haul road, re-profiling, levelling and cutting and filling of the collery spoil tips to create an embankment and drainage works and can be summarised as follows:

A proposed haul road and potential receptor site around the eastern side of Tylorstown Tip (RH02),
 which will permit the landslide debris to be removed, stockpiled, treated and land formed

1.3. Scope of Work

The scheduled scope of works due to be undertaken was as follows:

- 1 no. Dynamic sampled with rotary core boreholes
- 6 no. Rotary probe boreholes
- 6 no. Window Sample holes, adjacent to the rotary probe holes
- 7 no. Trial Pits
- 6 no. In-Situ CBR tests
- A non-intrusive utility survey around all exploratory hole locations
- Surface water sampling

General

- · Post fieldwork groundwater and ground gas monitoring.
- · Geotechnical and Geo-environmental Laboratory Testing.
- Provide a factual report detailing the investigation.

2. SITE DETAIL

2.1. Site Description

The site is located to the eastern side of the Rhondda Fach Valley, close to the centre of the South-East Wales Coal Field. The nearest village in the valley bottom is Tylorstown, with Ferndale lying a little way to its north. Vehicle access to the tips is via Llanwonno Road, which links to the valley bottom in the village of Blaenllechau, to the north at approximate Ordnance Survey (OS) Ref 302027,195772.

The Site (RS-C) lies to the east/north-east of Tylorstown Tip (Old Smokey) and south/south-east of Llanwonno Road (vehicular access point to RS-C). The eastern edge of RS- C is bounded by conifer plantations, owned by Natural Resources Wales (NRW). The ground levels are relatively flat over RS-C with a gentle fall from the north-west to the southeast behind Old Smokey. To the South-east of Old Smokey the ground levels become more naturally undulating.

Old Smokey is perched on the crest of the plateau and deposited mostly upon the steep valley side below, so ground levels on the south-western edge of RS-C fall rapidly in that direction. Immediately to the rear of Old Smokey (east) is a large area of bare ground, comprising a surface of burnt colliery shale, and east of this is a shallow depression or man-made ephemeral pond, which lies in the centre of RS-C.

The general extent of the site is shown in Figure 1 below.

Figure 1: Site location Map for area under investigation. NOT TO SCALE ©Ordinance Survey

2.2. Statutory Service Information

All service information was held by the client with the relevant plans and information made available to QGL prior to commencement of the intrusive works.

A permit to excavate was issued by QGL for all exploratory holes. Standard QGL procedures for breaking ground were followed and all areas were scanned using a cable avoidance tool. A hand dug trial pit was excavated to 1.2m prior to commencement of all drilling. All hand excavation was undertaken using insulated digging tools.

A Utility survey to comply with PAS 128:2014 type B was undertaken at all exploratory hole locations. The Survey was undertaken by Intersect Surveys to locate and permit marking up of existing buried services.

2.3. Published Geology

Details of the geology of the site are provided by British Geological Survey (BGS) Sheet 248 'Pontypridd' at 1:50,000 scale, and BGS's online resource Geology of Britain Viewer. Details of the published and inferred geology of the site are summarised as followed:

Maps indicate no superficial deposits present, however the presence of till cannot entirely be ruled out as stoney clay is observed in some areas of bare ground. Based on historical uses in the area, some Made Ground is expected.

Solid geology beneath the site is mapped as the Brithdir Member of the Pennant Sandstone Formation typically comprising of Sandstone with many thin coal seams..

3. FIELDWORK

3.1. General

The fieldwork was carried out between the 3rd and 16th March 2021. Full-time on-site supervision and attendance by an Engineering Geologist from QGL was undertaken on all aspects of the site works and subsequent reinstatement works of all exploratory hole locations.

A summary of the works completed and covered by this report are given below:

- Vegetation clearance to access exploratory hole positions
- 1 No. Rotary dynamic sampled with coring boreholes
- 6 No. Rotary probe boreholes
- 6 No. Window sample boreholes
- 7 No. Machine excavated trial pits
- 6 No. In-Situ CBR tests
- 6 No. Installations of gas/groundwater monitoring wells in selected boreholes
- PAS 128:2014 type B was undertaken at all exploratory hole locations
- Surface water sampling

3.2. Exploratory Hole Locations

The exploratory hole locations were set out by QGL in liaison with the Investigation Supervisor on the first day of fieldwork.

On completion of the ground investigation exploratory hole positions were surveyed to ordnance datum (accurate to 0.005m horizontal and 0.01m vertical).

An Exploratory Hole Location Plan is presented within Appendix I, and exploratory hole coordinates and levels are presented on the engineer's log sheets in the corresponding Appendices. Table 1 presents the National Grid Co-Ordinates and Ordnance Datum for the exploratory holes:

Table 1: Exploratory Hole Co-Ordinates & Levels

Exploratory Hole ID	Easting	Northing	Height (mAOD)
BHC01	301957.668	195778.7	405.063
BHC02	302110.066	195632.466	404.816
BHC03	302125.799	195472.75	397.604
BHC04	302098.224	195798.787	411.093
BHC05	302180.007	195666.333	408.566
BHC06	302197.224	195526.225	403.195
BHC07	302304.2	195429.145	398.306
TPC01	302035.557	195795.672	411.093
TPC02	302048.406	195726.395	407.681
TPC03	302142.214	195695.329	409.763
TPC04	302174.224	195592.522	405.346
TPC05	302186.24	195476.041	399.401
TPC06	302257.37	195498.167	402.225
TPC07	302260.329	195412.875	399.474
WS01	301957.668	195778.7	405.063
WS03	302125.799	195472.75	397.604
WS04	302098.224	195798.787	411.093
WS05	302180.007	195666.333	408.566
WS06	302197.224	195526.225	403.195
WS07	302304.2	195429.145	398.306
CBR01	301379.663	196072.679	308.107
CBR02	301437.735	196051.76	319.896
CBR03	301597.296	195974.231	350.556
CBR04	301632.666	195956.263	357.822
CBR05	301733.965	195927.152	376.212
CBR06	301806.289	195893.472	393.29
BH01A	302079.808	195683.629	406.96
(Exisiting			
borehole) BH02A	302140.513	195564.608	404.311
(Existing			
borehole)	2024442	105 170 504	207.057
BH03A (Existing	302114.3	195476.591	397.257
borehole)			

3.3. Boreholes

Rotary Dynamic Sampled Boreholes with Rotary Coring

A combination of drilling methods were employed to drill 1 No. boreholes referenced BH02 to a depth of 20.00m using a multi-purpose Commachio MC 450 rotary dill rig, owned and operated by QGL. This borehole was progressed through the superficial deposits by Dynamic Sampling and Rotary Percussive methods using the ODEX drill system to the specified depth, or until rockhead was encountered, whereby Rotary Coring techniques were employed.

The Dynamic Sampling technique is where a hydraulically driven percussive hammer attached to the head of the rotary drill rig mast is used to drive a 1.50m length, 101mm diameter, steel sampling tube through the soils to obtain undisturbed samples within 87mm core liner. Rock coring methods utilising the 412 size core bit (recovered core diameter 79mm) was used with mist flush (in accordance with the Coal Authority Permit) to specified depths. Rigid plastic liner (coreliner) was employed where possible to reduce disturbance of the core both during drilling and subsequent handling, giving a triple lined approach to coring.

All rotary boreholes were kept open using an ODEX casing system of 115mm diameter which also permitted the boreholes to be progressed within the superficial deposits upon encountering dense strata or boulder obstructions. The ODEX system would be utilised to penetrate the dense material/ boulder obstruction and all continued Dynamic Sample methods beyond. A combined air/mist flush was used to clear the hole of returns and debris with water being used during the coring process.

The recovered rock sample liners were split and logged in accordance with BS5930: (2015+A1:2020); BS EN ISO 14688-1:2018; BS EN ISO 14688-2:2018 and BS EN ISO 14689-1:2018, including fracture spacing, by a QGL Engineering Geologist. All retrieved core is stored in wooden lockable boxes and was logged and photographed on site prior to being transported back to QGL premises for storage.

Selected rock cores were sub-sampled for laboratory testing by QGL onsite prior to core boxes being transported. All sub-sampled rock core specimens were labelled, sealed and wrapped in bubble pack ready for shipment to the dedicated laboratory testing houses. A complete set of Engineering Geologist's logs for the Boreholes are presented in Appendix II.

Rotary Probe Boreholes

A Comacchio MC450P track-mounted rotary drilling rig was used to progress the six rotary open-hole boreholes to target depths of between 8.00-20.00mbgl.

115mm diameter casing was drilled through the overlying superficial deposits (ODEX system) to keep the hole open and a 4-inch hammer used to break through obstructions and progress (probe) through rock. A combined air/mist flush was used to clear the hole of returns and debris on all boreholes through the boreholes. Heavy mist flush was used whilst drilling within the bedrock.

Details of the exploratory holes, including final depths in metres below ground level (mbgl) and SPT Hammer used are provided below in Table 2:

Table 2: Borehole details

Exploratory Hole ID	Drilling method	SPT Hammer Reference	Termination Depth (mbgl)	Terminating Strata	Notes/Reason for Termination
BHC01	RO	Q1	20.0	Bedrock	Specified depth
BHC02	DS+RC	Q1	24.0	Bedrock	Specified depth
BHC03	RO	Q1	20.0	Bedrock	Specified depth
BHC04	RO	Q1	8.0	Bedrock	Specified depth
BHC05	RO	Q1	8.0	Bedrock	Specified depth
BHC06	RO	Q1	8.0	Bedrock	Specified depth
BHC07	RO	Q1	20.0	Bedrock	Specified depth

CP - Cable Percussive Drilling

DS - Dynamic Sampling

RO - Rotary Percussive 'Open Hole' Drilling

RC - Rotary Coring

The Engineering Geologist's borehole logs are presented within Appendix II.

3.4. Window Sample Holes

6 No. Windowless Sampling Boreholes were undertaken using a Dando Terrier Rig, adjacent to the rotary probe holes. This rig utilises dynamically driven 1m length sampling tubes, nominally 116mm in diameter to begin with then reduced diameters as depth increases. This technique allows a relatively undisturbed sample of soil to be taken in a plastic liner, or alternatively sub sampled as a disturbed jar sample. Within competent granular-cohesive soils the portable equipment used for Windowless Sampling is limited by the nature of the ground and robustness of the driving tool. The Windowless Sample Boreholes were installed/backfilled as per Investigation Supervisor instructions with bentonite pellets upon completion.

The windowless samples were progressed to scheduled depth or until refusal. Table 3 details the final depths achieved by each windowless sample borehole.

Table 3: Windowless Sample Borehole Detail

Exploratory Hole ID	Exploratory Hole Type	Final Depth (mbgl)	Notes/Reason for Termination
WS01	Windowless Sample Borehole	3.00	Refusal
WS03	Windowless Sample Borehole	1.00	Refusal
WS04	Windowless Sample Borehole	1.00	Refusal
WS05	Windowless Sample Borehole	0.80	Refusal
WS06	Windowless Sample Borehole	1.00	Refusal
WS07	Windowless Sample Borehole	1.40	Refusal

A complete set of Engineering Geologist's logs for the Windowless Sample Boreholes are presented within Appendix III.

3.5. Trial Pits

7 No. Trial Pits were excavated using a 9 tonne tracked 360 excavator at the positions shown on the exploratory hole location plan in Appendix I.

This method of investigation allows direct sampling of the near surface deposits for identification purposes, as well as assessment of any salient features and Made Ground or disturbed ground. The trial pits were logged in accordance with BS5930:2018; BS EN ISO 14688-1:2018 and BS EN ISO 14688-2:2018, and supervised at all times by an Engineering Geologist from QGL.

All trial pits/hand pits were backfilled with compacted layers of arisings upon completion with suitable reinstatement where required.

Geotechnical and Environmental samples were taken within the superficial deposits for laboratory testing purposes.

Details of the Trial Pits, including final depths in metres below ground level (mbgl) are provided in Table 4.

Table 4: Trial Pit Detail

Exploratory Hole ID	Exploratory Hole Type	Final Length (mbgl)	Reason for termination
TPC01	Machine Excavated Trial Pit	1.30	Possible bedrock
TPC02	Machine Excavated Trial Pit	1.20	Possible bedrock
TPC03	Machine Excavated Trial Pit	0.60	Possible bedrock
TPC04	Machine Excavated Trial Pit	1.70	Possible bedrock
TPC05	Machine Excavated Trial Pit	1.70	Possible bedrock
TPC06	Machine Excavated Trial Pit	0.60	Possible bedrock
TPC07	Machine Excavated Trial Pit	2.70	Possible bedrock

A complete set of Engineering Geologist's trial pit logs are presented within Appendix IV.

3.6. Land gas and Groundwater Standpipe Installations

19mm and 50mm (internal) diameter standpipes were installed in selected boreholes for the purposes of land gas and groundwater monitoring and sampling.

Monitoring standpipes consist of plastic pipework set in filter aggregate (pea gravel) forming a well. The filter is sealed at one or both ends by use of bentonite pellets which 'go off' and become watertight. Parts of the pipe itself are slotted, allowing the infiltration of groundwater which can then be accessed through the pipe from ground level. Slotted sections are covered by 'geo-sock' to reduce the intrusion of silt into the standpipes and the range of depths at which the groundwater is intercepted is known as the 'response zone'.

Standpipes were installed using a combination of 1m and 3m lengths of pipework (threaded at either end) fitted together and lowered into the borehole. The boreholes were then filled with either pea gravel or bentonite pellets (depending on which zone or level) and cemented in place at ground level with an iron flush cover.

Each standpipe installation was designed by the Investigation Supervisor and instructed on site, subsequent to the completion of each borehole. All standpipe installations were sealed above the response zone by a minimum of 0.50m of bentonite pellets.

A summary of the pipe installation details is presented in Table 5.

Table 5: Borehole Installation Details

Exploratory	Installation Pipe	Standpipe Diameter	Response Z	one (mbgl)	Total Standpipe
Hole ID	ID	(Internal mm)	Тор	Bottom	Length (m)
BHC01	1	50	17.00	20.00	20.00
BHC02	1	50	21.00	24.00	24.00
BHC03	1	50	5.00	8.00	8.00
BHC05	1	50	17.00	20.00	20.00
BHC06	1	50	17.00	20.00	20.00
BHC07	1	50	5.00	8.00	8.00
BH01A (Existing borehole)	1	19	-	-	65
BH01B (Existing borehole)	1	19	-	-	70
BH01C (Existing borehole)	1	19	-	-	69

3.7. In-Situ Testing

3.7.1. Standard Penetration Testing

Standard penetration tests (SPTs) were undertaken within boreholes and window sample holes through the superficial deposits and weak bedrock at intervals detailed within the Specification.

This dynamic in-situ test measures the density of soil or rock and is described in BS1377:1990 (part 9), partially superseded by BS EN ISO 22476-3 (2005). Within fine grained or cohesive soils, the test incorporates a small diameter tube (650mm length, 50mm external diameter and 35mm internal diameter) with a cutting shoe known as the 'split barrel sampler'. The sampler is forced into the soil dynamically using blows from a 63.5kg hammer dropped through 760mm. The sampler is initially advanced 150mm into the soil with seating blows, then the number of blows required to advance the sampler each 75mm increment up to a depth of 300mm is recorded. This cumulative total number of blows over the 300mm test is referred to as the "N" value. For coarse gravels and bedrock, the split barrel is replaced by a 60° cone.

SPT results can be found on the corresponding borehole logs in Appendix II and III.

3.7.2. In-Situ CBR Testing

6 No. In-situ CBR tests were carried out at locations specified by the investigation supervisor. The California Bearing Capacity Test (CBR), covers the determination of Bearing Capacity of a soil or aggregate tested insitu, at selected pressures, by the action of a circular plate loading & penetrating the strata at a given rate and measuring the relationship between force and penetration into the soil. Test carried out to BS1377: Part 9:1990. The plate is bedded on a thin bed of sand, and pressure cell/jack placed on the plate and raised against the base of the Kentledge (9Tonne 360 excavator or similar mass).

The CBR test results are presented in Appendix V.

3.8. Soil, Rock and Groundwater Sampling

Sampling of soil, rock and waters were undertaken as instructed by the Client in accordance with the specification, BS 5930:2015 and BS EN ISO 22475-1:2006. Bulk, disturbed and undisturbed samples were taken where required within the superficial deposits for strata identification and laboratory testing purposes.

Sample type depth are recorded on the corresponding exploratory hole logs found within Appendices II to IV.

Geotechnical samples were returned from site to QGL's laboratory for controlled storage to await test scheduling/requirements. For specific details of laboratory testing see Section 4.

3.9. Ground Gas and Water Monitoring

Constant on site gas monitoring was carried out through the duration of the drilling works. Gas safe working levels were not exceeding during the works.

Following completion of the site works, QGL shall undertake 3 No. Monitoring visits to record land gas and groundwater within the installed borehole standpipes. Initial intervals are set at fortnightly however this may be subject to change by the Investigation Supervisor pending the results. Monitoring results obtained to date are presented within Appendix VI. Remaining results shall be issued as an addendum report. Two rounds of surface water sampling was also undertaken during the monitoring visit at specified locations on site with the samples sent for testing. The results are presented within Appendix VIII.

4. LABORATORY TESTING

The laboratory testing was scheduled by the Investigation Supervisor and comprised a number of geotechnical and geo-environmental tests on selected soil, water and rock samples recovered from the investigation.

4.1. Geotechnical Laboratory Testing

Geotechnical tests undertaken on selected soil samples are detailed in Table 6. All the geotechnical soil testing work was carried out in accordance with the procedures stipulated in the various sections of BS 1377:1990 "Methods of test for soils for civil engineering purposes" and to UKAS accreditation where applicable.

Table 6: Geotechnical Laboratory Tests (Soil/Rock)

Test	Number of Tests
Moisture content	13
Liquid limit, plastic limit and plasticity index	6
Particle size distribution by wet sieving	19
Organic matter content	18
Mass loss on ignition	13
Sulphate content of acid extract from soil	6
Sulphate content of acid extract from water	6
Total sulphur content	4
pH value	6
Single point load	6

A full set of geotechnical laboratory test certificates are provided within Appendix VII.

4.2. Geo-Environmental Laboratory Testing

Geo-Environmental chemical testing was undertaken at ChemTest, Coventry. All testing was scheduled by Redstart. The following suites of testing were scheduled:

- 16 No Suite E (Soil samples Schedule S1.20.3)
- 5 No Suite F (Soil samples Schedule S1.20.3)
- 3 No DOC, dissolved calcium
- 3 No Topsoil to BS 3882:2015
- 2 No Calorific value
- 2 No Suite H Non Hazardous

A full set of geo-environmental laboratory test certificates are provided within Appendix VIII.

5. REFERENCES

British Geological Survey (BGS)

- BGS Lexicon of Named Rock Units (<u>www.bgs.ac.uk/lexicon</u>)
- BGS Geology of Britain Viewer (www.bgs.ac.uk)
- BGS Sheet 248 'Pontypridd' Solid and Drift edition at 1:50,000 scale.

British Standards / Eurocode

- British Code of Practice BS 5930:2015 'Code of Practice for Site Investigations'
- British Code of Practice BS 1377:1990 'Methods of test for soils for civil engineering purposes.
- British Code of Practice BS EN ISO 14688-1:2002+A2:2013 'Geotechnical investigation and testing –
 Identification and classification of soil Part 1: Identification and description'
- British Code of Practice BS EN ISO 14688-2:2004+A2:2013 'Geotechnical investigation and testing –
 Identification and classification of soil Part 2: Principles for a classification'
- British Code of Practice BS EN ISO 22475-1:2006 'Geotechnical investigation and testing Sampling methods and groundwater measurements'
- British Code of Practice BS EN ISO 22476-3:2005+A1:2011 'Geotechnical investigation and testing Field Testing – Part 3: Standard penetration test'

APPENDIX I – SITE PLANS

APPENDIX II – ENGINEERING GEOLOGIST'S ROTARY BOREHOLE LOGS

Client: RCTCC

Borehole No. BHC01

Dates: 10/3/21 - 11/3/21

Location: Within receptor site C

Job Number: Q0463

Ground Level: 405.06 m A.O.D. Level to Ordnance Datum

Engineer: Redstart Coordinates: 301957.67 E

195778.70 N
Co-ordinates to National Grid

																dinates to		l Grid
_	lun [Deta	ils	Fract	tures		nsitu T	ests	\perp	Sam	ples		Stra	ta] [
Core Run	TCR %	SCR %	RQD %	Min Avg Max	FI	Depth	Test F	Results		Depth	Type No. Blows	Depth (Thick- ness)	Description		Legend	Red. Level A.O.D.	Water	Insta Back
2 3 4 5 6 7 8 19				Max						0.10 0.50 1.00 1.20	ES1 B1 ES2 ES3 B2	(0.70) = (0.70) = 0.70 = 3.30 = 1.00 = 1.	MADE GROUND - I dark grey slightly sa GRAVEL with meta is fine to coarse and sub-angular Mudsto clinker and coal Grey slightly silty cla cobble content. Gra to coarse angular to sub-angular Mudsto Sandstone. Cobble angular to sub-ang Sandstone DRILLERS DESCR Strong grey SANDS	Black andy silty I. Gravel gular to one, ayey o medium avel is fine one and s are ular	20 20 20 20 20 20 20 20 20 20 20 20 20 2	(0.70)	\	
20							SPT (C) (25/3mm-	50/8mm 50/8mm)			20.00	BH terminated at 20 specified depth	0.00mbgl				
Hole	Pro	gres	s/\	Nat	er (Obs		asin	q			L	Groundwater		Ή		Flush	
Date / Ti			Depth	_		_	_	_	am.	Struck	Rose To		Behaviour	Sealed	d Dept		Туре	Retu
10/03/2021 1 11/03/2021 (17:00	20).00).00	3.	50 50	- 5016	3.5		5.00			No grou	undwater encountered		0.00 - 2		Air Mist	

Quantum Geotech Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. m Per Page

Client: RCTCC

Borehole No. BHC02

Dates: 5/3/21 - 8/3/21

Job Number: Q0463

Ground Level: 404.82 m A.O.D. Level to Ordnance Datum

Location: Within receptor site C

Engineer: Redstart

Coordinates: 302110.07 E

195632.47 N Co-ordinates to National Grid

															Co-or	dinates to	Nationa	l Grid
	R	un I	Deta	ils	Frac	tures		Insitu Tes	ts	Sam	ples		Strata					
M B.G.L.	Core Run	TCR %	SCR %	RQD %	Min Avg Max	FI	Depth	Test Resi	ults	Depth	Type No. Blows	Depth (Thick- ness)	Description		Legend	Red. Level A.O.D.	Water	Install Backfi
)							E			0.10 - 0.20	ES1	(0.20)	Grass over soft dark gre	эу _	×oʻ× ʻc	¬ (0.20),		
							Ė					0.20	slightly sandy slighty gra	avelly	0-0-	(0.40)		
							F			0.50	B1 ES2	(0.40)	- coal/charcoal. Gravel is		0-A: 0 A % = 0 X	(0.40)	1	\otimes
							E			1.00	ES3	0.60	to coarse sub-angular to	o	0 X 0 A			\bowtie
							1.2	SPT (S) 50/45	imm	1.20 - 3.00	D1	(0.90)	sub-rounded Sandstone Mudstone	e and	**************************************	(0.90)		\bowtie
							Ė	(2-2 -50/45m n	n)	1.20	SPT1 B2	- 1.50	Dense orange and light		€ <u>∧ `°</u> ∧.		-	\bowtie
							Ė					Ė	brown slightly clayey slightly	ghtly				\bowtie
							E					Ė	silty GRAVEL. Gravel is to coarse sub-angular to	ine				\boxtimes
							Ė					Ė	sub-rounded Sandstone					\bowtie
							F					F	Mudstone Dense grey light brown					\bowtie
							3	SPT (S) 50/16	0mm	3.00 - 4.50	D2	(3.00)	Hslightly silty clayey GRA	VEL		(3.00)		▩
							F	(5-13 -10-25-15 /1		3.00	SPT2	(3.00)	with medium to high col	oble		(3.00)		\bowtie
							Ė					F	is fine to medium angul					\boxtimes
												Ė	sub-angular Sandstone	.				\boxtimes
							Ē					Ē	Cobbles and boulders a sub-angular to angular	ire				\bowtie
	4.50						- -4.5					<u> </u>	Sandstone (HIGHLY					\bowtie
	4.00				МI	√3 ⁄	- 7.0	SPT (C) 50/10 (25/5mm- 50/10)				4.50	WEATHERED BRITHD	IR				\bowtie
١						7	Ŀ					Ė	Grey SANDSTONE.					\bowtie
١		100	97	13		'	F					F	Recovered as silty sand					▓
١							F					F	GRAVEL. Gravel is fine coarse angular to	to				\bowtie
						4	Ė					Ē.	sub-angular					\bowtie
	6.00					6	Ē					Ē	Casing to 4.50mbgl					
		100	100	0		4	Ė					Ē	Strong grey fine grained SANDSTONE (BRITHD	ı IR				\otimes
			100	ľ		7	Ė					Ė	MEMBER)					
	7.00						-					F	L Discontinuities are horiz	zontal				\bowtie
		100	100	60		3	Ė					Ė	to 15 degrees tight to page	artly				\boxtimes
١	7.50					1	Ē					Ē	 open, closely to very clo spaced, rough undulatir 					\bowtie
					ИN		Ē					Ē	with iron staining on frac	cture				\boxtimes
		100	97	60			-					Ė	surfaces and locally hig weathered up to 100mn					
١						3	Ė					F	penetration ·					\boxtimes
١							Ē					Ē	From 5.20-5.40mbgl sub-vertical fracture tigh	nt to				\bowtie
١	9.00						Ė					Ē	Fpartly open, rough undu	lating				▓
١							Ė					Ē	with iron staining on fraction surfaces	cture				\bowtie
		100	100	90		3	Ė					Ė	From 6.20-6.40mbgl					\boxtimes
١							-					Ė	vertical fracture tight to open, rough undulating					
١							ŧ					Ė	iron staining on fracture					▓
١	10.50	400	0.7			40	ŧ					Ė	- surfaces					
			87	37	L	10	-					<u> </u>	-					▩
	Hole			S / \ Depth	_		_		sing	Church	Rose To		Groundwater	Sealed	Dowl		Flush	_
	Date / Tin 3/2021 1			.00		ери 50	Wat		Diam. 115.00		Rose 10	No arou	Behaviour undwater encountered	Sealed	0.00 - 4		Type Air	Retu
	3/2021 0			.00		50		1.00				9.00	5555		4.50 - 2		Mist	10
							1	1						1	1			1

hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 1 Of 3

Page

Client: RCTCC

Borehole No. BHC02

Dates: 5/3/21 - 8/3/21

Job Number: Q0463

404.82 m A.O.D. Level to Ordnance Datum Ground Level:

Location: Within receptor site C Engineer: Redstart

302110.07 E Coordinates:

calion	. •	•		,,,,	Pio	. 0		Ling	,	rtodot	4			1956	32.47 [l Grid
R				_			nsitu Tes	ts	Sam	ples		5	Strata	1	1	, vali ona	Cria
Core Run	TCR %	SCR %	RQD %	Min Avg Max	FI	Depth	Test Resu	ılts	Depth	Type No. Blows	Depth (Thick- ness)			Legend	Red. Level A.O.D.	Water	Install/ Backfill
12.00					10						(0.30)	sub-vertical fraction partly open, routing with iron staining surfaces Strong grey fine	cture tight to gh undulating g on fracture		(0.30)		
13.50	100	100	80		ь	-					- - - - - - -	to 15 degrees ti open, closely to spaced, rough i	ght to partly very closely undulating				
15.00	100	47	20		7						(19.50)	surfaces and lo weathered up to penetration From 11.50-1 Weak brown me	cally highly o 100mm 1.80mbgl oderately		(19.50)		
16.50	100	100	67		6	-					- - - - - - - - - - - - - - - - - - -	-					
	100	97	87	WV	2							-					
18.00	100	97	67	- VW	6						-						
	100	97	77		6												
21.00	100	97	67			-						-					
				_		_			_				ı				I_
∪ate / Tin	ne	Н. С	Jepth	C. D	<u>eptl</u>	Wat	er Depth	Diam.	Struck	Rose To		Behaviour	Sealed	Dep	tn	Type	Returns
	12.00 13.50 15.00 18.00 19.50 Hole	Run I Core Run 100 12.00 100 13.50 100 15.00 100 16.50 100 18.00 100 19.50 100 21.00 100	Name	Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp Temp	Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text	Total Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Sectio	Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Tota	Took Run 100 87 87 87 87 88 100 100 100 100 80 6 100 100 100 67 6 100 100 97 87 100 67 6 100 100 97 87 100 100 97 87 100 100 97 87 100 100 97 87 100 100 97 87 100 100 97 87 100 100 97 87 100 100 97 87 100 100 97 77 67 66 100 100 97 77 67 66 100 100 97 67 67 67 67 68 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	Total Scale Run Details Fractures Insitu Tests Insitu Tests Run Total Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run Run	Total See Robert Fracture See See Robert See See Robert See Robert See Robert See See Robert See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See See	Total Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Se	Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No. Type No.	12.00	Run Details Fracture Insitu Tests Samples Strata	100 100 87 37 10 100 80 6 100 100 87 37 10 100 100 87 37 10 100 100 87 37 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1965 1	Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S

Remarks: Commachio MC450 tracked drill rig BH marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton

Sheet No. 2 Of 3

Contract: Tylorstown Phase 4 GI Borehole No. BHC02 Client: RCTCC 404.82 m A.O.D. Level to Ordnance Datum Ground Level: Dates: 5/3/21 - 8/3/21 Job Number: Q0463 Coordinates: 302110.07 E Location: Within receptor site C Engineer: Redstart 195632.47 N Co-ordinates to National Grid Run Details Insitu Tests **Samples** Strata Fractures B.G.1 Depth (Thick-Min RQD Core Run TCR SCF Type No. Blows Install/ Level Test Results Backfill Depth Description Legend ness) A.O.D 100 97 67 МI 1 22.50 -23 100 100 100 0 - 24 24 SPT (C) 50/5mm 24.00 BH terminated at 24.00mbgl (25/0mm-50/5mm---) specified depth -25 -26 -27 -28 29 30

Hole Progress / Water Obs Casing Groundwater Flush

Date / Time H. Depth C. Depth Water Depth Diam. Struck Rose To Behaviour Sealed Depth Type Returns

Remarks: Commachio MC450 tracked drill rig BH marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

31

32

Plas Newydd, Llaned SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 3 Of 3

Client: RCTCC

404.82 m A.O.D. Level to Ordnance Datum Ground Level:

Coordinates: 302110.07 E

o-ordinates to National Grid

Borehole No. BHC02

Dates: 5/3/21 - 8/3/21 Job Number: Q0463 Location: Within receptor site C Engineer: Redstart

Plas Newydd, Llanedi SA40FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton

Sheet No. 1 Of 4

Client: RCTCC

Ground Level: 404.82 m A.O.D.
Level to Ordnance Datum

Coordinates: 302110.07 E

195632.47 N

Co-ordinates to National Grid

Borehole No. BHC02

Dates: 5/3/21 - 8/3/21

Location: Within receptor site C

Job Number: Q0463

Engineer: Redstart

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 2 Of 4 m Per Page

Client: RCTCC

Imber: Q0463 Ground Level: 404.82 m A.O.D.
Level to Ordnance Datum

Engineer: Redstart Coordinates: 302110.07 E

195632.47 N Co-ordinates to National Grid

Borehole No. BHC02

Dates: 5/3/21 - 8/3/21

Location: Within receptor site C

Job Number: Q0463

Engineer: Redstart

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 3 Of 4

m Per Page

Client: RCTCC

Job Number: Q0463 Ground Level: 404.82 m A.O.D.
Level to Ordnance Datum

Engineer: Redstart Coordinates: 302110.07 E

195632.47 N Co-ordinates to National Grid

Borehole No. BHC02

Dates: 5/3/21 - 8/3/21

Location: Within receptor site C

Job Number: Q0463

Engineer: Redstart

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 4 Of 4 m Per Page

Contract: Tylorstown Phase 4 GI
Client: RCTCC

Date: 10/3/21
Location: Within receptor site C

Job Number: Q0463
Engineer: Redstart

Ground Level: 397.60 m A.O.D.
Level to Ordnance Datum
Coordinates: 302125.80 E
195472.75 N
Co-ordinates to National Grid

Η.	R	un [Deta	ils	Frac	tures	Ir	nsitu Tes	ts	Sam	ples		Strata		CO-0/1	umates to	Nautoria	<u>i Griu</u>
om B.G.L.	Core Run	<u> </u>	1	RQD %	Min Avg Max		Depth	Test Resi		Depth	Type No. Blows	Depth (Thick- ness)	Description		Legend	Red. Level A.O.D.	Water	Install/ Backfill
-0 -1 -1 -2 -3 								SPT (C) 50/5r (25/0mm -50/5 r		0.10 0.50 1.00 1.20	ES1 B1 ES2 ES3 B2	(0.15) (0.45) (0.45) (0.60) (7.40)	Grass over soft dark grey slightly sandy slightly grave SILT with rootlets and rare coal/charcoal. Gravel is fin to coarse sub-angular to sub-rounded Sandstone at Mudstone Orange and light brown slightly clayey sandy GRAVEL. Gravel is fine to coarse sub-angular to sub-rounded Sandstone at Mudstone DRILLERS DESCRIPTION Strong grey SANDSTONE	nd N -	× 0 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0.15) (0.45)		
	Hole	Pro	ares	s/\	Wat	er (Obs	Cas	sing			-	Groundwater			-	- -lush	
	Date / Tin						Wate		Diam.	Struck	Rose To			ealed	Dept		Туре	Returns
				-		-			115.00			No grou	indwater encountered		0.00 - 8		Air Mis	

Remarks: Commachio MC450 tracked drilling rig BH marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. m Per Page

Client: RCTCC

Borehole No. BHC04

Date: 11/3/21 Job Number: Q0463

Ground Level: 411.09 m A.O.D.
Level to Ordnance Datum

Location: Within receptor site C Engineer: Redstart Coordinates: 302098.22 E

195798.79 N
Co-ordinates to National Grid

					_										00 01	dinates to	1 vati ona	Giiu
انا	R	un [Deta	ils	Fract	tures	In	situ Tes	ts	Sam	ples		Strata				↓ ↓	
om B.G.L.	Core Run	TCR %	SCR %	RQD %	Min Avg Max	FI	Depth	Test Resi	ults	Depth	Type No. Blows	Depth (Thick- ness)	Description		Legend	Red. Level A.O.D.	Water	Install/ Backfill
0							-			0.10	ES1	(0.15)	Grass soft over dark gre slightly sandy slighty gra	y	× ₀ × ₀ 0 — 0 — _0 o_0 o	<u>(0.15)</u>	-	
							-			0.50	B1 ES2	0.15 (0.45) 0.60	SILT with rootlets and ra	are fine	0-0-0	(0.45)	-	
1							- - -			1.00 1.20	ES3 B2	- 0.00	to coarse sub-angular to sub-rounded Sandstone Mudstone	and				
							- - -			1.20	Б2	-	Orange and light brown slightly clayey sandy GRAVEL. Gravel is fine					
2							-					-	GRAVEL. Gravel is fine coarse sub-angular to sub-rounded Sandstone					
							- - -					-	- (HIGHLY WEATHERED - BRITHDIR MEMBER))				
							- - -					<u>-</u>	DRILLERS DESCRIPTION Strong grey SANDSTON	ON - NE				
							-					_	-					
							-					-	- - -					
							- - -					(7.40)				(7.40)		
							-									()		
							<u>-</u>					<u>-</u>						
							-					-	-					
							- -					-						
												-	- - -					
							-					-	-					
							- - -					<u>-</u>	- -					
							- - - 8					-	-					
							J	SPT (C) 50/10 (25/5mm- 50/10				- 8.00 - -	BH terminated at 8.00ml specified depth	bgl				
												-	-					
												- - -	-					
												-						
	Hole	Pro		e / \	Nat	er (Obs	Cas	sing			<u>t</u>	<u>⊦</u> Groundwater				Flush	_
	Date / Tin				_		Water	Depth	Diam.		Rose To		Behaviour	Sealed	Dept		Type	Retur

Remarks: Commachio MC450 tracked drilling rig BH marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 1 Of 1

Page

Client: RCTCC

Borehole No. BHC05

Dates: 8/3/21 - 9/3/21

Job Number: Q0463

Ground Level: 408.57 m A.O.D.
Level to Ordnance Datum

Location: Within receptor site C

Engineer: Redstart

Coordinates: 302180.01 E

195666.33 N Co-ordinates to National Grid

															Co-or	dinates to	National	Grid
	R	un [Deta	ils	Frac	tures		Insitu Tes	ts	Sam	ples		Strata					
om B.G.L.	Core Run	TCR %	SCR %	RQD %	Min Avg Max	FI	Depth	Test Res	ults	Depth	Type No. Blows	Depth (Thick- ness)	Description		Legend	Red. Level A.O.D.	Water	Install/ Backfill
1 2 3 4 5										0.10 0.50 0.60	ES1 B1 ES2 B2 ES3	(0.20) (0.30) (0.30) (0.10) (0.10) (0.60) (0.10) (0.890)	Grass over soft dark green slightly sandy slightly grandy slightly grandy slightly grandy slightly grandy slightly sandy slightly care sub-angular to sub-rounded Sandstone Mudstone Orange and light brown slightly clayey sandy GRAVEL. Gravel is fine coarse sub-angular to sub-rounded Sandstone Mudstone Grey slightly sandy Gravel is fine to medium angular to sub-angular sandstone (HIGHLY WEATHERED BRITHD) FORMATION) DRILLERS DESCRIPTI Strong grey SANDSTON	to e and rel.	X	(0.20) (0.30) (0.10) (0.10)		
-10 -11 -12												9.50	DRILLERS DESCRIPTI Weak brown grey highly weathered SANDSTON	,		(4.00)	_	
-14 -15												13.50	DRILLERS DESCRIPTI Strong grey SANDSTON					
-16 -17												(6.50)				(6.50)		
-18 -19 -20							-20											
-20								SPT (C) 50/ (25/0mm- 50/6	mm)			20.00	BH terminated at 20.00r specified depth	nbgl			-	
	Hole				_		_		sing				Groundwater				Flush	
08/0	Date / Tin 03/2021 1 03/2021 0	7:00	9	Depth .50 .50	1.	0epth 00 00	Wat	ter Depth 1.00	Diam. 115.00	Struck	Rose To	No grou	Behaviour Indwater encountered	Sealed	Dept 0.00 - 2		Type Air Mist	Returns 100

Remarks: Commcachio MC450 tracked drill rig BH marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. m Per Page

Contract: Tylorstown Phase 4 Gl Borehole No. BHC06 Client: RCTCC 403.20 m A.O.D. Level to Ordnance Datum Ground Level: Date: Job Number: Q0463 9/3/21 Coordinates: 302197.22 E Location: Within receptor site C Engineer: Redstart 195526.23 N Co-ordinates to National Grid Run Details Insitu Tests Samples Strata Fractures Min Depth RQD Core Run TCR SCR Type No. Blows Install/ m (Thick-Level Test Results Depth Description Backfill Legend ness) A.O.D 0.10 ES1 Grass over soft dark grey (0.20)(0.20)0.50 slightly sandy slighty gravelly 0.20 (0.30) FS2 SILT with rootlets and rare (0.70)1.00 1.20 (0.30)ES3 coal/charcoal. Gravel is fine 0.50 to coarse sub-angular to (0.70)-2 sub-rounded Sandstone and 1.20 Mudstone (2.40)(2.40) Orange and light brown 3 slightly clayey sandy GŘAVEL. Gravel is fine to coarse sub-angular to sub-rounded Sandstone and Mudstone 5 Grey slightly sandy Gravel. Gravel is fine to medium -6 angular to sub-angular Sandstone (HIGHLY WEATHERED BRITHDIR MEMBER) DRILLERS DESCRIPTION -Weak brown grey highly weathered SANDSTONE - 8 DRILLERS DESCRIPTION -- 9 Strong grey SANDSTONE 10 (12.80)(12.80)12 13

20 -20 SPT (C) 50/15mm BH terminated at 20.00mbgl specified depth Casing **Hole Progress / Water Obs** Groundwater Flush Date / Time H. Depth C. Depth Water Diam. Struck Rose To Depth Behaviour Sealed Depth Type Returns No groundwater encountered 0.00 - 20.00 1.50 115.00 Air Mist

(3.60)

Remarks: Commachio MC450 tracked drill rig BH marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

15

16

17

18

19

Plas Newydd, Llaned SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 1 Of 1

DRILLERS DESCRIPTION --Strong grey SANDSTONE

with brown weathered Mudstone/Sandstone bands

Page All measurements in metres unless otherwise stated

(3.60)

Client: RCTCC

Bor ehole No. BHC07

Dates: 9/3/21 - 10/3/21

Location: Within receptor site C

Job Number: Q0463

Ground Level: 398.31 m A.O.D. Level to Ordnance Datum

Engineer: Redstart

Coordinates: 302304.20 E

195429.15 N

																·29.15 <i>dinates to</i>		l Grid
ن	R	un [)eta	ils	Frac	tures	l	nsitu Te	sts	Sam	ples		St	rata				
m B.G.L.	Core Run	TCR %	SCR %	RQD %	Min Avg Max	FI	Depth	Test R	esults	Depth	Type No. Blows	Depth (Thick- ness)	Descript	tion	Legend	Red. Level A.O.D.	Water	Install/ Backfill
-0							-			0.10 0.50	ES1 B1 ES2	(0.15) 0.15 (0.45) 0.60	Grass over soft d slightly sandy slig SILT with rootlets coal/charcoal. Gr to coarse sub-an	ghty gravelly s and rare ravel is fine	× ₀ × 0 0 - 0 - 0 0 - 0 0	(0.15) (0.45)	_	
-1 -1							- - - - - - -			1.00 1.20	ES3 B2	(1.40)	sub-rounded Sar Mudstone Orange and light slightly clayey sa GRAVEL. Gravel	ndstone and brown		(1.40)		
-2							- - - - - -					2.00	coarse sub-angu sub-rounded Sar Mudstone Grey slightly sand Gravel is fine to r	lar to ndstone and dy Gravel. medium		(1.40)	_	
- -3 - - -							- - - - -					3.40	angular to sub-ar Sandstone (HIGH WEATHERED B MEMBER) DRILLERS DESC	HLY RITHDIR		(',	_	
- - -4 - -							- - - - -					-	Weak brown grey SANDSTONE DRILLERS DESC Strong grey SAN	y weathered CRIPTION -				
- - - 5 - -							- - - - - - - - -					-						
-6 -6							- - - - - - -					(4.60)				(4.60)		
-7 -7 - -							- - - - - - - -					-						
-8 8 							- -8	SPT (C) ! (25/0mm- 5				8.00	BH terminated at specified depth	: 8.00mbgl			_	
- -9 - - - -												-	-					
- - -	Hali				A/ = 4							Ē	0		<u> </u>			
	Hole				_		_	_	asing	C4mm1	Derr T		Groundwater	61			Flush	
09/0	Date / Tir 03/2021 1 03/2021 0	7:00	8.	Depth .00 .00	2.	50 50 50) Wat	er Depti 2.50	_		Rose To		Behaviour Indwater encounter	red Sealed	0.00 - 8		Type Air Mis	Returns t 100
Day		3		:- N44	245	2 4	1	ما بد مدالانداد	Dilima		· OCL in	li = i = =	with alignt Arga CAT	Farana d DA	0.500		l	

Remarks: Commachio MC450 tracked drilling rig BH marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit to 1.20mbgl undertaken. Gas meters were active at all times during drilling, Gas levels did not exceed O2 - 20.8, H2S - 0, CO - 0, COMB/EX - 0, CH4 - 0

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. m Per Page

All measurements in metres unless otherwise stated

APPENDIX III - ENGINEERING GEOLOGIST'S WINDOW SANPLE HOLE LOGS

Location: Within receptor site C

Client: RCTCC

Window Sample No. **WS01**

Date: 16/3/21

Job Number: Q0463

Ground Level: 405.06 m A.O.D. Level to Ordnance Datum

Engineer: Redstart Coordinates: 301957.67 E

	Sam.		•			Zinginioon i				1957 Co-ord	78.70 N linates to N	ationa	al Grid
	Sam Depth	Type No.		Recovery (%)	Depth	SPT & Hand Vane Results	Depth (Thick-	DESCRIPT	TON	Legend	Red. Level	Water	Install/ Backfill
	1.00 - 1.00 - 2.00	B 1 SPT 1 B 2		(76)	1.00 - 1.45	SPT (S) 15 (4-4-2-3-4-6)	ness)	MADE GROUND - Birand ed slightly sandy with metal fragments. to coarse angular to s Mudstone, clinker, as	silty GRAVEL Gravel is fine ub-angular		. A.O.D.		
- - - - - - - 2	2.00 - 2.00 - 2.00 - 3.00	ES 1 SPT 2 B 3		80	2.00 - 2.45	SPT (S) 12 (2-4- 4-3-3-2)	-						
- - - -				90				Soft to firm grey slight gravelly CLAY with lov cobble content. Grave coarse angular to sub Mudstone and Sands are angular to sub-ar Sandstone (COMPLE HIGHLY WEATHERE MEMBER)	w to medium el is fine to -angular tone. Cobbles tongular TELY TO D BRITHDIR		402.71		
- 3	3.00 - 3.00 -	D1 SPT3			3.00 - 3.44	SPT (S) 50/285mm (10-11- 12-10-10-18/60 mm	(0.10)	Grey sandy silty GRA fine to coarse angular sub-angular Sandstor WEATHERED BRITH MEMBER) WS refused at 3.00m	to ne (HIGHLY IDIR		402.16		

Remarks: Dando terrier tracked window sampling rig WS marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit undertaken

No groundwater encountered

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. m Per Page

All measurements in metres unless otherwise stated

Client: RCTCC

Ground Level:

405.06 m A.O.D. Level to Ordnance Datum

301957.67 E Coordinates:

195778.70 N Co-ordinates to National Grid

Borehole No. **WS01**

Client: RCTCC

Window Sample No. **WS03**

Date: 16/3/21 Job Number: Q0463

397.60 m A.O.D. Level to Ordnance Datum Ground Level:

L	ocation:	Within	recep	otor site	С	Engineer: I	Redstaı	rt	Coordinates:	3021 1954	25.80 E 72.75 N dinates to N	ationa	I Grid
	Sam	ples	Sam	ple Run		Tests			STRATA	00 07	annatoo to 14	ı	Cria
	Depth	Type No.	Diam. (mm)	Recovery (%)	Depth	SPT & Hand Vane Results	Depth (Thick- ness)	DESCRIPT	ION	Legend	Red. Level . A.O.D.	Water	Install/ Backfill
- 1	1.00 -	B1 SPT1	(mm)	0	1.00 - 1.38	SPT (S) 50/230mm (10-10- 15-15-18-2/5mm		Grass over soft dark g sandy slighty gravelly rootlets and rare coal/ Gravel is fine to coars to sub-rounded Sands Mudstone Soft to firm orange an sandy very gravelly Cl fine to coarse sub-ang sub-rounded Sandston Mudstone Grey clayey Gravel. G medium angular to su Sandstone (HIGHLY V BRITHDIR MEMBER) WS refused at 1.00mb	grey slightly SILT with charcoal. e sub-angular stone and d light brown LAY. Gravel is gular to ne and gravel is fine to b-angular WEATHERED	×			Backfill

Dando terrier tracked window sampling rig WS marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken Remarks: and hand pit undertaken

No groundwater encountered

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton

Sheet No. 1 Of 1

m Per All measurements in metres unless otherwise stated Page

Client: RCTCC

Window Sample No. **WS04**

Date: 16/3/21 Job Number: Q0463

Ground Level:

411.09 m A.O.D. Level to Ordnance Datum

	Location:				С	Engineer:	Redstar	t	Coordinates:	1957	98.22 E 98.79 N dinates to N		l Grid
Г	Sam	ples	Sam	ple Run		Tests			STRATA				
	Depth	Type No.	Diam. (mm)	Recovery (%)	Depth	SPT & Hand Vane Results	Depth (Thick- ness)	DESCRIPT		Legend	Red. Level . A.O.D.	Water	Install/ Backfill
-	0.00 - 1.00	B1					_ (0.15) _ 0.15 _ (0.80) _ (0.80)	Grass over soft dark g sandy slighty gravelly rootlets and rare coal/ Gravel is fine to coars to sub-rounded Sands Mudstone Soft to firm orange an- sandy very gravelly CI fine to coarse sub-ang sub-rounded Sandstoi Mudstone	SILT with charcoal. e sub-angular stone and d light brown LAY. Gravel is gular to ne and	× × × × × × × × × × × × × × × × × × ×	410.94		
	1 1.00 -	SPT 1		0	1.00 - (1	SPT (S) 50/200mm 3-12/35mm- 16-17-17/5	0.95 0.0.05) 1.00	Grey clayey Gravel. G medium angular to su Sandstone (HIGHLY V BRITHDIR MEMBER) WS refused at 1.00mb	b-angular WEATHERED		410.19		

Dando terrier tracked window sampling rig WS marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken Remarks: and hand pit undertaken

No groundwater encountered

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton

Sheet No. 1 Of 1

m Per

Page

All measurements in metres unless otherwise stated

Client: RCTCC

Window Sample No. WS05

Date: 16/3/21 Job Number: Q0463

Ground Level :

408.57 m A.O.D. Level to Ordnance Datum

Location: Within receptor site C Engineer: Redstart

Coordinates: 302180.01 E

Remarks: Dando terrier tracked window sampling rig WS marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit undertaken

No groundwater encountered

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 1 Of 1 m Per
Page
All measurements in metres unless otherwise stated

Client: RCTCC

Window Sample No. **WS06**

Date: 16/3/21

Job Number: Q0463

403.20 m A.O.D. Level to Ordnance Datum Ground Level:

Lo	ocation:	Within	recep	otor site	С	Engineer: R	Redstar	t	Coordinates:	3021 1955	ver to Ord 97.22 E 26.23 N		
	Sam	ples	Sam	ple Run		Tests			STRATA	CO-0/1	irrates to rv		i Oriu
	Depth	Type No.	Diam. (mm)	Recovery (%)	Depth	SPT & Hand Vane Results	Depth (Thick- ness)	DESCRIPT	TON	Legend	Red. Level . A.O.D.	Wate	Install/ Backfil
- 1	Sam	ples Type	Samı Diam.	ple Run Recovery		SPT & Hand Vane	(Thick-	Grass over soft dark of sandy slighty gravelly rootlets and rare coal/ Gravel is fine to coars to sub-rounded Sands Mudstone Soft to firm orange an sandy very gravelly Claim to coarse sub-ang sub-rounded Sandsto Mudstone Grey slightly sandy Grame fine to medium angula sub-angular Sandstor WEATHERED BRITH MEMBER) WS refused at 1.00ml	grey slightly SILT with charcoal. e sub-angular stone and d light brown LAY. Gravel is gular to ne and gavel. Gravel is ar to ne (HIGHLY DIR	Co-ord	Red. Level . A.O.D.	Mater	Install/

Dando terrier tracked window sampling rig WS marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken Remarks: and hand pit undertaken

No groundwater encountered

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton

Sheet No. 1 Of 1

m Per

Page

All measurements in metres unless otherwise stated

Client: RCTCC

Window Sample No. WS07

Date: 16/3/21 Job Number: Q0463 Location: Within receptor site C Engineer: Redstart Ground Level: 398.31 m A.O.D. Level to Ordnance Datum

Engineer: Redstart Coordinates: 302304.20 E

			ioi site i	J	Linginica . T	Castai			19542 Co-ord	29.15 N dinates to N	lationa	l Grid
Sam	ples	Sam	ple Run		Tests			STRATA				
Depth	Type No.	Diam. (mm)	Recovery (%)	Depth	SPT & Hand Vane Results	Depth (Thick- ness)	DESCRIPT	ION	Legend	Red. Level . A.O.D.	Water	Instal Backf
0.00 - 1.00	B 1					_ (0.15)	Grass over soft dark g sandy slighty gravelly rootlets and rare coal/	SILT with	× ₀ × × × × × × × × × × × × × × × × × ×			
						_ 0.15 -	Gravel is fine to coars to sub-rounded Sands Mudstone	e sub-angular	 - - - - -	398.16		
						_ (0.45) -	Soft to firm orange an sandy very gravelly Cl fine to coarse sub-and	LAŸ. Gravel is				
						0.60	sub-rounded Sandsto \Mudstone	ne and		397.71		
						-	Grey slightly sandy Gr fine to medium angula sub-angular Sandston WEATHERED BRITH	ar to ne (HIGHLY				
1.00 - 1.00 - 1.40	SPT 1 B 2			1.00 -	SPT (S) 39 (5-6 -6-7-11-15)	- (0.80)	MEMBER)	DIK				
			100	1.45	(,	-						
1.40 -	ES 1			1.40 -	SPT (S) 50/180mm	1.40	WS refused at 1.40ml	agl on hodrock		396.91	-	
1.40 -	SPT 2			1.40 - (1	0-15/60mm- 20-23-7/30mr	n-)	WS refused at 1.40mi	ogi on bedrock		330.31		

Remarks: Dando terrier tracked window sampling rig WS marked out by QGL in liaison with client. Area CAT scanned, PAS survey undertaken and hand pit undertaken

No groundwater encountered

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: G Blades Logged By. S Picton Sheet No. 1 Of 1 m Per

Page

All measurements in metres unless otherwise stated

Client: RCTCC

WS07

Borehole No.

Date: 16/3/21 Job Number: Q0463

Ground Level: 398.31 m A.O.D. Level to Ordnance Datum

Location: Within receptor site C Engineer: Redstart

Coordinates: 302304.20 E

195429.15 N Co-ordinates to National Grid

APPENDIX IV - ENGINEERING GEOLOGIST'S TRIAL PIT LOGS

Client: RCTCC

Trial Pit No. TPC01

Date: 4/3/21 Job Number: Q0463

411.09 m A.O.D. Level to Ordnance Datum Ground Level:

302035.56 E Coordinates:

Location: Within receptor site C Engineer: Redstart 195795.67 N

						1957	795.67 N rdinates to N	lational Gri	d
j	Sampl	es		Tests		Strata	<u>amates to re</u>	ational On	
m B.G.L.	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)	Description	Legend	Red. Level A.O.D.	WATER
- - - -	0.00 - 0.60 - - 0.20 - - - - 0.50 -	B1 - - ES1 - - ES2	-		- - - 0.60 -	MADE GROUND - Black dark grey slightly silty clayey GRAVEL with metal fragments. Gravel is fine to coarse angular to sub-angular Mudstone, clinker and coal			
-	0.60 - 0.70 0.70 - 1.10	D1 B2 B3	-		0.60 0.10 0.70	Very soft to soft brown fibrous PEAT Light brown and orange sandy slightly silty clayey GRAVEL with low to medium cobble content. Gravel is fine to coarse angular to sub-angular Mudstone and Sandstone. Cobbles are angular to sub-angular Sandstone	**************************************	410.49	-
-1 - -	- 1.00 - - 1.10 - 1.30 -	ES3 B4	- - -		1.10	Grey SANDSTONE. Recovered as sandy silty GRAVEL. Gravel is fine to coarse angular to sub-angular Sandstone (HIGHLY WEATHERED BRITHDIR MEMBER)		409.99	-
					1.30	to terminated at 1.30mbgl, on Sandstone bedrock		409.79	
	AN 3.0 A 3.0 A A 3.5 D	_ >		Groundwater: No grou	undwater	Remarks: TP marked out by client. Area CAT scanned and undertaken	QGL in lia PAS surv	aison with vey	1
	↓ C		\$	Shoring: N/A					

Equipment Used:

9 tonne tracked 360 excavator

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton

Sheet No. 1 Of 2

All measurements in metres unless otherwise stated Page

Client: RCTCC

Ground Level:

Trial Pit No. TPC01

411.09 m A.O.D. Level to Ordnance Datum

302035.56 E Coordinates:

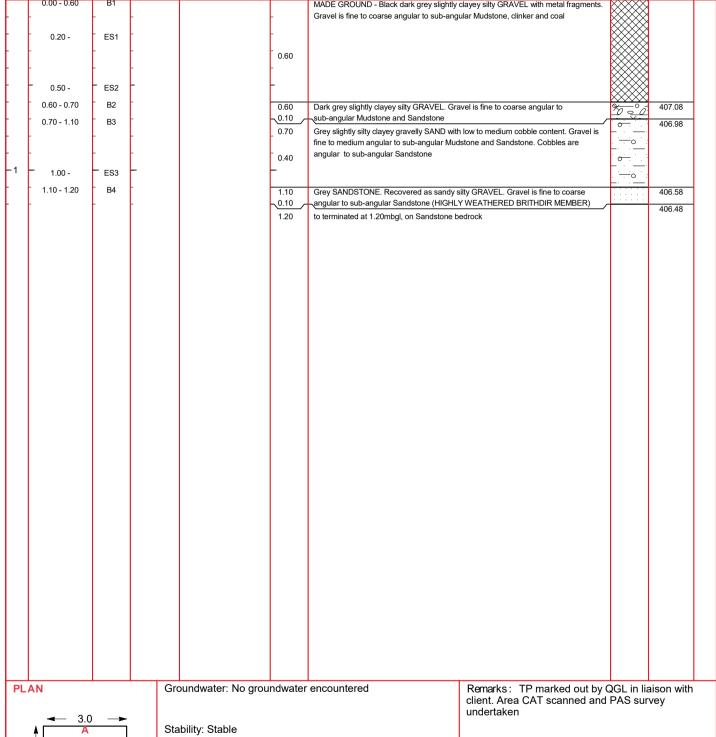
195795.67 N Co-ordinates to National Grid

Date: 4/3/21 Job Number: Q0463 Location: Within receptor site C Engineer: Redstart

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton


Sheet No. 2 Of 2

Page

All measurements in metres unless otherwise stated

Contract: Tylorstown Phase 4 GI Trial Pit No. TPC02 Client: RCTCC Ground Level: 407.68 m A.O.D. Date: 4/3/21 Job Number: Q0463 Level to Ordnance Datum Coordinates: 302048.41 E Location: Within receptor site C Engineer: Redstart 195726.40 N Co-ordinates to National Grid Samples Strata B.G.L. WATER Depth (Thick-ness) Type **Description Test Results Depth Depth** Level Legend Ε A.O.D. 0.00 - 0.60 MADE GROUND - Black dark grey slightly clayey silty GRAVEL with metal fragments Gravel is fine to coarse angular to sub-angular Mudstone, clinker and coal 0.20 -ES1 0.60 0.50 -ES2 0.60 - 0.70 B2 0.60 Dark grey slightly clayey silty GRAVEL. Gravel is fine to coarse angular to 407.08 0.10 sub-angular Mudstone and Sandstone 0.70 - 1.10 ВЗ 406.98 0 Grey slightly silty clayey gravelly SAND with low to medium cobble content. Gravel is 0.70

0.5

Shoring: N/A

Equipment Used: 9 tonne tracked 360 excavator

Plas Newydd, Llaned SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton

Sheet No. Page 1 Of 2

All measurements in metres unless otherwise stated

Client: RCTCC

Ground Level:

407.68 m A.O.D. Level to Ordnance Datum

Trial Pit No. TPC02

Date: 4/3/21 Job Number: Q0463 Location: Within receptor site C Engineer: Redstart

Coordinates: 302048.41 E

195726.40 N Co-ordinates to National Grid

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton

Sheet No. 2 Of 2

All measurements in metres unless otherwise stated Page

Contract: Tylorstown Phase 4 GI Trial Pit No. TPC03 Client: RCTCC

409.76 m A.O.D. Level to Ordnance Datum Ground Level: Date: 4/3/21 Job Number: Q0463 Coordinates:

302142.21 E Location: Within receptor site C Engineer: Redstart

							Co-or	95.33 N dinates to N	lational Gri	id
	Sample	es		Tests		St	rata			_
	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)	Descript	ion	Legend	Red. Level A.O.D.	WATED
-		-	-		0.20	Grass over soft dark grey slightly sandy slightly of coal/charcoal. Gravel is fine to coarse sub-angu Mudstone		× ₀ × × × × × × × × × × × × × × × × × × ×		Ť
-	0.20 - 0.50 0.20 -	- B1 _ ES1 -	- - -		0.20	Grey slightly silty clayey gravelly SAND with low fine to medium angular to sub-angular Mudston angular to sub-angular Sandstone			409.56	
ŀ	0.50 -	ES2	_		0.50	Grey Gravel. Gravel is fine to medium angular to WEATHERED BRITHDIR MEMBER)	sub-angular SANDSTONE (HIGHLY		409.26	┨
	0.60 -	T B2			0.60	to terminated at 0.60mbgl, on Sandstone bedro	ck		409.16	
LA	N → 3.0	-		oundwater: No gro	undwater	cli	emarks: TP marked out by 0 ent. Area CAT scanned and ndertaken	QGL in lia PAS sur	nison with	<u> </u>
0.8	D C	В		ability: Stable oring: N/A						

9 tonne tracked 360 excavator Equipment Used:

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton

Sheet No. Page 1 Of 2

All measurements in metres unless otherwise stated

Client: RCTCC

Ground Level:

409.76 m A.O.D. Level to Ordnance Datum Date: 4/3/21 Job Number: Q0463 Location: Within receptor site C

302142.21 E Engineer: Redstart Coordinates:

195695.33 N Co-ordinates to National Grid

Trial Pit No. TPC03

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton

Sheet No. 2 Of 2

All measurements in metres unless otherwise stated Page

Location: Within receptor site C

Client: RCTCC

Trial Pit No. TPC04

Date: 4/3/21

Job Number: Q0463 Engineer: Redstart

405.35 m A.O.D. Level to Ordnance Datum Ground Level:

302174.22 E Coordinates:

195592.52 N

						195 <i>C</i> o-(592.52 Nordinates to N	 National Gr	id
ų.	Sampl	es		Tests		Strata			
m B.G.L.	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)	Description	Legend	Red. Level A.O.D.	WATER
						Grass over soft dark grey slightly sandy slighty gravelly SILT with rootlets and rare coal/charcoal. Gravel is fine to coarse sub-angular to sub-rounded Sandstone and	×0 ×		
	[0.30	Mudstone	× ^ · × · · · · · · · · · · · · · · · ·		
	0.20 -	ES1					°× ,		
-	0.30 - 0.60	B1	-		0.30	Orange grey and light brown slightly clayey silty sandy GRAVEL. Gravel is fine to coarse sub-angular to sub-rounded Sandstone and Mudstone	0-0-0	405.05	
-	- 0.50 -	ES2	-		_ 0.30		000		
-	-	-	-		0.60	Grey light brown slightly silty clayey sandy GRAVEL with medium to high cobble and	0 / -0 / *** Ox*** Ox*** Ox***	404.75	-
-	-	-	-		-	boulder content. Gravel is fine to medium angular to sub-angular Sandstone. Cobbles	3 X X X		
-	-	-	-		-	and boulders are sub-angular to angular Sandstone (POSSIBLE HIGHLY WEATHERED BRITHDIR MEMBER)	*		
-	-	-	-		-		* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
-1	1.00 -	B2	-		0.90		0 X 0 7		
-	-	_ ES3	-		0.90		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		-					× × ×		
							* X X X		
	- 450 470	- 02	_				* 0 = *0		
-	- 1.50 - 1.70 -	- B3	-		1.50 - 0.20	Grey silty sandy GRAVEL. Gravel is fine to coarse angular to sub-angular Sandstone (HIGHLY WEATHERED BRITHDIR MEMBER)		403.85	
-	-	-	-		1.70	to terminated at 1.70mbgl, on Sandstone bedrock		403.65	
PL	AN		Gr	oundwater: No grou	ındwater	r encountered Remarks: TP marked out by	QGL in lia	aison wit	h
(3.0 0.5 D	В		ability: Stable		client. Area CAT scanned and undertaken	d PAS sur	vey	
	<u> </u>			oring: N/A					
Equ	uipment Used:	9 ton	ne tracked	360 excavator					

Quantum

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton

Sheet No. Page 1 Of 2

All measurements in metres unless otherwise stated

Client: RCTCC

4/3/21

Date:

Ground Level: 4

TPC04

Trial Pit No.

405.35 m A.O.D. Level to Ordnance Datum

Coordinates:

302174.22 E

195592.52 N Co-ordinates to National Grid

Location: Within receptor site C

Job Number: Q0463 Engineer: Redstart

JOB NAME: FIRESTING FAMOUR COMMITTEE CO. 4-6-7
TRIAL PIT NUMBER: 72-4

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL Logged By. S Picton Sheet No. 2 Of 2

Page All measurements in metres unless otherwise stated

Contract: Tylorstown Phase 4 GI Trial Pit No. TPC05 Client: RCTCC

399.40 m A.O.D. Level to Ordnance Datum Ground Level: Date: 4/3/21 Job Number: Q0463 302186.24 E Location: Within receptor site C Engineer: Redstart Coordinates:

	odiloii. V	• • • • • • • • • • • • • • • • • • • •	ocopic.		gc.	or. Rodolart	1954	176.04 N dinates to N	lational Gri	d
.G.L.	Sampl	es		Tests		,	Strata	umates to iv	iauoriai Gri	
m B.G.	Depth	Type No.	Depth	Test Results	Depth (Thick- ness)	Descri	ption	Legend	Red. Level A.O.D.	WATER
	- 0.20 -	- ES1	-		_ 0.30	Grass over soft dark grey slightly sandy slight coal/charcoal. Gravel is fine to coarse sub-al Mudstone		× ₀ × × × × × × × × × × × × × × × × × × ×		
	- 0.30 - 0.90 -	- B1 -	-		0.30	Soft to firm orange with light brown slightly of to coarse sub-angular to sub-rounded Sands		× ×	399.10	
	- 0.50 - - -	- ES2 - -	- - -		0.60					
1	- 1.00 - -	- B2 ES3	- - -		0.90 - -	Grey brown slightly sandy silty clayey GRAVI boulder content. Gravel is fine to medium an and boulders are sub-angular to angular Sai BRITHDIR MEMBER)	gular to sub-angular Sandstone. Cobbles		398.50	
	- -	- - -	- - -		- 0.75 - -					
	1.70 -	- вз	-		1.65	Grey SANDSTONE bedrock (BRITHDIR ME to terminated at 1.70mbgl, on Sandstone bedrock)			397.75 397.70	┨
PL	AN 3.0			oundwater: No gro	undwater		Remarks: TP marked out by client. Area CAT scanned and undertaken	QGL in lia PAS sur	aison with vey	1
(D C	В		ability: Stable oring: N/A						
Equ	uipment Used:	9 ton	ne tracked	360 excavator						

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email: Logged By. Sheet No. Operator: All measurements in metres unless otherwise stated Page Quantum QGL S Picton 1 Of 2

Client: RCTCC

Ground Level:

TPC05

Trial Pit No.

Date: 4/3/21

Job Number: Q0463

evel: 399.40 m A.O.D. Level to Ordnance Datum

Location: Within receptor site C

Engineer: Redstart

Coordinates: 302186.24 E

195476.04 N Co-ordinates to National Grid

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL Logged By. S Picton Sheet No. 2 Of 2

Page All measurements in metres unless otherwise stated

Contract: Tylorstown Phase 4 GI Trial Pit No. TPC06 Client: RCTCC 402.23 m A.O.D. Level to Ordnance Datum Ground Level: Job Number: Q0463 Date: 4/3/21 Coordinates: 302257.37 E Location: Within receptor site C Engineer: Redstart 195498.17 N Co-ordinates to National Grid Samples Strata WATER B.G.L. Depth (Thick-ness) Type No. **Description** Depth **Test Results Depth** Level Legend Ε A.O.D. Grass over soft dark grey slightly sandy slightly gravelly SILT with rootlets and rare coal/charcoal. Gravel is fine to coarse sub-angular to sub-rounded Sandstone and \times 0.20 0.20 - 0.50 В1 0 00 0.20 402.03 Orange and light brown slightly clayey silty sandy GRAVEL. Gravel is fine to coarse 0.20 - 0.30 ES1 sub-angular to sub-rounded Sandstone and Mudstone 0-0 0.30 0./-0 0.50 - 0.60 0.50 Grev silty sandy GRAVEL with medium to high cobble and boulder content. Gravel is 401 73 0.50 -ES2 fine to medium angular to sub-angular Sandstone. Cobbles and boulders are 0.05 401.68 0.60 sub-angular to angular Sandstone (HIGHLY WEATHERED BRITHDIR MEMBER) 0.55 401.63 0.05 Grey SANDSTONE boulder/bedrock Terminated at 0.60mbgl, on possible Sandstone boulder/bedrock 0.60 Remarks: TP marked out by QGL in liaison with **PLAN** Groundwater: No groundwater encountered client. Area CAT scanned and PAS survey undertaken 3.0 Stability: Stable В 0.5 Shoring: N/A Equipment Used: 9 tonne tracked 360 excavator

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL Logged By. S Picton Sheet No. m Per 1 Of 2

All measurements in metres unless otherwise stated

Client: RCTCC

4/3/21

Location: Within receptor site C

Date:

Ground Level:

402.23 m A.O.D. Level to Ordnance Datum Job Number: Q0463 Engineer: Redstart

302257.37 E Coordinates:

195498.17 N Co-ordinates to National Grid

Trial Pit No. TPC06

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

Operator: QGL

Logged By. S Picton

Sheet No. 2 Of 2

Page

All measurements in metres unless otherwise stated

Client: RCTCC

Trial Pit No. TPC07

Date: 4/3/21 Job Number: Q0463 Location: Within receptor site C

399.47 m A.O.D. Level to Ordnance Datum Ground Level:

Coordinates: 302260.33 E Engineer: Redstart

195412.88 N

Co-ordinates to National Grid Samples Strata B.G.L. WATER Depth (Thick-ness) Type No. **Description** Depth **Test Results Depth** Level Legend Ε A.O.D. Grass over soft dark grey slightly sandy slightly gravelly SILT with rootlets and rare coal/charcoal. Gravel is fine to coarse sub-angular to sub-rounded Sandstone and ×°°× Mudstone 0.30 ES1 × 0.20 -0.30 - 0.80 В1 0.30 Orange and light brown slightly silty clayey SAND. Sand is fine to coarse 399.17 0.50 -ES2 0.50 Grey silty sandy GRAVEL with medium to high cobble and boulder content. Gravel is 398.67 fine to medium angular to sub-angular Sandstone. Cobbles and boulders are sub-angular to angular Sandstone (HIGHLY WEATHERED BRITHDIR MEMBER) 1.00 -R2 ES3 1.90 -2 2.00 - 2.70 ВЗ 2.00 -ES4 80×8 396.77 to terminated at 2.70mbgl, sides collapsing little progress being made Remarks: TP marked out by QGL in liaison with client. Area CAT scanned and PAS survey Groundwater: No groundwater encountered **PLAN** undertaken 3.0 Stability: Unstable and collapsing below 1.50mbgl В 0.5 Shoring: N/A

Ouantum

Equipment Used:

Plas Newydd, Llaned SA4 0FQ Tel: Fax: email:

9 tonne tracked 360 excavator

Operator: QGL

Logged By. S Picton

Sheet No. Page 1 Of 2

All measurements in metres unless otherwise stated

Client: RCTCC

Ground Level: 399.47 m A.O.D. Level to Ordnance Datum

Coordinates: 302260.33 E

0010111ates. 302260.33 E

195412.88 N Co-ordinates to National Grid

Trial Pit No. TPC07

Date: 4/3/21 Job Number: Q0463 Location: Within receptor site C Engineer: Redstart

Plas Newydd, Llanedi SA4 0FQ Tel: Fax: email:

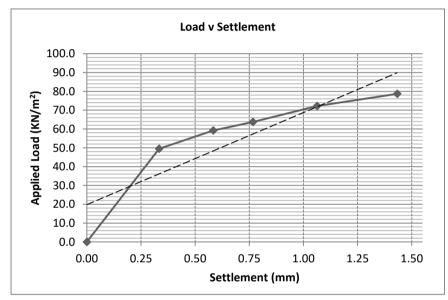
Operator: QGL Logged By. S Picton Sheet No. 2 Of 2

m Per Page

All measurements in metres unless otherwise stated

APPENDIX V - CBR TEST RESULTS

Plas Newydd, Llanedi, Pontarddulais, Swansea SA4 0FQ


Tel.: 01554 744880

Determination of CBR Using the Plate Load Test to BS 1377: Part 9: 1990, TP09 & IAN73/06 Rev.1

Client Name:	Redstart		
Client Address:			
Contract Name:	Tylerstown Phase 4 GI	Contract No.:	Q0463

Site Reference:	1 L		Lab. Reference: 1.1		1.1	Date Tested:	12/03/2021	
Sample Location:		CBR 1				Date Received:	12/03/2021	
Material Description:					Brown sandy gravelly CLAY			
Supplier:	In-Situ			Source:		In-Situ		
Depth Below Ground Level:		0	.3	Reaction Lo	oad:	8 Tonne Tracked Excavator		
Plate Diameter (mm):		30	00	Plate Area	(m²):	0.071	l	

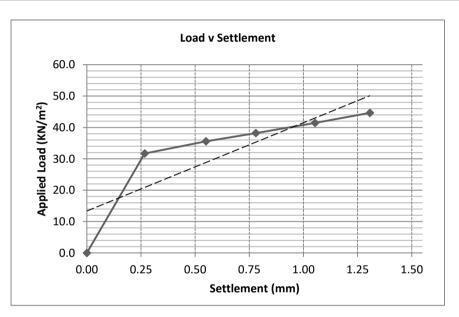
Settlement	Load	Settlement
(mm)	(KN/m ²)	Time (min)
0.00	0.0	0
0.33	49.5	2
0.58	59.2	2
0.77	63.8	2
1.06	72.2	2
1.43	78.7	2
Derived		
Load At	75.5	
1.25mm		

Modulus Of Subgrade Reaction (k ₇₆₂)(MN/m2/m)	27
Equivalent CBR Value (%)	2.8

Remarks:	 	 	

Signed: A Jones

Plas Newydd, Llanedi, Pontarddulais, Swansea SA4 0FQ


Tel.: 01554 744880

Determination of CBR Using the Plate Load Test to BS 1377: Part 9: 1990, TP09 & IAN73/06 Rev.1

Client Name:	Redstart		
Client Address:			
Contract Name:	Tylerstown Phase 4 GI	Contract No.:	Q0463

Site Reference:		2 Lal		Lab. Reference:		Date Tested:	12/03/2021
Sample Location:			CBR 2			Date Received:	12/03/2021
Material Description:		MADE GROUND: Black silty s			lty slightly s	andy Gravel (Colliery	Spoil)
Supplier:	In-Situ			Source:		In-Situ	
Depth Below Ground L	epth Below Ground Level:		.3	Reaction Lo	oad:	8 Tonne Tracked Excavator	
Plate Diameter (mm):		30	00	Plate Area	(m²):	0.071	

Settlement	Load	Settlement
(mm)	(KN/m ²)	Time (min)
0.00	0.0	0
0.27	31.7	2
0.55	35.6	2
0.78	38.2	2
1.05	41.4	2
1.31	44.7	2
Derived		
Load At	43.9	
1.25mm		

Modulus Of Subgrade Reaction (k ₇₆₂)(MN/m2/m)	15
Equivalent CBR Value (%)	1.1

Remarks:			

Signed: A Jones

Plas Newydd, Llanedi, Pontarddulais, Swansea SA4 0FQ

Tel.: 01554 744880

Determination of CBR Using the Plate Load Test to BS 1377: Part 9: 1990, TP09 & IAN73/06 Rev.1

Client Name:	Redstart		
Client Address:			
Contract Name:	Tylerstown Phase 4 GI	Contract No.:	Q0463

Site Reference:		3 La		Lab. Reference:		Date Tested:	12/03/2021
Sample Location:			CBR 3			Date Received:	12/03/2021
Material Description:		MADE GROUND: Black silt			lty slightly s	andy Gravel (Colliery	Spoil)
Supplier:	In-Situ			Source:		In-Situ	
Depth Below Ground L	Depth Below Ground Level:		.3	Reaction Lo	oad:	8 Tonne Tracked Excavator	
Plate Diameter (mm):		30	00	Plate Area	(m²):	0.071	L

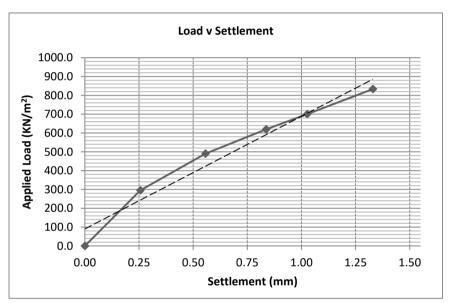
Settlement	Load	Settlement
(mm)	(KN/m ²)	Time (min)
0.00	0.0	0
0.28	39.8	2
0.53	46.3	2
0.76	56.0	2
1.05	62.5	2
1.31	68.9	2
Derived		
Load At	67.5	
1.25mm		

Modulus Of Subgrade Reaction (k ₇₆₂)(MN/m2/m)	24
Equivalent CBR Value (%)	2.3

Remarks:		

Signed: A Jones

Plas Newydd, Llanedi, Pontarddulais, Swansea SA4 0FQ


Tel.: 01554 744880

Determination of CBR Using the Plate Load Test to BS 1377: Part 9: 1990, TP09 & IAN73/06 Rev.1

Client Name:	Redstart		
Client Address:			
Contract Name:	Tylerstown Phase 4 GI	Contract No.:	Q0463

Site Reference:	4	4	Lab. Refere	ence:	1.4	Date Tested:	12/03/2021
Sample Location:			CBR 4			Date Received:	12/03/2021
Material Description:		Brownish grey Rock					
Supplier:	In-Situ			Source:		In-Situ	
Depth Below Ground Level:		0	.3	Reaction Lo	oad:	8 Tonne Tracket	d Excavator
Plate Diameter (mm):		30	00	Plate Area	(m²):	0.071	

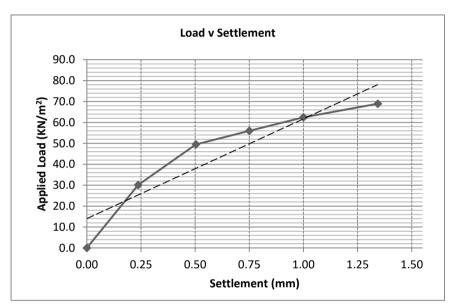
Settlement	Load	Settlement
(mm)	(KN/m ²)	Time (min)
0.00	0.0	0
0.26	295.7	2
0.56	490.1	2
0.84	619.6	2
1.03	700.6	2
1.33	833.4	2
Derived		
Load At	798.4	
1.25mm		

Modulus Of Subgrade Reaction (k ₇₆₂)(MN/m2/m)	281
Equivalent CBR Value (%)	169.1

Remarks:	 	 	

Signed: A Jones

Plas Newydd, Llanedi, Pontarddulais, Swansea SA4 0FQ


Tel.: 01554 744880

Determination of CBR Using the Plate Load Test to BS 1377: Part 9: 1990, TP09 & IAN73/06 Rev.1

Client Name:	Redstart		
Client Address:			
Contract Name:	Tylerstown Phase 4 GI	Contract No.:	Q0463

Site Reference:	ļ	5	Lab. Refere	ence:	1.5	Date Tested:	12/03/2021
Sample Location:		CBR 5				Date Received:	12/03/2021
Material Description:	MADE GROUND: Black silty slightly sandy Gravel (Colliery Spoil)				Spoil)		
Supplier:		In-Situ		Source:		In-Sit	u
Depth Below Ground Level:		0	.3	Reaction Lo	oad:	8 Tonne Tracked Excavator	
Plate Diameter (mm):		30	00	Plate Area	(m²):	0.071	L

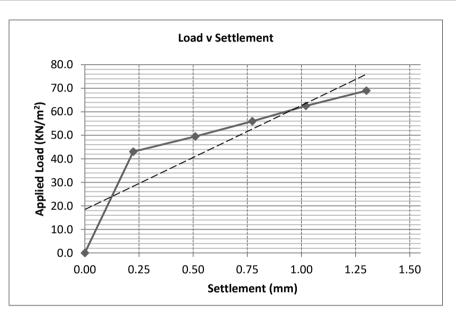
Settlement	Load	Settlement
(mm)	(KN/m ²)	Time (min)
0.00	0.0	0
0.24	30.1	2
0.50	49.5	2
0.75	56.0	2
1.00	62.5	2
1.34	68.9	2
Derived		
Load At	67.2	
1.25mm		

Modulus Of Subgrade Reaction (k ₇₆₂)(MN/m2/m)	24
Equivalent CBR Value (%)	2.3

Remarks:			

Signed: A Jones

Plas Newydd, Llanedi, Pontarddulais, Swansea SA4 0FQ


Tel.: 01554 744880

Determination of CBR Using the Plate Load Test to BS 1377: Part 9: 1990, TP09 & IAN73/06 Rev.1

Client Name:	Redstart		
Client Address:			
Contract Name:	Tylerstown Phase 4 GI	Contract No.:	Q0463

Site Reference:	(5 La	ab. Refere	nce:	1.6	Date Tested:	12/03/2021	
Sample Location:			CBR 6		Date Received:	12/03/2021		
Material Description:		MAI	DE GROUN	ND: Black sil	andy Gravel (Colliery Spoil)			
Supplier:		In-Situ		Source:		In-Situ		
Depth Below Ground L	0.3		Reaction Lo	ad:	8 Tonne Tracked Excavator			
Plate Diameter (mm):	300		Plate Area ((m²):	0.071			

Settlement	Load	Settlement
(mm)	(KN/m ²)	Time (min)
0.00	0.0	0
0.22	43.0	2
0.51	49.5	2
0.77	56.0	2
1.02	62.5	2
1.30	68.9	2
Derived		
Load At	67.8	
1.25mm		

Modulus Of Subgrade Reaction (k ₇₆₂)(MN/m2/m)	24
Equivalent CBR Value (%)	2.4

Remarks:			

Signed: A Jones

APPENDIX VI – POST FIELDWORK MONITORING RESULTS

LANDGAS & GROUNDWATER MONITORING RECORD SHEET

Page 1 of 1

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH01
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

Installation Date:												
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)								
405.06	А	50	20.00	17.00-20.00								
403.00												

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH ₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole	Depth	Local V	Veather	Remarks
			mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	09:30	982	-0.26	0.0	0.0	1.0	20.8	0	0	DRY		20.00	385.06	Cloudy	Cloudy	
А	06.04.21	08:00	980	0.16	0.0	0.0	1.2	20.6	0	0	DRY		20.00	385.06	Fine	Snowing	

LANDGAS & GROUNDWATER MONITORING RECORD SHEET

Page 1 of 1

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH02
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
404.82	А	50	24.00	21.00-24.00
404.02				

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	HoleD	HoleDepth		Veather	Remarks
			mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
А	19.03.21	09:45	982	0.50	0.0	0.0	0.2	21.4	0	0	23.20	381.62	24.00	380.82	Cloudy	Cloudy	Insufficient water for sample
А	06.04.21	08:15	980	0.23	0.0	0.0	0.4	20.8	0	0	DRY		24.00	380.82	Fine	Cloudy	

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH03
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
397.6	А	50	8.00	5.00-8.00
397.0				

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole[Depth	Local V	Veather	Remarks
			mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	10:30	983	0.13	0.0	0.0	0.5	21.2	0	0	DRY		8.00	389.60	Cloudy	Cloudy	
Α	06.04.21	08:30	981	0.25	0.0	0.0	0.7	21.0	0	0	DRY		8.00	389.60	Fine	Snowing	

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH05
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
408.57	А	50	20.00	17.00-20.00
400.57				

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH ₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole	Depth	Local V	Veather	Remarks
		, ,	mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	10:00	982	3.00	0.0	0.0	0.6	18.2	0	0	19.85	388.72	20.00	388.57	Cloudy	Cloudy	Insufficient water for sample
Α	06.04.21	08:45	980	0.24	0.0	0.0	0.8	19.8	0	0	DRY		20.00	388.57	Fine	Snowing	

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH06
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
403.19	А	50	20.00	17.00-20.00
403.19				

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole	Depth	Local V	Veather	Remarks
			mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	10:45	983	1.25	0.0	0.0	0.1	20.2	0	0	DRY		20.00	383.19	Cloudy	Cloudy	
А	06.04.21	09:00	980	0.23	0.0	0.0	1.0	20.3	0	0	DRY		20.00	383.19	Fine	Snowing	

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH07
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
398.31	А	50	8.00	5.00-8.00
390.31				

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole[Depth	Local V	Veather	Remarks
		, ,	mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	10:15	983	0.08	0.0	0.0	0.2	21.1	0	0	6.43	391.88	8.00	390.31	Cloudy	Cloudy	Sample taken
А	06.04.21	09:15	980	0.23	0.0	0.0	0.5	20.3	0	0	DRY		8.00	390.31	Fine	Snowing	

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH01A - Old existing
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
	Α	19		

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH ₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole[Depth	Local V	Veather	Remarks
			mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	11:00	983	0.10	0.0	0.0	0.1	21.4	0	0	DRY		65.00		Cloudy	Cloudy	
Α	06.04.21	09:30	980	0.21	0.0	0.0	0.2	21.2	0	0	DRY		65.00		Fine	Snowing	
						ļ											
						į											
						İ											
						İ											

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH02A - Old existing
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
	А	19		

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole	Depth	Local V	Veather	Remarks
			mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	11:15	983	0.10	0.0	0.0	0.3	20.9	0	0	DRY		70.00		Cloudy	Cloudy	
Α	06.04.21	09:45	980	0.23	0.0	0.0	0.1	21.0	0	0	DRY		70.00		Fine	Snowing	
						ļ											

Project Name:	Tylorstown Phase 4 GI
Project No.:	Q0463
BH/TP No.:	BH03A - Old existing
Instruments Used:	Water Dip Meter Probe, GA2000 Gas Anaylser

	Installation	n Date:		
GL (mAOD)	Pipe	Туре	Installation Depth (mbgl)	Response Zone (mbgl)
	А	19		

Pipe	Date	Time (24hrs)	Atmos Pressure	Differential Well Pressure	Flow	CH₄	CO ₂	O ₂	СО	H ₂ S	Water	Level	Hole[Depth	Local V	Veather	Remarks
			mBar	mBar	L/hr	%	%	%	ppm	ppm	mbgl	mAOD	mbgl	mAOD	Recent	Current	
Α	19.03.21	11:30	983	0.10	0.0	0.0	0.1	21.3	0	0	DRY		69.00		Cloudy	Cloudy	
Α	06.04.21	10:00	980	0.23	0.0	0.0	0.0	21.4	0	0	DRY		69.00		Fine	Snowing	
						ļ											

APPENDIX VII - GEOTECHNICAL LABORATORY TEST CERTIFICATES

Report Date: 31-03-2021

Contract Number: 53030

Client Ref: Q0463

Client PO:

Client Quantum Geotechnic Ltd

Ty Berwig

Bynea

Llanelli.

Carmarthenshire.

SA14 9ST

Contract Title: Tylorstown Phase 4 GI

For the attention of: Steffan Picton

Date Received: 17-03-2021
Date Completed: 31-03-2021

Test Description	Qty
Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	18
4 Point Liquid & Plastic Limit	11
BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	
PSD Wet Sieve method	20
BS 1377:1990 - Part 2 : 9.2 - * UKAS	
PSD: Sedimentation by pipette carried out with Wet Sieve (Wet Sieve must also be selected) BS 1377:1990 - Part 2: 9.4 - * UKAS	1
Organic Matter Content-dichromate method	8
Sub-contracted Test - @ Non Accredited Test	
Acid Soluble Sulphate	7
Sub-contracted Test - @ Non Accredited Test	
Water Soluble Sulphate 2:1 extract	5
Sub-contracted Test - @ Non Accredited Test	

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)

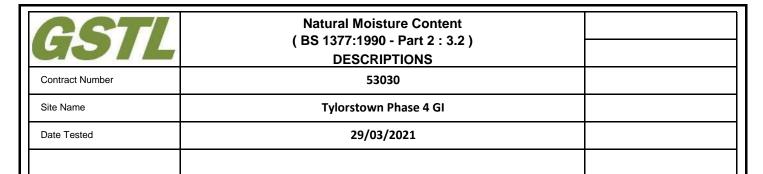
Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Contract Number: 53030

Test Description	Qty
pH value of soil Sub-contracted Test - @ Non Accredited Test	7
Loss on Ignition Sub-contracted Test - @ Non Accredited Test	3
Determination of the Total Sulphur content of Soil Sub-contracted Test - @ Non Accredited Test	5
Determination of Point Load Value Axial or Diametrical including WC *Please note GSTL is not accredited for the water content of rock* ISRM Suggested Method for Point Load Strength - * UKAS	6
Samples Received - @ Non Accredited Test	58
Disposal of samples for job	1

Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests


This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd

Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN

Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Sample/Hole Reference	Sample Number	Sample Type	D	epth (m	m) Descriptions
WS01	2	SPT	2.00	-	Reddish brown sandy CLAY
BHC03	1	В	0.50	-	Brown fine to coarse gravelly sandy silty CLAY
BHC04	1	В	0.50	-	Brown fine to coarse gravelly sandy silty CLAY
BHC07	1	В	1.20	-	Brown sandy silty fine to coarse gravelly CLAY
				-	, , , , ,
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
				-	
	ļ			-	
	ļ			-	
				-	
<u> </u>				-	
-				-	
-	 			-	
	 			-	
				-	
<u></u>	ı	l			<u> </u>

Operators	Checked	31/03/2021	Richard John (Advanced Testing Manager)
Gavin Jenkins	Approved	31/03/2021	Paul Evans (Quality/Technical Manager)

GSTL	Natural Moisture Content (BS 1377:1990 - Part 2 : 3.2)	
Contract Number	53030	
Site Name	Tylorstown Phase 4 GI	
Date Tested	29/03/2021	

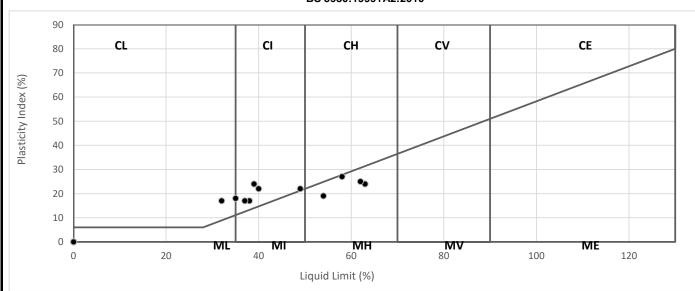
Sample/Hole Reference	Sample Number	Sample Type	D	epth (m	n)	Moisture Content %	Remarks
WS01	2	SPT	2.00	-		8.5	
BHC03	1	В	0.50	-		29	
BHC04	1	В	0.50	-		39	
BHC07	1	В	1.20	-		49	
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
				-			
	-			-			
				-			
	 			-		ļ	
	-			-			
	1			-		<u> </u>	
	 			-		ļ	
	-			-			
	1			-		<u> </u>	
	 			-		ļ	
				-		<u> </u>	
	 			-		ļ	
	1			-		<u> </u>	
	<u> </u>			-		<u> </u>	

Operators	Checked	31/03/2021	Richard John (Advanced Testing Manager)
Gavin Jenkins	Approved	31/03/2021	Paul Evans (Quality/Technical Manager)

GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	53030	
Site Name	Tylorstown Phase 4 GI	
Date Tested	29/03/2021	
	DESCRIPTIONS	

Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		n)	Descriptions
TPC01	3	В	0.70	-	1.10	Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL (with cobbles)
TPC02	3	В	0.70	-	1.10	Brown silty/clayey fine to coarse sandy fine to coarse SAND
TPC03	1	В	0.20	-	0.50	Brown silty/clayey fine to coarse sandy fine to coarse SAND
TPC04	1	В	0.30	-	0.60	Grey clayey/silty fine to coare sandy fine to coarse GRAVEL (with cobbles)
TPC04	2	В	1.00	-		Brown silty/clayey fine to coarse sandy fine to coarse GRAVEL
TPC05	1	В	0.30	-	0.90	Brown clayey/silty fine to coarse sandy fine to coarse GRAVEL
TPC05	2	В	1.00	- 1		Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL (with cobbles)
TPC06	1	В	0.20	-	0.50	Dark brown clayey/silty fine to coarse sandy fine to coarse GRAVEL
TPC07	1	В	0.30	-	0.80	Brown silty/clayey fine to coarse sandy fine to coarse SAND
TPC07	2	В	1.00	-		Light brown slightly silty/clayey fine to coarse sandy fine to coarse GRAVEL
WS01	3	В	2.00	-	3.00	Brown sandy silty CLAY
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

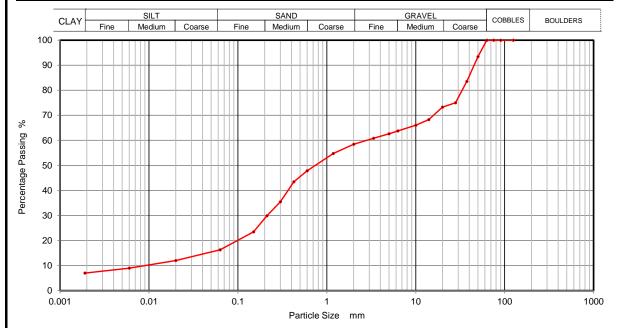
Operators	Checked	31/03/2021	Richard John (Advanced Testing Manager)
Gavin Jenkins	Approved	31/03/2021	Paul Evans (Quality/Technical Manager)



GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	53030	
Project Location	Tylorstown Phase 4 GI	
Date Tested	29/03/2021	

Sample/Hole Reference	Sample Number	Sample Type	D	epth (n	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
TPC01	3	В	0.70	-	1.10	22	38	21	17	42	CI Intermediate Plasticity
TPC02	3	В	0.70	-	1.10	35	49	27	22	54	CI Intermediate Plasticity
TPC03	1	В	0.20	-	0.50	34	58	31	27	34	MH High Plasticity
TPC04	1	В	0.30	-	0.60	34	63	39	24	23	MH High Plasticity
TPC04	2	В	1.00	-		17	35	17	18	28	CL/I Low/Inter. Plasticity
TPC05	1	В	0.30	-	0.90	29	54	35	19	25	MH High Plasticity
TPC05	2	В	1.00	-		16	37	20	17	31	CI Intermediate Plasticity
TPC06	1	В	0.20	-	0.50	31	62	37	25	32	MH High Plasticity
TPC07	1	В	0.30	-	0.80	17	32	15	17	40	CL Low Plasticity
TPC07	2	В	1.00	-	ſ	14	40	18	22	18	CI Intermediate Plasticity
WS01	3	В	2.00	-	3.00	18	39	15	24	80	CI Intermediate Plasticity
				-						ļ ,	
				-	ſ		ĺ '			ľ	
				-	ſ		ĺ '			ľ	
				-						ļ ,	
-				-						ļ ,	
				-						ļ ,	
				-							
				-							
				-							
				-							
				-			ſ <u></u>				
				-							
				-							

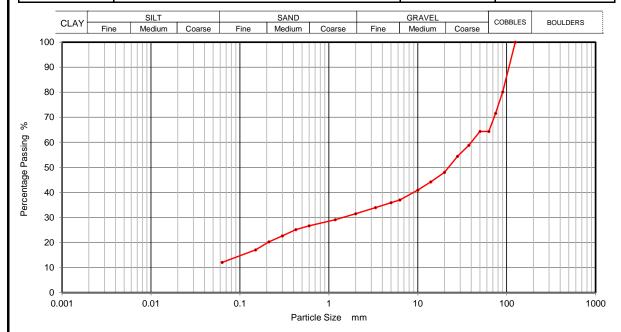
Symbols: NP : Non Plastic # : Liquid Limit and Plastic Limit Wet Sieved


PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	31/03/2021	Richard John (Advanced Testing Manager)
Gavin Jenkins	Approved	31/03/2021	Paul Evans (Quality/Technical Manager)

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4	Borehole/Pit No.	BH02
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Brown slightly clayey slightly silty fine to coarse sandy fine to coarse	Depth Top	0.50
	GRAVEL	Depth Base	
Date Tested	26/03/2021	Sample Type	В

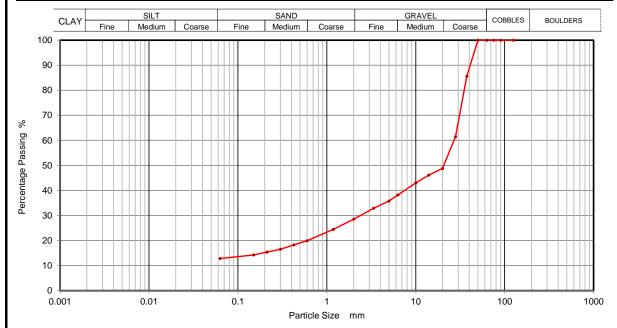
Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0200	12
90	100	0.0060	9
75	100	0.0020	7
63	100		
50	93		
37.5	84		
28	75		
20	73		
14	68		
10	66		
6.3	64		
5	63		
3.35	61		
2	58		
1.18	55		
0.6	48		
0.425	43		
0.3	35		
0.212	30		
0.15	23		
0.063	16		


MC in accordance with BS137	7 Part 2 1990 Clause 3.2
Moisture Content %	42

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	42	
Sand	42	
Silt	9	
Clay	7	

Operator	Checked	30/03/2021	Richard John	R
David	Approved	31/03/2021	Paul Evans	DP Granz

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BH02
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Brown clayey/silty fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	1.20
		Depth Base	
Date Tested	26/03/2021	Sample Type	В

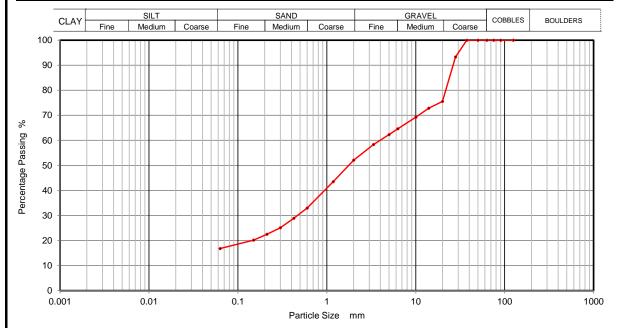

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	80			
75	72			
63	64			
50	64			
37.5	59			
28	54			
20	48			
14	44			
10	41			
6.3	37			
5	36			
3.35	34			
2	32			
1.18	29			
0.6	27			
0.425	25			
0.3	23			
0.212	20			
0.15	17			
0.063	12			

Sample Proportions	% dry mass	
Cobbles	36	
Gravel	32	
Sand	20	
Silt and Clay	12	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	BHC01
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description		Depth Top	1.20
Soil Description	Grey clayey/silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	
Date Tested	26/03/2021	Sample Type	В

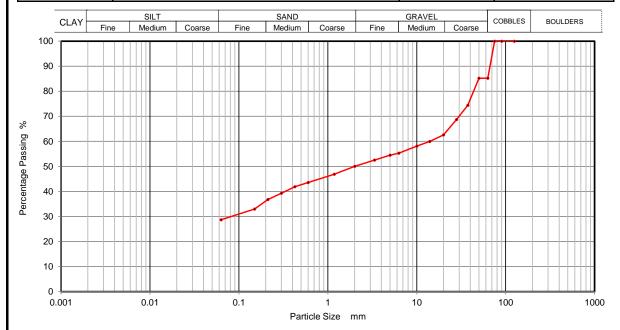
Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	86		
28	61		
20	49		
14	46		
10	43		
6.3	38		
5	36		
3.35	33		
2	29		
1.18	24		
0.6	20		
0.425	18		
0.3	17		
0.212	15		
0.15	14		
0.063	13		


MC in accordance with BS137	7 Part 2 1990 Clause 3.2
Moisture Content %	20

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	71	
Sand	16	
Silt and Clay	13	

Operator	Checked	30/03/2021	Richard John	R
David	Approved	31/03/2021	Paul Evans	DP Flons

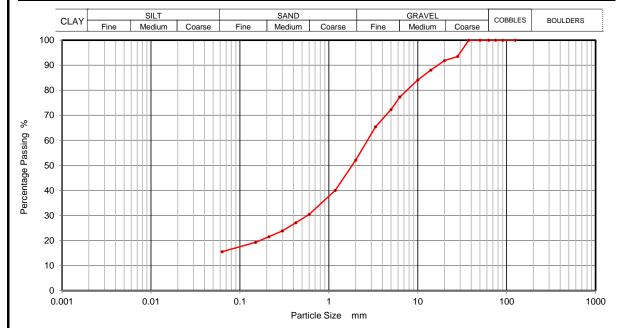
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC01
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	escription Grey clayey/silty fine to coarse sandy fine to coarse GRAVEL –	Depth Top	0.00
3011 Description		Depth Base	0.60
Date Tested	26/03/2021	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	93		
20	76		
14	73		
10	69		
6.3	65		
5	62		
3.35	58		
2	52		
1.18	44		
0.6	33		
0.425	29		
0.3	25		
0.212	22		
0.15	20		
0.063	17		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	48	
Sand	35	
Silt and Clay	17	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC01
Site Name	Tylorstown Phase 4 GI	Sample No.	3
Soil Description	Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL (with	Depth Top	0.70
Soil Description	cobbles)	Depth Base	1.10
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				
90	100				
75	100				
63	85				
50	85				
37.5	74				
28	69				
20	63				
14	60				
10	58				
6.3	55				
5	54				
3.35	53				
2	50				
1.18	47				
0.6	44				
0.425	42				
0.3	39		•		
0.212	37				
0.15	33				
0.063	29				

Sample Proportions	% dry mass	
Cobbles	15	
Gravel	35	
Sand	21	
Silt and Clay	29	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

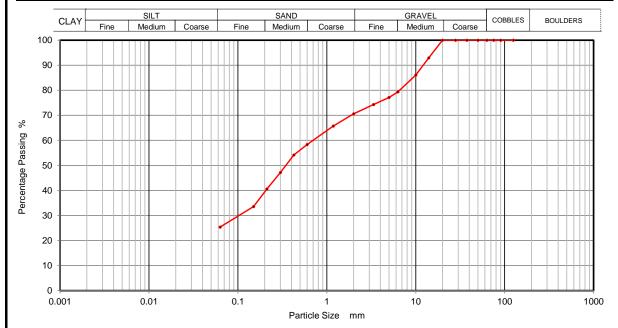
CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	53030
GOIL		Borehole/Pit No.	TPC02
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Cray days (city fire to energy condusting to energy CDAVEL	Depth Top	0.00
Soil Description Grey clayey/silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	0.60	
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	93		
20	92		
14	88		
10	84		
6.3	77		
5	72		
3.35	65		
2	52		
1.18	40		
0.6	30		
0.425	27		
0.3	24	_	<u> </u>
0.212	22		
0.15	19		
0.063	16		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	48	
Sand	36	
Silt and Clay	16	

Operator	Checked	30/03/2021	Richard John	R
David	Approved	31/03/2021	Paul Evans	DP Granz

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC02
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Dark grey slightly clayey/silty fine to coarse sandy fine to coarse	Depth Top	0.60
3011 Description	GRAVEL	Depth Base	0.70
Date Tested	26/03/2021	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	91		
14	91		
10	88		
6.3	74		
5	66		
3.35	53		
2	44		
1.18	35		
0.6	25		
0.425	21		
0.3	16		
0.212	11		
0.15	7		
0.063	4		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	56	
Sand	40	
Silt and Clay	4	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

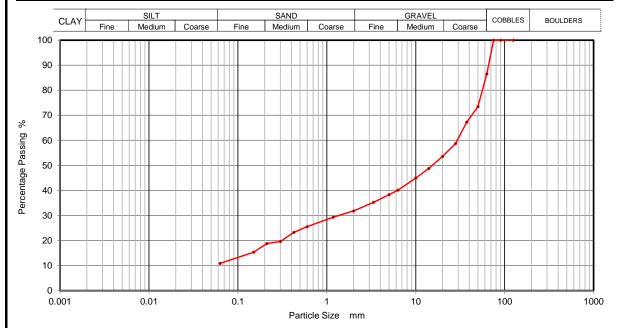
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC02
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Brown silty/clayey fine to medium gravelly fine to coarse SAND	Depth Top	0.70
3011 Description	Brown sity/clayey line to medium gravelly line to coalse SAND	Depth Base	1.10
Date Tested	26/03/2021	Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	93		
10	86		
6.3	79		
5	77		
3.35	74		
2	71		
1.18	66		
0.6	58		
0.425	54		
0.3	47		
0.212	41		
0.15	34		
0.063	25		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	29	
Sand	46	
Silt and Clay	25	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

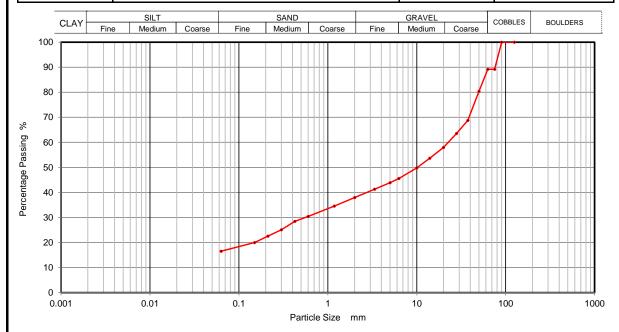
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC03
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Brown clayey/silty fine to coarse gravelly fine to coarse SAND (with	Depth Top	0.20
3011 Description	cobbles)	Depth Base	0.50
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	89		
50	89		
37.5	89		
28	79		
20	74		
14	70		
10	66		
6.3	60		
5	58		
3.35	53		
2	49		
1.18	44		
0.6	38		
0.425	34		
0.3	29		
0.212	24		
0.15	19		
0.063	14		

Sample Proportions	% dry mass	
Cobbles	11	
Gravel	40	
Sand	35	
Silt and Clay	14	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

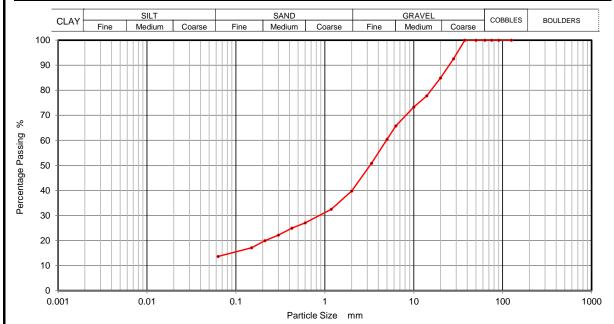
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC04
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Grey clayey/silty fine to coare sandy fine to coarse GRAVEL (with	Depth Top	0.30
3011 Description	cobbles)	Depth Base	0.60
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	87		
50	73		
37.5	67		
28	59		
20	54		
14	49		
10	45		
6.3	40		
5	38		
3.35	35		
2	32		
1.18	29		
0.6	26		
0.425	23		
0.3	20		
0.212	19		
0.15	15		
0.063	11		

Sample Proportions	% dry mass	
Cobbles	13	
Gravel	55	
Sand	21	
Silt and Clay	11	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

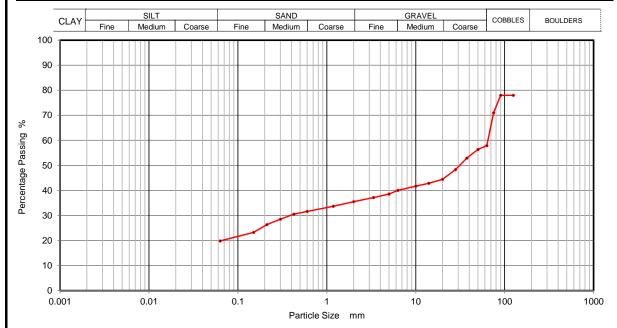
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC04
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Grey silty/clayey fine to coarse sandy fine to coarse GRAVEL (with	Depth Top	1.00
Soil Description	cobbles)	Depth Base	
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	89		
63	89		
50	80		
37.5	69		
28	64		
20	58		
14	54		
10	50		
6.3	46		
5	44		
3.35	41		
2	38		
1.18	35		
0.6	30		
0.425	28		
0.3	25		
0.212	23		
0.15	20		
0.063	17		

Sample Proportions	% dry mass	
Cobbles	11	
Gravel	51	
Sand	21	
Silt and Clay	17	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

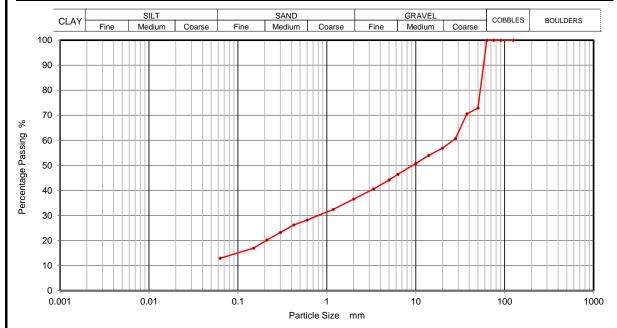
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC05
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Prown clayov/sity fine to coarse condy fine to coarse CPAVEL	Depth Top	0.30
3011 Description	I Description Brown clayey/silty fine to coarse sandy fine to coarse GRAVEL		0.90
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	93		
20	85		
14	78		
10	73		
6.3	66		
5	60		
3.35	51		
2	40		
1.18	32		
0.6	27		
0.425	25		
0.3	22		
0.212	20		
0.15	17		
0.063	14		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	60	
Sand	26	
Silt and Clay	14	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

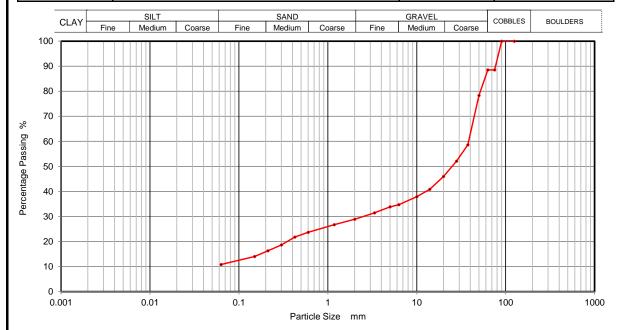
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC05
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Brown fine to coarse sandy silty/clayey fine to coarse GRAVEL (with	Depth Top	1.00
3011 Description	cobbles)	Depth Base	
Date Tested	26/03/2021	Sample Type	В


Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	78		
90	78		
75	71		
63	58		
50	56		
37.5	53		
28	48		
20	44		
14	43		
10	42		
6.3	40		
5	39		
3.35	37		
2	36		
1.18	34		
0.6	32		
0.425	31		
0.3	29		
0.212	26		
0.15	23		
0.063	20		

Sample Proportions	% dry mass	
Cobbles	42	
Gravel	22	
Sand	16	
Silt and Clay	20	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC05
Site Name	Tylorstown Phase 4 Gl	Sample No.	3
Soil Description	Light brown clayey/silty fine to coarse sandy fine to coarse GRAVEL	Depth Top	1.70
3011 Description	Light brown dayey/silly line to coarse sailty line to coarse GNAVEL	Depth Base	
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	73		
37.5	71		
28	61		
20	57		
14	54		
10	51		
6.3	46		
5	44		
3.35	41		
2	37		
1.18	32		
0.6	28		
0.425	26		
0.3	23		
0.212	20		
0.15	17		
0.063	13		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	63	
Sand	24	
Silt and Clay	13	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

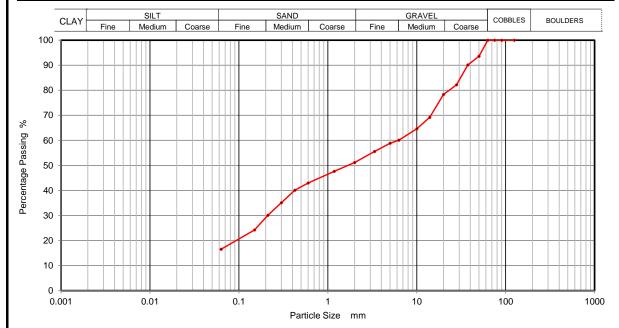
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC06
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Brown clayey/silty fine to coarse sandy fine to coarse GRAVEL (with cobbles)	Depth Top	0.50
3011 Description		Depth Base	0.60
Date Tested	26/03/2021	Sample Type	В


Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	89		
63	89		
50	78		
37.5	59		
28	52		
20	46		
14	41		
10	38		
6.3	35		
5	34		
3.35	31		
2	29		
1.18	27		
0.6	24		
0.425	22		
0.3	19		
0.212	16		
0.15	14		
0.063	11		

Sample Proportions	% dry mass	
Cobbles	11	
Gravel	60	
Sand	18	
Silt and Clay	11	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC06
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Dad bearing the first transfer to the CDAVEL	Depth Top	0.20
Soil Description Dark brown clayey/silty fine to coarse sandy fine to coarse GRAVEL	Depth Base	0.50	
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	84		
37.5	81		
28	72		
20	66		
14	63		
10	54		
6.3	51		
5	50		
3.35	48		
2	46		
1.18	42		
0.6	36		
0.425	32		
0.3	25		
0.212	21		
0.15	17		
0.063	10		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	54	
Sand	36	
Silt and Clay	10	

Operator	Checked	30/03/2021	Richard John	R
David	Approved	31/03/2021	Paul Evans	DP Granz

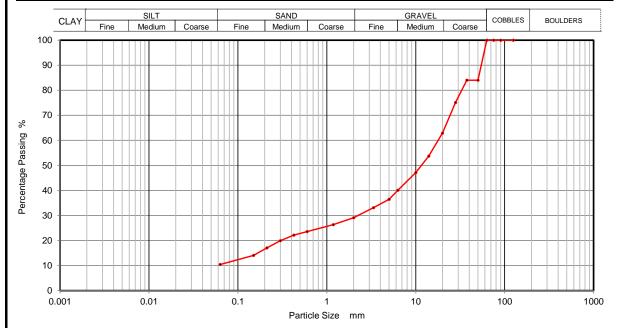
CCTI	PARTICLE SIZE DISTRIBUTION BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Contract Number	53030
GOIL		Borehole/Pit No.	TPC07
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	CAND.	Depth Top	0.30
Soil Description	Brown silty/clayey fine to coarse sandy fine to coarse SAND	Depth Base	0.80
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	94		
37.5	90		
28	82		
20	78		
14	69		
10	65		
6.3	60		
5	59		
3.35	56		
2	51		
1.18	48		
0.6	43		
0.425	40		
0.3	35		
0.212	30		
0.15	24		
0.063	17		

Sample Proportions	% dry mass	
Cobbles	0	
Gravel	49	
Sand	34	
Silt and Clay	17	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

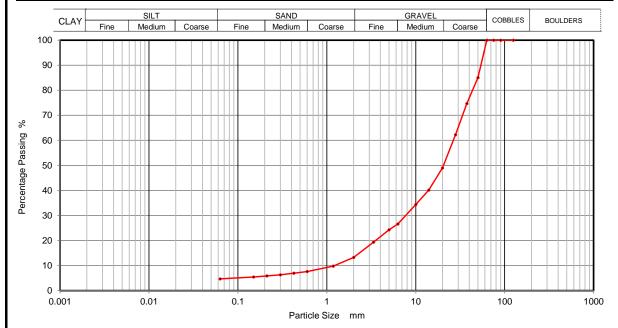
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	TPC07
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Light brown slightly silty/clayey fine to coarse sandy fine to coarse	Depth Top	1.00
3011 Description	GRAVEL (with cobbles)	Depth Base	
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	94		
63	80		
50	71		
37.5	65		
28	59		
20	52		
14	45		
10	41		
6.3	36		
5	33		
3.35	30		
2	26		
1.18	23		
0.6	20		
0.425	18		
0.3	16		
0.212	14		
0.15	11		
0.063	9		

Sample Proportions	% dry mass	
Cobbles	20	
Gravel	54	
Sand	17	
Silt and Clay	9	

Operator	Checked	30/03/2021	Richard John	AN
David	Approved	31/03/2021	Paul Evans	EP Flons

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		TPC07
Site Name	Tylorstown Phase 4 GI	Sample No.	3
Soil Description	Brown clayey/silty fine to coarse sandy fine to coarse GRAVEL	Depth Top	2.00
3011 Description	Blown dayey/sitty line to coarse sarrdy line to coarse GNAVEL	Depth Base	2.70
Date Tested	26/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	84		
37.5	84		
28	75		
20	63		
14	54		
10	47		
6.3	40		
5	36		
3.35	33		
2	29		
1.18	26		
0.6	24		
0.425	22		
0.3	20		•
0.212	17		
0.15	14		
0.063	10		

Sample Proportions	% dry mass
Cobbles	0
Gravel	71
Sand	19
Silt and Clay	10

Operator	Checked	30/03/2021	Richard John	R
David	Approved	31/03/2021	Paul Evans	DP Granz

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53030
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2		WS01
Site Name	Tylorstown Phase 4 GI	Sample No.	2
Soil Description	Grey slightly clayey/silty slightly fine to coarse sandy fine to coarse	Depth Top	1.00
3011 Description	GRAVEL	Depth Base	2.00
Date Tested	26/03/2021	Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	85		
37.5	75		
28	62		
20	49		
14	40		
10	34		
6.3	27		
5	24		
3.35	19		
2	13		
1.18	10		
0.6	8		
0.425	7		
0.3	6		
0.212	6		
0.15	5		
0.063	5		

MC in accordance with BS1377 Part 2 1990 Clause 3.2						
Moisture Content %	5.7					

Sample Proportions	% dry mass			
Cobbles	0			
Gravel	87			
Sand	8			
Silt and Clay	5			

Operator	Checked	30/03/2021	Richard John	R
David	Approved	31/03/2021	Paul Evans	DP Flons

CCTI	Point Load Test	
GOIL	Int. J. Rock Mech. Sci. & Geomech. Abstr. Vol. 22, No. 2, pp. 51 - 60, 1985.	
Contract Number	53030	
Site Name	Tylorstown Phase 4 Gl	
Sample Type	Core	
Date Tested	23/03/2021	
	*Please note that GSTL is not accredited for the water content of rock	

Hole		epth (r	n)	Test	Туре	Width	Platen	Failure	Equivalent	Point Load	Size	Point Load	Moisture	Description	Angle Between Plane of Anisotropy & Core	Type of Anisotropy
Reference		срит (г		d/a/b/i	1//	Widii	Seperation	Load	Diameter		Factor	Index	Content		Axis	(Bedding or Cleavage)
BH02	6.70	-	6.85	d			73	7.27		1.36	1.19	1.62	1.6	SILTSTONE		
BH02	7.35 10.55	-	7.50	d d			73	14.20		2.66	1.19	3.16	1.0	SILTSTONE		
BH02 BH02	10.55	-	10.95 15.70	d d			73 73	14.56 10.37		2.73 1.95	1.19	3.24 2.31	1.4	SILTSTONE SILTSTONE		
BH02	18.00	-	18.20	d			73	18.91		3.55	1.19	4.21	1.4	SILTSTONE		
BH02	22.35	-	22.50	d			73	17.41		3.27	1.19	3.87	0.9	SILTSTONE		
		-					-									
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
-		-														
		H -														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
-		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
		-														
-		-			-											
		-														
		-														
		-														
		-														
	-	-		-	-	-						-				
	1		1	1		1	l	L	1	1		1		1	l	<u>. </u>

Key	Reported As
Width	(W) mm
Platen Separation	(D) mm
Failure Load	(P) kN
Equivalent Diameter	(De) mm
Point Load	(Is) MPa
Size Factor	(F)
Point Load Index	(Is(50)) MPa
Moisture Content	%
Description	SC

Operators	Checked	30/03/2021	Emma Sharp	Euch2
IJ	Approved	31/03/2021	Paul Evans	DP Quas

Issued:

Certificate Number 21-05945

Client GEO Site and Testing Services Ltd

Unit 4 Heol Aur Dafen Ind Est

Dafen

Carmarthenshire

SA14 8QN

Our Reference 21-05945

Client Reference (not supplied)

Order No (not supplied)

Contract Title Tylorstown Phase 4 GI

Description 14 Soil samples.

Date Received 19-Mar-21

Date Started 19-Mar-21

Date Completed 25-Mar-21

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

25-Mar-21

Summary of Chemical Analysis Soil Samples

Our Ref 21-05945
Client Ref
Contract Title Tylorstown Phase 4 GI

Lab No	1819882	1819883	1819884	1819885	1819886	1819887	1819888	1819889	1819890	1819891	1819892
.Sample ID	TPC01	TPC01	TPC02	TPC02	TPC05	TPC06	TPC07	BH02	WS01	WS01	WS07
Depth	0.00-0.60	0.60	0.00-0.60	1.10-1.20	0.30-0.90	0.20-0.50	0.30-0.80	0.50	1.00-2.00	2.00	1.00-1.40
Other ID											
Sample Type	В	D	В	В	В	В	В	В	В	SPT	В
Sampling Date	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units											
Inorganics														
Loss on Ignition at 440oC	DETSC 2003#	0.01	%	16		13						2.9		
рН	DETSC 2008#		рН	7.0		6.5						6.0		5.2
Organic matter	DETSC 2002#	0.1	%		18		6.3	2.8	5.3	5.3	10	0.5	0.5	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l									34		17
Sulphur as S, Total	DETSC 2320	0.01	%	0.11		0.08						0.14		0.02
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.10		0.07						0.34		0.04

Summary of Chemical Analysis Soil Samples

Our Ref 21-05945
Client Ref
Contract Title Tylorstown Phase 4 GI

1819893	1819894	1819895
BHC01	BHC01	BHC04
0.50	1.20	0.50
В	В	В
n/s	n/s	n/s
n/s	n/s	n/s
	BHC01 0.50 B n/s	BHC01 BHC01 0.50 1.20 B B B n/s n/s

Test	Method	LOD	Units			
Inorganics						
Loss on Ignition at 440oC	DETSC 2003#	0.01	%			
рН	DETSC 2008#		рН	6.1	6.4	5.2
Organic matter	DETSC 2002#	0.1	%			
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	29	28	26
Sulphur as S, Total	DETSC 2320	0.01	%	0.08		
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.15	0.17	0.10

Information in Support of the Analytical Results

Our Ref 21-05945

Client Ref

Contract Tylorstown Phase 4 GI

Containers Received & Deviating Samples

		Date	•		Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1819882	TPC01 0.00-0.60 SOIL		PT 1L	Sample date not supplied, Total Sulphur ICP (7 days), Total Sulphate ICP (30 days), Metals ICP Prep (182 days), Loss on Ignition (730 days), pH + Conductivity (7 days)	
1819883	TPC01 0.60 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual) (28 days)	
1819884	TPC02 0.00-0.60 SOIL		PT 1L	Sample date not supplied, Total Sulphur ICP (7 days), Total Sulphate ICP (30 days), Metals ICP Prep (182 days), Loss on Ignition (730 days), pH + Conductivity (7 days)	
1819885	TPC02 1.10-1.20 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual) (28 days)	
1819886	TPC05 0.30-0.90 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual) (28 days)	
1819887	TPC06 0.20-0.50 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual) (28 days)	
1819888	TPC07 0.30-0.80 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual) (28 days)	
1819889	BH02 0.50 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual) (28 days)	
1819890	WS01 1.00-2.00 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total Sulphate ICP (30 days), Metals ICP Prep (182 days), Loss on Ignition (730 days), Organic Matter (Manual) (28 days), pH + Conductivity (7 days)	
1819891	WS01 2.00 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual) (28 days)	
1819892	WS07 1.00-1.40 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total Sulphate ICP (30 days), Metals ICP Prep (182 days), pH + Conductivity (7 days)	
1819893	BHC01 0.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Total Sulphur ICP (7 days), Total Sulphate ICP (30 days), Metals ICP Prep (182 days), pH + Conductivity (7 days)	
1819894	BHC01 1.20 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Total Sulphate ICP (30 days), pH + Conductivity (7 days)	
1819895	BHC04 0.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Total Sulphate ICP (30 days), pH + Conductivity (7 days)	

Information in Support of the Analytical Results

Our Ref 21-05945

Client Ref

Contract Tylorstown Phase 4 GI

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Contract Number: 53135

Client Ref: Q0463 Report Date: 31-03-2021

Client PO:

Client Quantum Geotechnic Ltd

Ty Berwig Bynea Llanelli.

Carmarthenshire.

SA14 9ST

Contract Title: Tylorstown Phase 4 GI

For the attention of: Steffan Picton

Date Received: **18-03-2021**Date Completed: **31-03-2021**

Test Description	Qty
Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	2
4 Point Liquid & Plastic Limit BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	2
PSD Wet Sieve method BS 1377:1990 - Part 2 : 9.2 - * UKAS	6
Bulk Density - Linear Measurement Method BS EN ISO 17892-2:2014 - * UKAS	6
Loss on Ignition Sub-contracted Test - @ Non Accredited Test	4
Disposal of samples for job	1

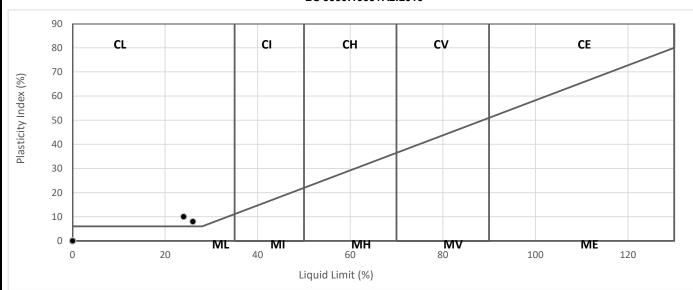
Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved Signatories:

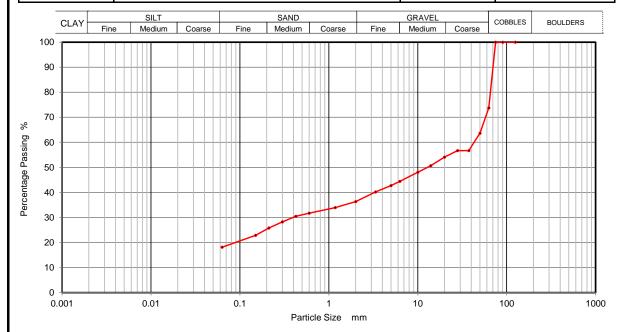
Emma Sharp (Office Manager) - Paul Evans (Quality/Technical Manager) - Richard John (Advanced Testing Manager) Shaun Jones (Laboratory manager) - Wayne Honey (Administrative/Quality Assistant)


Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

GSTL	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)	
Contract Number	53135	
Project Location	Tylorstown Phase 4 GI	
Date Tested	29/03/2021	

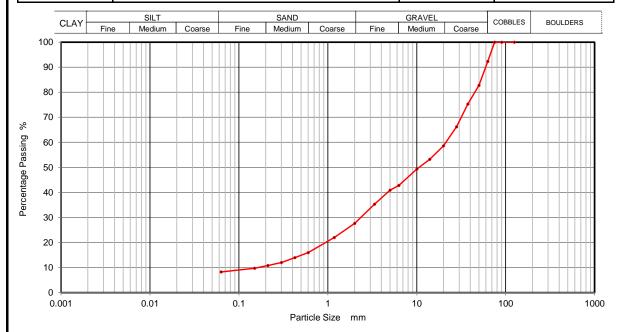
	т —							1		Doccing	1
Sample/Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
CBR2	1	В	0.30	-		11	24	14	10	14	CL Low Plasticity
CBR4	1	В	0.30	-		17	26	18	8	16	CL Low Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
Constants ND - Nas	DI C-	11 1 III	and Dis		-:+ \M -+ C:						

Symbols: NP : Non Plastic # : Liquid Limit and Plastic Limit Wet Sieved


PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

Operators	Checked	31/03/2021	Richard John (Advanced Testing Manager)
Clayton Jenkins	Approved	31/03/2021	Paul Evans (Quality/Technical Manager)

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53135
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	CBR1
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Brown silty/ clayey fine to coarse sandy fine to coarse GRAVEL with	Depth Top	0.30
Soil Description	cobbles	Depth Base	
Date Tested	29/03/2021	Sample Type	В


Sie	ving	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	74					
50	64					
37.5	57					
28	57					
20	54					
14	51					
10	48					
6.3	44					
5	43					
3.35	40					
2	36					
1.18	34					
0.6	32					
0.425	30					
0.3	28		•			
0.212	26					
0.15	23					
0.063	18					

Sample Proportions	% dry mass
Cobbles	26
Gravel	38
Sand	18
Silt and Clay	18

Operator	Checked	30/03/2021	Richard John	M
David	Approved	31/03/2021	Paul Evans	EP GONS

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53135
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	CBR2
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Brown slightly silty/ clayey fine to coarse sandy fine to coarse	Depth Top	0.30
Soil Description	GRAVEL with cobbles	Depth Base	
Date Tested	29/03/2021	Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	92		
50	83		
37.5	75		
28	66		
20	59		
14	53		
10	49		
6.3	43		
5	41		
3.35	35		
2	28		
1.18	22		
0.6	16		
0.425	14		
0.3	12		
0.212	11		
0.15	10		
0.063	8		

Sample Proportions	% dry mass	
Cobbles	8	
Gravel	64	
Sand	20	
Silt and Clay	8	

Operator	Checked	30/03/2021	Richard John	R
David	Approved	31/03/2021	Paul Evans	DP Glans

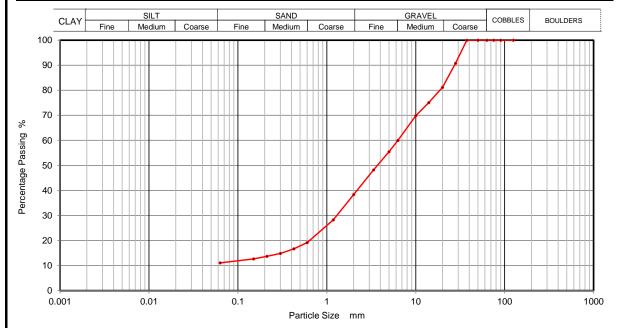
CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53135
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	CBR3
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Brown slightly silty/ clayey fine to coarse sandy fine to coarse	Depth Top	0.30
Soil Description	GRAVEL	Depth Base	
Date Tested	29/03/2021	Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	94		
28	76		
20	66		
14	61		
10	57		
6.3	48		
5	46		
3.35	40		
2	33		
1.18	25		
0.6	17		
0.425	15		
0.3	13		
0.212	12		
0.15	11		
0.063	9		

Sample Proportions	% dry mass
Cobbles	0
Gravel	67
Sand	24
Silt and Clay	9

Operator	Checked	30/03/2021	Richard John	M
David	Approved	31/03/2021	Paul Evans	EP GOMS

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53135
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	CBR4
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Brown slightly silty/ clayey fine to coarse sandy fine to coarse	Depth Top	0.30
Soil Description	GRAVEL with cobbles	Depth Base	
Date Tested	29/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	78		
63	73		
50	61		
37.5	49		
28	44		
20	37		
14	33		
10	31		
6.3	28		
5	27		
3.35	25		
2	22		
1.18	20		
0.6	17		
0.425	16		
0.3	14		
0.212	12		
0.15	11		
0.063	9		

Sample Proportions	% dry mass	
Cobbles	27	
Gravel	51	
Sand	13	
Silt and Clay	9	

Operator	Checked	30/03/2021	Richard John	M
David	Approved	31/03/2021	Paul Evans	EP GOMS

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53135
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	CBR5
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Soil Description	Brown silty/ clayey fine to coarse sandy fine to coarse GRAVEL	Depth Top	0.30
Soil Description	Blown silly, clayey line to coarse sailty line to coarse GRAVEL	Depth Base	
Date Tested	29/03/2021	Sample Type	В


Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	91		
20	81		
14	75		
10	70		
6.3	60		
5	55		
3.35	48		
2	38		
1.18	28		
0.6	19		
0.425	17		
0.3	15		
0.212	14		
0.15	13		
0.063	11		

Sample Proportions	% dry mass
Cobbles	0
Gravel	62
Sand	27
Silt and Clay	11

Operator	Checked	30/03/2021	Richard John	M
David	Approved	31/03/2021	Paul Evans	EP GOMS

CCTI	PARTICLE SIZE DISTRIBUTION	Contract Number	53135
GOIL	BS 1377 Part 2:1990 Wet Sieve, Clause 9.2	Borehole/Pit No.	CBR6
Site Name	Tylorstown Phase 4 GI	Sample No.	1
Call Danadation	Brown slightly silty/ clayey fine to coarse sandy fine to coarse	Depth Top	0.30
Soil Description	GRAVEL	Depth Base	
Date Tested	29/03/2021	Sample Type	В

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	89		
28	83		
20	71		
14	65		
10	60		
6.3	51		
5	48		
3.35	43		
2	36		
1.18	30		
0.6	22		
0.425	19		
0.3	16		
0.212	14		
0.15	12		
0.063	9		

Sample Proportions	% dry mass
Cobbles	0
Gravel	64
Sand	27
Silt and Clay	9

Operator	Checked	30/03/2021	Richard John	M
David	Approved	31/03/2021	Paul Evans	EP GOMS

GSTL	SUMMARY OF SOIL DENSITY TESTS (BS EN ISO 17892-2:2014)	
Contract Number	53135	
Site Name	Tylorstown Phase 4 GI	
Date Tested	24/03/2021	

Hole Reference	Sample Number	Sample Type	De	epth (r	m)	Moisture Content	Bulk Density	Dry Density	Compaction Method /Natural Condition	Estimated Air Voids	Remarks
CBR1		В	0.30	-		24	1.91	1.54	2.5kg Rammer		
CBR2		В	0.30			12	2.01	1.80	2.5kg Rammer		
CBR3		В	0.30			9.0	2.12	1.95	2.5kg Rammer		
CBR4		В	0.30			13	2.23	1.97	2.5kg Rammer		
CBR5		В	0.30			9.4	2.09	1.91	2.5kg Rammer		
CBR6		В	0.30	-		8.9	2.02	1.85	2.5kg Rammer		
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				•							
				-							
				-							
				-							
				-							
				-							
	<u> </u>			-							
				-							
				-							

<u>Key</u>	Reported As
Moisture Content	%
Bulk Density	Mg/m ³
Dry Density	Mg/m ³
Particle Density	Mg/m ³
Air Voids	%

Operators	Checked	30/03/2021	Wayne Honey	W. Honey	
CA/JS	Approved	31/03/2021	Paul Evans	DP GONS	

Certificate Number 21-05937

Issued:

24-Mar-21

Client GEO Site and Testing Services Ltd

Unit 4 Heol Aur Dafen Ind Est

Dafen

Carmarthenshire

SA14 8QN

Our Reference 21-05937

Client Reference (not supplied)

Order No (not supplied)

Contract Title Tylorstown Phase 4 GI

Description 4 Soil samples.

Date Received 19-Mar-21

Date Started 19-Mar-21

Date Completed 24-Mar-21

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 21-05937 Client Ref Contract Title Tylorstown Phase 4 GI

Lab No	1819842	1819843	1819844	1819845
.Sample ID	CBR 1	CBR 3	CBR 5	CBR 6
Depth		0.30	0.30	0.30
Other ID				
Sample Type	В	В	В	В
Sampling Date		n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s	n/s

1631	Wiethou	LOD	Offics				
Inorganics							
Loss on Ignition at 440oC	DETSC 2003#	0.01	%	6.5	17	18	17

Information in Support of the Analytical Results

Our Ref 21-05937

Client Ref

Contract Tylorstown Phase 4 GI

Containers Received & Deviating Samples

Inappropriate

Date container for

rap ivo	Sample ID	Sampied	Containers Received	Holding time exceeded for tests	tests
1819842	CBR 1 0.30 SOIL		PT 1L	Sample date not supplied, Loss on Ignition (730	
				days)	
1819843	CBR 3 0.30 SOIL		PT 1L	Sample date not supplied, Loss on Ignition (730	
				days)	
1819844	CBR 5 0.30 SOIL		PT 1L	Sample date not supplied, Loss on Ignition (730	
				days)	
1819845	CBR 6 0.30 SOIL		PT 1L	Sample date not supplied, Loss on Ignition (730	
				days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

APPENDIX VIII - GEO-ENVIRONMENTAL LABORATORY TEST CERTIFICATES

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-07126-1

Initial Date of Issue: 22-Mar-2021

Client Quantum Geotechnic Ltd

Client Address: Plas Newydd

Llanedi

Pontarddulais Swansea SA4 0FQ

Contact(s): Steffan Picton

Project QO463 Tylorstown Phase 4 GI

Quotation No.: Q21-22667 Date Received: 08-Mar-2021

Order No.: Date Instructed: 16-Mar-2021

No. of Samples: 7

Turnaround (Wkdays): 5 Results Due: 22-Mar-2021

Date Approved: 22-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Leachate

Client: Quantum Geotechnic Ltd					ob No.:	21-07126	21-07126	21-07126
Quotation No.: Q21-22667		(Chemte			1155050	1155052	1155055
Order No.:				nt Samp		2	1	1
				ent Sam		ES2	ES1	ES1
			Sa	ample Lo		TP1	TP2	TP3
					е Туре:	SOIL	SOIL	SOIL
				Top De	, ,	0.5	0.2	0.2
				Date Sa	ampled:	04-Mar-2021	04-Mar-2021	04-Mar-2021
Determinand	Accred.	SOP	Туре	Units	LOD			
рН	U	1010	10:1		N/A	8.2	8.0	8.2
Sulphate	U	1220	10:1	mg/l	1.0	2.4	2.6	< 1.0
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050	< 0.050	< 0.050
Calcium	U	1455	10:1	mg/l	2.00	< 2.0	< 2.0	< 2.0
Hardness	N	1415	10:1	mg/l	1.0	4.7	2.0	< 1.0
Aluminium (Dissolved)	N	1455	10:1	μg/l	5.0	87	78	190
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	0.48	0.44	0.48
Boron (Dissolved)	U	1455	10:1	μg/l	10.0	< 10	13	< 10
Cadmium (Dissolved)	U	1455	10:1	μg/l	0.12	< 0.12	< 0.12	< 0.12
Copper (Dissolved)	U	1455	10:1	μg/l	0.50	2.1	0.96	0.56
Mercury (Dissolved)	U	1455	10:1	μg/l	0.05	< 0.05	< 0.05	< 0.05
Manganese (Dissolved)	U	1455	10:1	μg/l	0.50	12	21	19
Nickel (Dissolved)	U	1455	10:1	μg/l	0.50	1.8	0.93	< 0.50
Lead (Dissolved)	U	1455	10:1	μg/l	0.50	1.2	0.74	0.67
Antimony (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50	< 0.50	< 0.50
Selenium (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50	< 0.50	< 0.50
Zinc (Dissolved)	U	1455	10:1	μg/l	3.0	6.7	< 3.0	38
Chromium (Total)	U	1455	10:1	μg/l	0.50	< 0.50	< 0.50	< 0.50
Iron (Dissolved)	N	1455	10:1	μg/l	5.0	550	240	750
Dissolved Organic Carbon Low Level	N	1610	10:1	mg/l	N/A	6.5	5.4	6.1
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	1.0	< 1.0	< 1.0	< 1.0

Results - Leachate

Client: Quantum Geotechnic Ltd			Che	mtest J	ob No.:	21-07126	21-07126	21-07126
Quotation No.: Q21-22667				st Sam		1155050	1155052	1155055
Order No.:			Clie	nt Samp	le Ref.:	2	1	1
		Client Sample ID.:		ES2	ES1	ES1		
			Sa	ample L		TP1	TP2	TP3
					е Туре:	SOIL	SOIL	SOIL
				Top De		0.5	0.2	0.2
			·	Date Sa	ampled:	04-Mar-2021	04-Mar-2021	04-Mar-2021
Determinand	Accred.	SOP	Туре	Units	LOD			
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	2.0	< 2.0	< 2.0	< 2.0
Naphthalene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	10:1	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	10:1	μg/l	2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	1920	10:1	mg/l	0.030	< 0.030	< 0.030	< 0.030

Results - Soil

			ob No.:	21-07126	21-07126	21-07126	21-07126	21-07126	21-07126	21-07126
(1155049	1155050	1155052	1155053	1155054	1155055	1155057
	Clie	nt Samp	le Ref.:	1	2	1	2	3	1	1
	Cli	ent Sam	ple ID.:	ES1		ES1	ES2	ES3	ES1	ES1
	Sa			TP1	TP1	TP2	TP2	TP2	TP3	TP4
		Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Dep	oth (m):	0.2	0.5	0.2	0.5	1.0	0.2	0.2
		Date Sa	ampled:	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021
		Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Accred.	SOP	Units	LOD							
U	2192		N/A	-	-	-		-	-	-
U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected		No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
U	2192		N/A	-	-	-		-	-	-
N	2030	%	0.020	16	19	18	26	16	16	76
М	2010		4.0	7.8	7.5	7.6	7.3	7.2	5.4	4.8
М	2120	mg/kg	0.40	0.51	< 0.40	0.59		< 0.40	< 0.40	0.71
М	2120	g/l	0.010	0.049	0.031	< 0.010		< 0.010	< 0.010	0.046
N	2140		0.10	2.1			8.1			
М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50
N	2430	mg/kg	100	8000	6200	5400		8000	12000	2200
М			1.0	11	7.7	9.4		7.8	12	6.9
М			0.10	0.37	0.33	0.27		0.12	0.19	0.45
М			1.0	12	10	8.7		13	18	9.9
М		,	5.0	470	320	390			310	59
N										5.5
М	2450	,	0.50	39	32	39		15	6.1	170
М	2450	mg/kg	0.10	0.21	0.37	0.35		0.14	< 0.10	0.33
М	2450		0.50	33	25	29		18	22	13
М	2450		0.50	40	30	36		18	13	190
М		ŭ	0.20	1.2	1.1	1.7		1.1	1.5	1.8
М		,	0.50	88	57	59		36		59
N										< 0.50
М		%	0.40					9.1		45
N	2680	mg/kg	0.010					< 0.010		< 0.010
N	2680	,	0.010					< 0.010		< 0.010
N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
N	2680	Ü	0.10	0.77	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
N			0.10			< 0.10		< 0.10	< 0.10	< 0.10
N	2680		0.10			< 0.10		< 0.10	< 0.10	< 0.10
N	2680	mg/kg	0.10	4.0	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
	2680	mg/kg	1.0	5.3	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
N	2000							-		
N N	2680	,	0.010	< 0.010	< 0.010	< 0.010		< 0.010	< 0.010	< 0.010
N	-	mg/kg	0.010	< 0.010 < 0.010	< 0.010 < 0.010	< 0.010 < 0.010		< 0.010 < 0.010	< 0.010 < 0.010	< 0.010 < 0.010
	2680	,			< 0.010 < 0.010 < 0.10					
	Accred. U	Client	Client Sample Lot Samp	U 2192 N/A U 2192 N/A N 2030 % 0.020 M 2010 4.0 M 2120 mg/kg 0.40 M 2120 g/l 0.010 N 2140 MJ/kg 0.10 N 2140 MJ/kg 0.10 M 2300 mg/kg 1.0 M 2430 mg/kg 1.0 M 2450 mg/kg 0.10 M 2450 mg/kg 0.10 M 2450 mg/kg 0.50 M 2450 mg/kg 0.50 M 2450 mg/kg 0.50 M 2450 mg/kg 0.50 M <td> Client Sample Ref.: 1 Client Sample ID.: ES1 Sample Location: TP1 Sample Type: SOIL Top Depth (m): 0.2 Date Sampled: 04-Mar-2021 Asbestos Lab: COVENTRY Accred. SOP Units LOD U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A O.020 16 N 2010 A.0 7.8 M 2120 mg/kg 0.40 0.51 M 2120 g/l 0.010 0.049 N 2140 MJ/kg 0.10 2.1 M 2300 mg/kg 0.50 < 0.50 N 2430 mg/kg 1.0 11 N 2450 mg/kg 1.0 11 M 2450 mg/kg 1.0 12 M 2450 mg/kg 1.0 12 M 2450 mg/kg 5.0 470 N 2450 mg/kg 5.0 470 N 2450 mg/kg 0.50 39 M 2450 mg/kg 0.50 39 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 40 N 2680 mg/kg 0.50 < 0.50 N 2680 mg/kg 0.10 < 0.010 N 2680 mg/kg 0.10 < 0.010 N 2680 mg/kg 0.10 < 0.010 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <</td> <td> Client Sample Ref.:</td> <td> Client Sample ID.:</td> <td> Client Sample Ref. 1</td> <td> Client Sample Ref. 1</td> <td> Client Sample Ref.:</td>	Client Sample Ref.: 1 Client Sample ID.: ES1 Sample Location: TP1 Sample Type: SOIL Top Depth (m): 0.2 Date Sampled: 04-Mar-2021 Asbestos Lab: COVENTRY Accred. SOP Units LOD U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A No Asbestos Detected U 2192 N/A O.020 16 N 2010 A.0 7.8 M 2120 mg/kg 0.40 0.51 M 2120 g/l 0.010 0.049 N 2140 MJ/kg 0.10 2.1 M 2300 mg/kg 0.50 < 0.50 N 2430 mg/kg 1.0 11 N 2450 mg/kg 1.0 11 M 2450 mg/kg 1.0 12 M 2450 mg/kg 1.0 12 M 2450 mg/kg 5.0 470 N 2450 mg/kg 5.0 470 N 2450 mg/kg 0.50 39 M 2450 mg/kg 0.50 39 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 33 M 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 38 N 2450 mg/kg 0.50 40 N 2680 mg/kg 0.50 < 0.50 N 2680 mg/kg 0.10 < 0.010 N 2680 mg/kg 0.10 < 0.010 N 2680 mg/kg 0.10 < 0.010 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 < 0.10 N 2680 mg/kg 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <	Client Sample Ref.:	Client Sample ID.:	Client Sample Ref. 1	Client Sample Ref. 1	Client Sample Ref.:

Results - Soil

Client: Quantum Geotechnic Ltd		Chemte	st Job N	o.: 21-071:	26	21-07126	21-07126	21-07126	21-07126	21-07126	21-07126
Quotation No.: Q21-22667	(Chemtest	Sample I	D. : 115504	19	1155050	1155052	1155053	1155054	1155055	1155057
Order No.:		Client S	ample R	ef.: 1		2	1	2	3	1	1
			Sample			ES2	ES1	ES2	ES3	ES1	ES1
		Samp	le Locati	on: TP1		TP1	TP2	TP2	TP2	TP3	TP4
		Sa	mple Ty	oe: SOIL		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Depth (0.5	0.2	0.5	1.0	0.2	0.2
		Da	e Sampl	ed: 04-Mar-2	021	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021
		As	bestos L	ab: COVEN	ΓRY	COVENTRY	COVENTRY		COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP U	nits LC	D							
Aromatic TPH >C12-C16	N	2680 mg	g/kg 0.1	0 < 0.10)	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	2680 mg	g/kg 0.1	0 1.8		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	2680 mg	g/kg 0.1	0 16		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	2680 mg	g/kg 0.1	0 < 0.10)	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	2680 mg	g/kg 1.	0 22		< 1.0	< 1.0		< 1.0	< 1.0	< 1.0
Total Petroleum Hydrocarbons	N	2680 mg	g/kg 2.	0 27		< 2.0	< 2.0		< 2.0	< 2.0	< 2.0
Naphthalene	M	2700 mg	g/kg 0.1	0 0.88		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthylene	M	2700 mg	g/kg 0.1	0 0.33		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Acenaphthene	M	2700 mg	g/kg 0.1	0 0.47		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Fluorene	M	2700 mg	g/kg 0.	0 0.55		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Phenanthrene	M	2700 mg	g/kg 0.1	0 2.8		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Anthracene	M	2700 mg	g/kg 0.1	0 0.51		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Fluoranthene	M	2700 m	g/kg 0.1	0 2.7		< 0.10	< 0.10		< 0.10	< 0.10	1.9
Pyrene	М	2700 mg	g/kg 0.1	0 2.5		< 0.10	< 0.10		< 0.10	< 0.10	1.8
Benzo[a]anthracene	М	2700 mg	g/kg 0.1	0 1.1		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Chrysene	M	2700 mg	g/kg 0.1	0 1.8		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	M	2700 mg	g/kg 0.1	0 0.81		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	М	2700 mg	g/kg 0.	0 1.5		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	М	2700 mg	g/kg 0.	0 0.69		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2700 mg	g/kg 0.	0 0.39		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	М	2700 mg	g/kg 0.	0 0.54		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	М	2700 mg	g/kg 0.	0 0.58		< 0.10	< 0.10		< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	М	2700 mg	g/kg 2.	0 18		< 2.0	< 2.0		< 2.0	< 2.0	3.7
Total Phenols	М	2920 mg	g/kg 0.3	30 < 0.30)	< 0.30	< 0.30		< 0.30	< 0.30	< 0.30

Results - Single Stage WAC

Project: QO463 Tylorstown Phase 4 GI

Project: QO463 Tylorstown Phase							
Chemtest Job No:	21-07126				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1155049					Limits	
Sample Ref:	1					Stable, Non-	
Sample ID:	ES1					reactive	
Sample Location:	TP1					hazardous	Hazardous
Top Depth(m):	0.2				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	04-Mar-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	6.6	3	5	6
Loss On Ignition	2610	М	%	14			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	M	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	27	500		
Total (Of 17) PAH's	2700	N	mg/kg	18	100		
рН	2010	М		7.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0004	0.0040	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00012	< 0.0012	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0017	0.017	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0003	0.0035	0.5	10	30
Nickel	1455	U	0.0008	0.0084	0.4	10	40
Lead	1455	U	0.0012	0.012	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.005	0.046	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.11	1.1	10	150	500
Sulphate	1220	U	7.7	77	1000	20000	50000
Total Dissolved Solids	1020	N	600	6000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		
Dissolved Organic Carbon	1610	U	5.9	59	500	800	1000

Solid Information								
Dry mass of test portion/kg	0.090							
Moisture (%)	16							

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Single Stage WAC

Project: QO463 Tylorstown Phase 4 GI

Project: QO463 Tylorstown Phase 4 G	l						
Chemtest Job No:	21-07126				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1155053					Limits	
Sample Ref:	2					Stable, Non-	
Sample ID:	ES2					reactive	
Sample Location:	TP2					hazardous	Hazardous
Top Depth(m):	0.5				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	04-Mar-2021					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	18	3	5	6
Loss On Ignition	2610	М	%	24			10
Total BTEX	2760	М	mg/kg	0.016	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC (Mineral Oil)	2670	М	mg/kg	< 10	500		
Total (Of 17) PAH's	2700	N	mg/kg	< 2.0	100		
рН	2010	М		7.3		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0020	0.020	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00012	< 0.0012	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0015	0.015	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0005	0.0052	0.5	10	30
Nickel	1455	U	0.0008	0.0081	0.4	10	40
Lead	1455	U	0.0009	0.0086	0.5	10	50
Antimony	1455	U	0.0009	0.0088	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.003	0.032	4	50	200
Chloride	1220	U	1.9	19	800	15000	25000
Fluoride	1220	U	0.27	2.7	10	150	500
Sulphate	1220	U	4.9	49	1000	20000	50000
Total Dissolved Solids	1020	N	14	140	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1		-
Dissolved Organic Carbon	1610	U	6.1	61	500	800	1000

Solid Information								
Dry mass of test portion/kg	0.090							
Moisture (%)	26							

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Results - Topsoil Report

BS3882:2015

Chemtest Job No.: 21-07126 Chemtest Sample ID.: 1155052

Client Sample Ref.: 1 Sample Location: TP2 Client Sample ID.: ES1 Top Depth (m): 0.2 Bottom Depth (m):

Date Sampled: 04-Mar-2021

Time Sampled:

Parameter	Units	Multipurpose Range		Result	Result Compliant with Multipurpose Range? (Y/N)		Compliant with Specific Purpose Range? (Y/N)		
Texture						Acid	Low F	Calc.	
Clay content	%			19					
Silt content	%			15					
Sand content	%			66					
Soil texture class		See Attached Chart		Sandy Clay Loam	YES				
Mass Loss on Ignition									
Clay 5-20%		3.0)-20	8.9	YES	YES	YES	YES	
Clay 20-35%		5.0	5.0-20		120	123	ILO	123	
Stone Content	% m/m								
>2mm		0-	-30	16	YES				
>20mm		0-	·10	< 0.020	YES				
>50mm		0		< 0.020	YES				
Soil pH value		5.5	-8.5	7.6	YES	NO	YES	YES	
Carbonate (Calcareous only)	%			0.60				NO	
Electrical Conductivity	μS/cm	If >3300) do ESP	2000	YES				
Available Nutrient Content									
Nitrogen %		>0).15	0.010	NO	NO		NO	
Extractable phosphorus	mg/l	16-	-140	2.9	NO	NO	YES	NO	
Extractable potassium	mg/l	121-	·1500	70	NO	NO		NO	
Extractable magnesium	mg/l	51-	-600	160	YES	YES		YES	
Carbon : Nitrogen Ratio		<2	20:1	521.5/1	NO	NO	NO	NO	
Exchangeable sodium	%	<	15	1.2					
Available Calcium	mg/l			60					
Available Sodium	mg/l			8.0					
Phytotoxic Contaminants (by soil pH)		< 6.0 6.0-7.0 > 7.0							
Zinc (Nitric Acid extract)	mg/kg	<200 <2	200 <300		YES				
Copper (Nitric Acid extract)	mg/kg	<100 <135 <200		-	YES				
Nickel (Nitric Acid extract)	mg/kg	<60 <75 <110		26	YES				
Visible Contaminants	% mm								
>2mm			0.5	0.000	YES				
of which plastics		<0.25		0.000	YES				
man-made sharps		zero in 1kg		0.000	YES				

Results - Topsoil Report

BS3882:2015

Chemtest Job No.: 21-07126 Chemtest Sample ID.: 1155055

Client Sample Ref.: 1 Sample Location: TP3 Client Sample ID.: ES1 Top Depth (m): 0.2 Bottom Depth (m):

Date Sampled: 04-Mar-2021

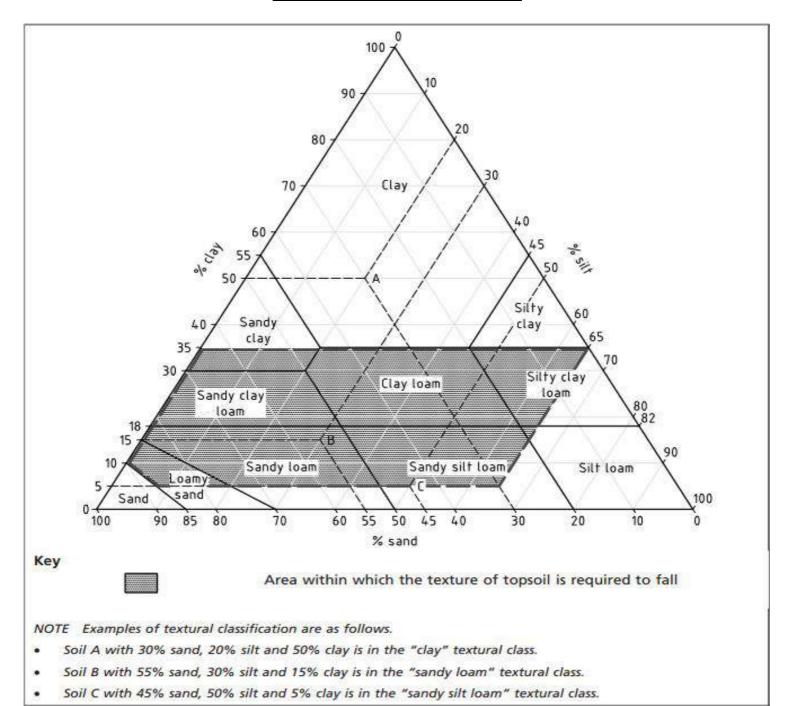
Time Sampled:

Time Sampled:	1	1					ı		
Parameter	Units	Multipurpose Range		Result	Sult Compliant with Multipurpose Range? (Y/N)		Compliant with Specific Purpose Range? (Y/N)		
Texture							Acid	Low F	Calc.
Clay content	%				16				
Silt content	%				15				
Sand content	%				69				
Soil texture class		See A	Attached	Chart	Sandy Loam	YES			
Mass Loss on Ignition									
Clay 5-20%			3.0-20		6.2	YES	YES	YES	YES
Clay 20-35%			5.0-20		0.2	120	ILO	ILO	123
Stone Content	% m/m								
>2mm			0-30		27	YES			
>20mm			0-10		< 0.020	YES			
>50mm		0		< 0.020	YES				
Soil pH value			5.5-8.5		5.4	NO	YES	YES	NO
Carbonate (Calcareous only)	%				0.55				NO
Electrical Conductivity	μS/cm	If >3	300 do	ESP	720	YES			
Available Nutrient Content									
Nitrogen %			>0.15		0.010	NO	NO		NO
Extractable phosphorus	mg/l		16-140		< 0.50	NO	NO	NO	NO
Extractable potassium	mg/l		121-150	0	12	NO	NO		NO
Extractable magnesium	mg/l		51-600		11	NO	NO		NO
Carbon : Nitrogen Ratio			<20:1		365.5/1	NO	NO	NO	NO
Exchangeable sodium	%		<15		8.2				
Available Calcium	mg/l				< 20				
Available Sodium	mg/l				9.5				
Phytotoxic Contaminants (by soil pH)		< 6.0 6.0-7.0 > 7.0							
Zinc (Nitric Acid extract)	mg/kg	<200	<200	<300	31	YES			
Copper (Nitric Acid extract)	mg/kg	<100 <135 <200		5.9	YES				
Nickel (Nitric Acid extract)	mg/kg	<60 <75 <110		18	YES				
Visible Contaminants	% mm								
>2mm			<0.5		0.000	YES			
of which plastics		<0.25		0.000	YES				
man-made sharps		Z	zero in 1kg		0.000	YES			

Results - Topsoil Report

BS3882:2015

Chemtest Job No.: 21-07126 Chemtest Sample ID.: 1155057


Client Sample Ref.: 1 Sample Location: TP4 Client Sample ID.: ES1 Top Depth (m): 0.2 Bottom Depth (m):

Date Sampled: 04-Mar-2021

Time Sampled:

Time Sampled:	1	1	I		_		
Parameter	Units	Multipurpose Range	Result	Compliant with Multipurpose Range? (Y/N)	Compliant with Specific Purpose Range? (Y/N)		
Texture					Acid	Low F	Calc.
Clay content	%		13				
Silt content	%		15				
Sand content	%		73				
Soil texture class		See Attached Chart	Sandy Loam	YES			
Mass Loss on Ignition							
Clay 5-20%		3.0-20	26	NO	YES	NO	NO
Clay 20-35%		5.0-20	20	110	120	140	110
Stone Content	% m/m						
>2mm		0-30	8.4	YES			
>20mm		0-10	< 0.020	YES			
>50mm		0	< 0.020	YES			
Soil pH value		5.5-8.5	4.8	NO	YES	YES	NO
Carbonate (Calcareous only)	%		< 0.10				NO
Electrical Conductivity	μS/cm	If >3300 do ESP	1700	YES			
Available Nutrient Content							
Nitrogen %		>0.15	0.52	YES	YES		YES
Extractable phosphorus	mg/l	16-140	0.78	NO	NO	YES	NO
Extractable potassium	mg/l	121-1500	210	YES	YES		YES
Extractable magnesium	mg/l	51-600	170	YES	YES		YES
Carbon : Nitrogen Ratio		<20:1	29.1/1	NO	NO	YES	NO
Exchangeable sodium	%	<15	7.0				
Available Calcium	mg/l		75				
Available Sodium	mg/l		65				
Phytotoxic Contaminants (by soil pH)		< 6.0 6.0-7.0 > 7.0					
Zinc (Nitric Acid extract)	mg/kg	<200 <200 <300	13	YES			
Copper (Nitric Acid extract)	mg/kg	<100 <135 <200	14	YES			
Nickel (Nitric Acid extract)	mg/kg	<60 <75 <110	< 5.0	YES			
Visible Contaminants	% mm						
>2mm		<0.5	0.000	YES			
of which plastics		<0.25	0.000	YES			
man-made sharps		zero in 1kg	0.000	YES			

Topsoil: Texture Classification Chart

Permission to reproduce extracts from BS 3882:2015 is granted by BSI.

British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2020	Electrical Conductivity	Electrical conductivity (EC) of aqueous extract or calcium sulphate solution for topsoil	Measurement of the electrical resistance of a 2:1 water/soil extract.
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2115	Total Nitrogen in Soils	Nitrogen	Determination by elemental analyser
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2140	Calorific Value	Calorific Value	Bomb Calorimeter
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2260	Carbonate	Carbonate	Titration
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2400	Cations	Cations	ICP-MS
2420	Phosphate	Phosphate	Spectrophotometry - Discrete analyser
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.

Test Methods

SOP	Title	Parameters included	Method summary
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2620	LOI 440	LOI 440 Trommel Fines	Determination of the proportion by mass that is lost from a soil by ignition at 440°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-07128-1

Initial Date of Issue: 19-Mar-2021

Client Quantum Geotechnic Ltd

Client Address: Plas Newydd

Llanedi

Pontarddulais Swansea SA4 0FQ

Contact(s): Steffan Picton

Project Q0463 Tylorstown Phase 4 GI

Quotation No.: Q21-22667 Date Received: 08-Mar-2021

Order No.: Date Instructed: 15-Mar-2021

No. of Samples: 4

Turnaround (Wkdays): 5 Results Due: 19-Mar-2021

Date Approved: 19-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-07311-1

Initial Date of Issue: 19-Mar-2021

Client Quantum Geotechnic Ltd

Client Address: Plas Newydd

Llanedi

Pontarddulais Swansea SA4 0FQ

Contact(s): Steffan Picton

Project Q0463 Tylorstown Phase 4 GI

Quotation No.: Q21-22667 Date Received: 09-Mar-2021

Order No.: Date Instructed: 15-Mar-2021

No. of Samples: 2

Turnaround (Wkdays): 5 Results Due: 19-Mar-2021

Date Approved: 19-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Leachate

Client: Quantum Geotechnic Ltd		ob No.:	21-07311					
Quotation No.: Q21-22667		Chemtest Sample ID.						
Order No.:				nt Samp		1156053 1		
				ent Sam		ES1		
		Sample Location:						
		Sample Type						
				Top Dep		0.10		
				Date Sa	ampled:	05-Mar-2021		
Determinand	Accred.	SOP	Туре	Units	LOD			
рН	U	1010	10:1		N/A	7.7		
Sulphate	U	1220	10:1	mg/l	1.0	1.4		
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050		
Calcium	U	1455	10:1	mg/l	2.00	< 2.0		
Hardness	N	1415	10:1	mg/l	1.0	< 1.0		
Aluminium (Dissolved)	N	1455	10:1	μg/l	5.0	190		
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	1.5		
Boron (Dissolved)	U	1455	10:1	μg/l	10.0	< 10		
Cadmium (Dissolved)	U	1455	10:1	μg/l	0.12	< 0.12		
Copper (Dissolved)	U	1455	10:1	μg/l	0.50	5.4		
Mercury (Dissolved)	U	1455 1455	10:1 10:1	μg/l	0.05	< 0.05 4.5		
Manganese (Dissolved) Nickel (Dissolved)	U	1455	10:1	μg/l	0.50	0.88		
Lead (Dissolved)	U	1455	10:1	μg/l μg/l	0.50	3.2		
Antimony (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50		
Selenium (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50		
Zinc (Dissolved)	U	1455	10:1	μg/l	3.0	4.5		
Chromium (Total)	Ü	1455	10:1	μg/l	0.50	0.70		
Iron (Dissolved)	N	1455	10:1	μg/l	5.0	1100		
Dissolved Organic Carbon Low Level	N	1610	10:1	mg/l	N/A	10		
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.010	< 0.010		
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.010	< 0.010		
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	< 0.10		
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	< 0.10		
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	< 0.10		
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	< 0.10		
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	< 0.10		
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	< 0.10		
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	1.0	< 1.0		
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.010	< 0.010		
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.010	< 0.010		
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	< 0.10		
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	< 0.10		
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	< 0.10		
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	< 0.10		
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	< 0.10		
Aromatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	< 0.10		
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	1.0	< 1.0		

Results - Leachate

Client: Quantum Geotechnic Ltd		Chemtest Job No.						
Quotation No.: Q21-22667		(Chemte	st Sam	ple ID.:	1156053		
Order No.:			Clie	nt Samp	le Ref.:	1		
			Cli	ent Sam	ple ID.:	ES1		
		Sample Location:						
					е Туре:	SOIL		
				Top Dep	oth (m):	0.10		
				Date Sa	ampled:	05-Mar-2021		
Determinand	Accred.	SOP	Туре	Units	LOD			
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	2.0	< 2.0		
Naphthalene	U	1700	10:1	μg/l	0.10	< 0.10		
Acenaphthylene	U	1700	10:1	μg/l	0.10	< 0.10		
Acenaphthene	U	1700	10:1	μg/l	0.10	< 0.10		
Fluorene	U	1700	10:1	μg/l	0.10	< 0.10		
Phenanthrene	U	1700	10:1	μg/l	0.10	< 0.10		
Anthracene	U	1700	10:1	μg/l	0.10	< 0.10		
Fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10		
Pyrene	U	1700	10:1	μg/l	0.10	< 0.10		
Benzo[a]anthracene	U	1700	10:1	μg/l	0.10	< 0.10		
Chrysene	N	1700	10:1	μg/l	0.10	< 0.10		
Benzo[b]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10		
Benzo[k]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10		
Benzo[a]pyrene	U	1700	10:1	μg/l	0.10	< 0.10		
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	μg/l	0.10	< 0.10		
Dibenz(a,h)Anthracene	U	1700	10:1	μg/l	0.10	< 0.10		
Benzo[g,h,i]perylene	U	1700	10:1	μg/l	0.10	< 0.10		
Total Of 16 PAH's	N	1700	10:1	μg/l	2.0	< 2.0		
Total Phenols	U	1920	10:1	mg/l	0.030	< 0.030		

Results - Soil

Client: Quantum Geotechnic Ltd	Chemtest Job No.:			21-07311	21-07311	
Quotation No.: Q21-22667	(Chemtest Sample ID.:			1156053	1156054
Order No.:		Clie	nt Samp	le Ref.:	1	2
			ent Sam		ES1	ES2
		Sa	ample Lo	ocation:	BH2	BH2
		Sample Type:			SOIL	SOIL
		Top Depth (m):			0.10	0.50
			Date Sa	ampled:	05-Mar-2021	05-Mar-2021
		Asbestos Lab:				DURHAM
Determinand	Accred.	ed. SOP Units LOD				
ACM Type	U	2192		N/A	1	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-
Moisture	N	2030	%	0.020	34	22
рН	U	2010		4.0	5.0	5.3
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.43	0.63
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	0.020
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	0.50
Aluminium (Total)	N	2430	mg/kg	100	3500	8600
Arsenic	U	2450	mg/kg	1.0	19	6.8
Cadmium	U	2450	mg/kg	0.10	0.14	< 0.10
Chromium	U	2450	mg/kg	1.0	7.9	17
Manganese	U	2450	mg/kg	5.0	100	270
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	15	6.9
Mercury	U	2450	mg/kg	0.10	0.11	< 0.10
Nickel	U	2450	mg/kg	0.50	6.0	17
Lead	U	2450	mg/kg	0.50	58	17
Selenium	U	2450	mg/kg	0.20	1.4	1.2
Zinc	U	2450	mg/kg	0.50	15	36
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	24	2.6
Aliphatic TPH >C5-C6	N	2680	mg/kg	0.010	< 0.010	< 0.010
Aliphatic TPH >C6-C8	N	2680	mg/kg		< 0.010	< 0.010
Aliphatic TPH >C8-C10	N	2680	mg/kg	0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	2680	mg/kg	0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	2680	mg/kg	0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	2680	mg/kg	0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	2680	mg/kg	0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	2680	0 0	0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	2680	mg/kg		< 1.0	< 1.0
Aromatic TPH >C5-C7	N	2680	mg/kg		< 0.010	< 0.010
Aromatic TPH >C7-C8	N	2680	mg/kg		< 0.010	< 0.010
Aromatic TPH >C8-C10	N	2680	0	0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	2680	mg/kg		< 0.10	< 0.10
Aromatic TPH >C12-C16	N	2680	mg/kg	0.10	< 0.10	< 0.10

Results - Soil

Trojosti go iso Tylorotomii i naco i c	<u></u>					
Client: Quantum Geotechnic Ltd		Che	mtest Jo	ob No.:	21-07311	21-07311
Quotation No.: Q21-22667	(Chemtest Sample ID.:			1156053	1156054
Order No.:		Clie	nt Samp	le Ref.:	1	2
		Cli	ent Sam	ple ID.:	ES1	ES2
		Sa	ample Lo	ocation:	BH2	BH2
			Sample	е Туре:	SOIL	SOIL
			Top Dep	oth (m):	0.10	0.50
			Date Sa	ampled:	05-Mar-2021	05-Mar-2021
			Asbest	os Lab:	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD		
Aromatic TPH >C16-C21	N	2680	mg/kg	0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	2680	mg/kg	0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	2680	mg/kg	0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	2.0	< 2.0	< 2.0
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	0.33	< 0.10
Pyrene	U	2700	mg/kg	0.10	0.28	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
7040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Results - Leachate

Client: Quantum Geotechnic Ltd			Che	mtest Jo	ob No.:	21-07128
Quotation No.: Q21-22667		(Chemte	st Sam	ple ID.:	1155067
Order No.:				nt Samp		1
				ent Sam		ES1
			Sa	ample Lo	ocation:	TP6
					e Type:	SOIL
				Top Dep		0.2
			Bot	tom Dep		0.3
				Date Sa		04-Mar-2021
Determinand	Accred.	SOP	Туре	Units	LOD	
рН	U	1010	10:1		N/A	7.8
Sulphate	U	1220	10:1	mg/l	1.0	2.1
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050
Calcium	U	1455	10:1	mg/l	2.00	< 2.0
Hardness	N	1415	10:1	mg/l	1.0	< 1.0
Aluminium (Dissolved)	N	1455	10:1	μg/l	5.0	230
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	1.6
Boron (Dissolved)	U	1455	10:1	μg/l	10.0	< 10
Cadmium (Dissolved)	U	1455	10:1	μg/l	0.12	< 0.12
Copper (Dissolved)	U	1455	10:1	μg/l	0.50	2.8
Mercury (Dissolved)	U	1455	10:1	μg/l	0.05	< 0.05
Manganese (Dissolved)	U	1455	10:1	μg/l	0.50	3.8
Nickel (Dissolved)	U	1455	10:1	μg/l	0.50	0.75
Lead (Dissolved)	U	1455	10:1	μg/l	0.50	2.8
Antimony (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50
Selenium (Dissolved)	U	1455	10:1	μg/l	0.50	< 0.50
Zinc (Dissolved)	U	1455	10:1	μg/l	3.0	3.0
Chromium (Total)	U	1455	10:1	μg/l	0.50	0.71
Iron (Dissolved)	N	1455	10:1	μg/l	5.0	1200
Dissolved Organic Carbon Low Level	N	1610	10:1	mg/l	N/A	8.0
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.010	< 0.010
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.010	< 0.010
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	1.0	< 1.0
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.010	< 0.010
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.010	< 0.010
Aromatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	< 0.10

Results - Leachate

Client: Quantum Geotechnic Ltd			Che	mtest Jo	ob No.:	21-07128
Quotation No.: Q21-22667		Chemtest Sample ID.:				
Order No.:			Clie	nt Samp	le Ref.:	1
			Cli	ent Sam	ple ID.:	ES1
			Sa	ample Lo		TP6
					е Туре:	SOIL
				Top De	, ,	0.2
			Bot	tom De		0.3
				Date Sa	ampled:	04-Mar-2021
Determinand	Accred.	SOP	Туре	Units	LOD	
Total Aromatic Hydrocarbons	N	1675	10:1	μg/l	1.0	< 1.0
Total Petroleum Hydrocarbons	N	1675	10:1	μg/l	2.0	< 2.0
Naphthalene	U	1700	10:1	μg/l	0.10	< 0.10
Acenaphthylene	U	1700	10:1	μg/l	0.10	< 0.10
Acenaphthene	U	1700	10:1	μg/l	0.10	< 0.10
Fluorene	U	1700	10:1	μg/l	0.10	< 0.10
Phenanthrene	U	1700	10:1	μg/l	0.10	< 0.10
Anthracene	U	1700	10:1	μg/l	0.10	< 0.10
Fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10
Pyrene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[a]anthracene	U	1700	10:1	μg/l	0.10	< 0.10
Chrysene	N	1700	10:1	μg/l	0.10	< 0.10
Benzo[b]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[k]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[a]pyrene	U	1700	10:1	μg/l	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	μg/l	0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	10:1	μg/l	0.10	< 0.10
Total Of 16 PAH's	N	1700	10:1	μg/l	2.0	< 2.0
Total Phenols	U	1920	10:1	mg/l	0.030	< 0.030

Results - Soil

Client: Quantum Geotechnic Ltd			mtest Jo		21-07128	21-07128	21-07128	21-07128
Quotation No.: Q21-22667	(Chemte	st Sam	ple ID.:	1155067	1155069	1155070	1155073
Order No.:		Client Sample Ref.:		1	1	2	1	
		Client Sample ID.:		ES1	ES1	ES2	ES1	
		Sample Location:		TP6	TP5	TP5	TP7	
				е Туре:	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.2	0.2	0.5	0.2
		Bot	tom Dep	oth (m):	0.3			
			Date Sa	ampled:	04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD				
ACM Type	U	2192		N/A	i	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-	-	-	-
Moisture	N	2030	%	0.020	22	14	18	22
pH	U	2010		4.0	5.5	5.2	5.4	4.9
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aluminium (Total)	N	2430	mg/kg	100	9400	1500	9500	3700
Arsenic	U	2450	,	1.0	13	13	6.4	18
Cadmium	U	2450	mg/kg	0.10	0.13	0.16	< 0.10	0.10
Chromium	U	2450	mg/kg	1.0	17	4.4	18	7.0
Manganese	U	2450	mg/kg	5.0	310	190	410	170
Antimony	N	2450	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2450	mg/kg	0.50	4.6	2.9	4.8	9.2
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	16	3.9	15	3.4
Lead	U	2450	mg/kg	0.50	11	6.1	8.1	26
Selenium	U	2450	mg/kg	0.20	1.2	0.29	0.84	0.79
Zinc	U	2450	mg/kg	0.50	30	11	35	9.1
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	2.4	1.7	1.1	3.5
Aliphatic TPH >C5-C6	N	2680	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Aliphatic TPH >C6-C8	N	2680	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Aliphatic TPH >C8-C10	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C5-C7	N	2680	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Aromatic TPH >C7-C8	N	2680	mg/kg	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Aromatic TPH >C8-C10	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-08677-1

Initial Date of Issue: 24-Mar-2021

Client Quantum Geotechnic Ltd

Client Address: Plas Newydd

Llanedi

Pontarddulais Swansea SA4 0FQ

Contact(s): Steffan Picton

Project Q0463 Tylorstown Phase 4 GI

Quotation No.: Date Received: 18-Mar-2021

Order No.: Date Instructed: 18-Mar-2021

No. of Samples: 1

Turnaround (Wkdays): 5 Results Due: 24-Mar-2021

Date Approved: 24-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Leachate

Client: Quantum Geotechnic Ltd			Che	mtest Jo	ob No.:	21-08677
Quotation No.:		Chemtest Sample ID.:				
		Client Sample ID.:				1
			Sa	ample Lo		WS01
					e Type:	SOIL
				Top Dep	` '	2
				Date Sa		16-Mar-2021
Determinand	Accred.	SOP	Type	Units	LOD	
pH	U	1010	10:1		N/A	8.5
Sulphate	U	1220	10:1	mg/l	1.0	19
Cyanide (Total)	U	1300	10:1	mg/l	0.050	< 0.050
Calcium	U	1455	10:1	mg/l	2.00	3.5
Hardness	N	1415	10:1	mg/l	1.0	13
Aluminium (Dissolved)	N	1455	10:1	μg/l	5.0	89
Arsenic (Dissolved)	U	1455	10:1	μg/l	0.20	1.5
Boron (Dissolved) Cadmium (Dissolved)	U	1455 1455	10:1 10:1	μg/l μg/l	10.0 0.12	16 < 0.12
Copper (Dissolved)	U	1455	10:1		0.12	< 0.12
Mercury (Dissolved)	U	1455	10:1	μg/l μg/l	0.05	< 0.05
Manganese (Dissolved)	U	1455	10:1	μg/l	0.50	3.8
Nickel (Dissolved)	Ü	1455	10:1	μg/l	0.50	< 0.50
Lead (Dissolved)	Ü	1455	10:1	μg/l	0.50	< 0.50
Antimony (Dissolved)	Ü	1455	10:1	μg/l	0.50	< 0.50
Selenium (Dissolved)	Ü	1455	10:1	µg/l	0.50	0.64
Zinc (Dissolved)	Ü	1455	10:1	μg/l	3.0	< 3.0
Chromium (Total)	Ū	1455	10:1	μg/l	0.50	< 0.50
Iron (Dissolved)	N	1455	10:1	μg/l	5.0	120
Dissolved Organic Carbon Low Level	N	1610	10:1	mg/l	N/A	7.8
Aliphatic TPH >C5-C6	N	1675	10:1	μg/l	0.010	< 0.010
Aliphatic TPH >C6-C8	N	1675	10:1	μg/l	0.010	< 0.010
Aliphatic TPH >C8-C10	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	10:1	μg/l	0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	10:1	μg/l	0.10	830
Aliphatic TPH >C35-C44	N	1675	10:1	μg/l	0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	10:1	μg/l	1.0	830
Aromatic TPH >C5-C7	N	1675	10:1	μg/l	0.010	< 0.010
Aromatic TPH >C7-C8	N	1675	10:1	μg/l	0.010	< 0.010
Aromatic TPH > C8-C10	N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH > C10-C12	N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH > C16 C21	N N	1675	10:1	μg/l	0.10	< 0.10
Aromatic TPH >C16-C21 Aromatic TPH >C21-C35	N N	1675	10:1 10:1	μg/l	0.10	< 0.10
Aromatic TPH >C21-C35 Aromatic TPH >C35-C44	N N	1675	10:1	μg/l	0.10	< 0.10 < 0.10
Total Aromatic Hydrocarbons	N N	1675 1675	10:1	μg/l	0.10 1.0	< 1.0
	N N			μg/l		
Total Petroleum Hydrocarbons	IN	1675	10:1	μg/l	2.0	830

Results - Leachate

Project: Qu463 Tylorstown Phase 4 G	<u>''</u>		01:	11	- I. NI -	04 00077
Client: Quantum Geotechnic Ltd				ntest J		21-08677 1162776
Quotation No.:		Chemtest Sample ID.:				
				ent Sam		1
			Sa	ample Lo		WS01
					e Type:	SOIL
				Top De		2
				Date Sa	ampled:	16-Mar-2021
Determinand	Accred.	SOP	Type	Units	LOD	
Naphthalene	U	1700	10:1	μg/l	0.10	< 0.10
Acenaphthylene	U	1700	10:1	μg/l	0.10	< 0.10
Acenaphthene	U	1700	10:1	μg/l	0.10	< 0.10
Fluorene	U	1700	10:1	μg/l	0.10	< 0.10
Phenanthrene	U	1700	10:1	μg/l	0.10	< 0.10
Anthracene	U	1700	10:1	μg/l	0.10	< 0.10
Fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10
Pyrene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[a]anthracene	U	1700	10:1	μg/l	0.10	< 0.10
Chrysene	N	1700	10:1	μg/l	0.10	< 0.10
Benzo[b]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[k]fluoranthene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[a]pyrene	U	1700	10:1	μg/l	0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	10:1	μg/l	0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	10:1	μg/l	0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	10:1	μg/l	0.10	< 0.10
Total Of 16 PAH's	N	1700	10:1	μg/l	2.0	< 2.0
Total Phenols	U	1920	10:1	mg/l	0.030	< 0.030

Results - Soil

Client: Quantum Geotechnic Ltd			mtest Jo		21-08677
Quotation No.:	•				1162776
			ent Sam		1
		Sa	ample Lo		WS01
				e Type:	SOIL
			Top Dep		2
			Date Sa	ampled:	16-Mar-2021
			Asbest	os Lab:	DURHAM
Determinand	Accred.	SOP	Units	LOD	
ACM Type	U	2192		N/A	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected
ACM Detection Stage	U	2192		N/A	-
Moisture	N	2030	%	0.020	8.1
pH	U	2010		4.0	8.9
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.59
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.047
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50
Aluminium (Total)	N	2430	mg/kg	100	5900
Arsenic	U	2450	mg/kg	1.0	8.2
Cadmium	Ü	2450		0.10	0.23
Chromium	Ū	2450	mg/kg	1.0	12
Manganese	Ü	2450		5.0	1400
Antimony	N	2450)	2.0	< 2.0
Copper	U	2450	,	0.50	12
Mercury	Ü	2450	mg/kg	0.10	< 0.10
Nickel	Ü	2450	mg/kg	0.50	39
Lead	Ü	2450		0.50	31
Selenium	U	2450		0.20	0.47
Zinc	Ü	2450		0.50	60
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50
Organic Matter	U	2625	%	0.40	< 0.40
Aliphatic TPH >C5-C6	N	2680			< 0.010
Aliphatic TPH >C6-C8	N	2680	mg/kg		< 0.010
Aliphatic TPH >C8-C10	N	2680		0.10	< 0.10
Aliphatic TPH >C10-C12	N	2680	mg/kg	0.10	< 0.10
Aliphatic TPH >C12-C16	N	2680		0.10	< 0.10
Aliphatic TPH >C16-C21	N	2680)	0.10	< 0.10
Aliphatic TPH >C21-C35	N	2680		0.10	< 0.10
Aliphatic TPH >C35-C44	N	2680	mg/kg	0.10	< 0.10
Total Aliphatic Hydrocarbons	N	2680	mg/kg	1.0	< 1.0
Aromatic TPH >C5-C7	N	2680		0.010	< 0.010
Aromatic TPH >C7-C8	N	2680	mg/kg		< 0.010
Aromatic TPH >C7-C8 Aromatic TPH >C8-C10	N		mg/kg	0.010	< 0.010
7 (10) (10) (11) (11) (10) (10)		-			
Aromatic TPH >C10,C12	NI	しつだらい	marka		
Aromatic TPH >C10-C12 Aromatic TPH >C12-C16	N N	2680 2680)	0.10	< 0.10 < 0.10

Results - Soil

Client: Quantum Geotechnic Ltd		Chemtest Job No.:			21-08677	
Quotation No.:		Chemtest Sample ID.:				
			ent Sam		1	
		Sa	ample Lo	ocation:	WS01	
			Sample	е Туре:	SOIL	
			Top Dep	oth (m):	2	
			Date Sa	ampled:	16-Mar-2021	
			Asbest	os Lab:	DURHAM	
Determinand	Accred.	SOP	Units	LOD		
Aromatic TPH >C21-C35	N	2680	mg/kg	0.10	< 0.10	
Aromatic TPH >C35-C44	N	2680	mg/kg	0.10	< 0.10	
Total Aromatic Hydrocarbons	N	2680	mg/kg	1.0	< 1.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	2.0	< 2.0	
Naphthalene	U	2700	mg/kg	0.10	< 0.10	
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	
Fluorene	U	2700	mg/kg	0.10	< 0.10	
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	
Anthracene	U	2700	mg/kg	0.10	< 0.10	
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	
Pyrene	U	2700	mg/kg	0.10	< 0.10	
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	
Chrysene	U	2700	mg/kg	0.10	< 0.10	
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	
Total Phenols	U	2920	mg/kg	0.30	< 0.30	

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
7040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

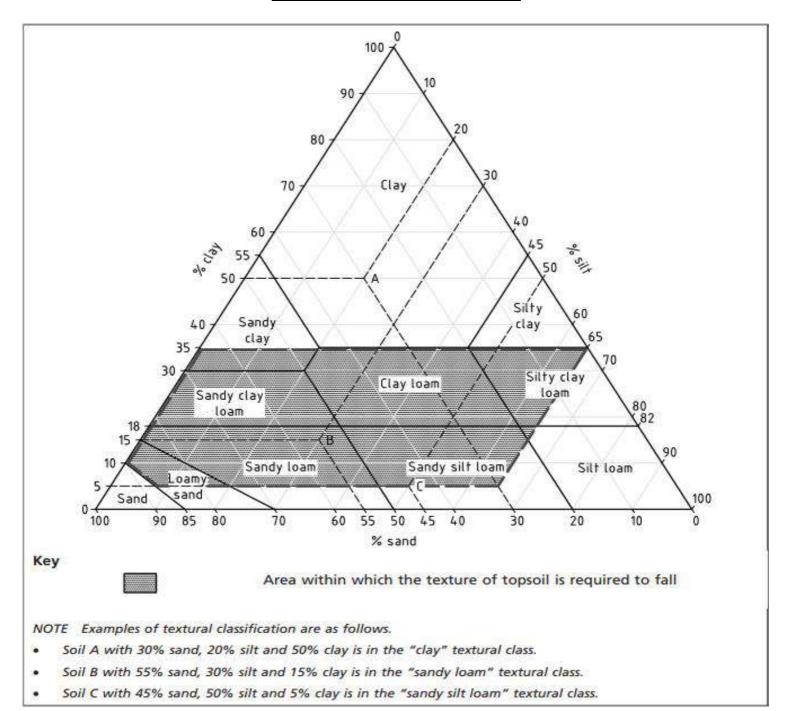
Results - Soil

Client: Quantum Geotechnic Ltd		Che	mtest Jo	ob No.:	21-07128	21-07128	21-07128	21-07128
Quotation No.: Q21-22667		Chemte	st Sam	ple ID.:	1155067	1155069	1155070	1155073
Order No.:		Clie	nt Samp	le Ref.:	1	1	2	1
		Cli	ent Sam	ple ID.:	ES1	ES1	ES2	ES1
		Sa	ample Lo		TP6	TP5	TP5	TP7
		Sample Type:		SOIL	SOIL	SOIL	SOIL	
			Top Dep	oth (m):	0.2	0.2	0.5	0.2
		Bot	tom Dep		0.3			
			Date Sa		04-Mar-2021	04-Mar-2021	04-Mar-2021	04-Mar-2021
			Asbest	os Lab:	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD				
Aromatic TPH >C12-C16	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	2680	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30

Results - Topsoil Report

BS3882:2015

Chemtest Job No.: 21-07128 Chemtest Sample ID.: 1155073


Client Sample Ref.: 1 Sample Location: TP7 Client Sample ID.: ES1 Top Depth (m): 0.2 Bottom Depth (m):

Date Sampled: 04-Mar-2021

Time Sampled:

Time Sampled:		_		-						
Parameter	Units	Μι	ıltipurpo Range	ose	Result	Compliant with Multipurpose Range? (Y/N)	Spe	Compliant with Specific Purpose Range? (Y/N)		
Texture							Acid	Low F	Calc.	
Clay content	%				19					
Silt content	%				15					
Sand content	%				66					
Soil texture class		See A	See Attached Chart		Sandy Clay Loam	YES				
Mass Loss on Ignition										
Clay 5-20%			3.0-20		6.1	YES	YES	YES	YES	
Clay 20-35%			5.0-20		0.1	150	150	TES	153	
Stone Content	% m/m									
>2mm			0-30		26	YES				
>20mm			0-10		< 0.020	YES				
>50mm		0		< 0.020	YES					
Soil pH value			5.5-8.5		4.9	NO	YES	YES	NO	
Carbonate (Calcareous only)	%				0.56				NO	
Electrical Conductivity	μS/cm	If >3	3300 do	ESP	2000	YES				
Available Nutrient Content										
Nitrogen %			>0.15		0.15	NO	NO		NO	
Extractable phosphorus	mg/l		16-140		1.2	NO	NO	YES	NO	
Extractable potassium	mg/l		121-1500)	210	YES	YES		YES	
Extractable magnesium	mg/l		51-600		70	YES	YES		YES	
Carbon : Nitrogen Ratio			<20:1		24.0/1	NO	NO	YES	NO	
Exchangeable sodium	%		<15		0.74					
Available Calcium	mg/l				330					
Available Sodium	mg/l				16					
Phytotoxic Contaminants (by soil pH)		< 6.0	6.0-7.0	> 7.0						
Zinc (Nitric Acid extract)	mg/kg	<200	<200	<300	16	YES				
Copper (Nitric Acid extract)	mg/kg	<100	<135	<200	10	YES				
Nickel (Nitric Acid extract)	mg/kg	<60	<75	<110	5.1	YES				
Visible Contaminants	% mm									
>2mm			<0.5		0.000	YES				
of which plastics			<0.25		0.000	YES				
man-made sharps		Z	ero in 1k	g	0.000	YES				

Topsoil: Texture Classification Chart

Permission to reproduce extracts from BS 3882:2015 is granted by BSI.

British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1415	Cations in Waters by ICP-MS	Sodium; Potassium; Calcium; Magnesium	Direct determination by inductively coupled plasma - mass spectrometry (ICP-MS).
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2020	Electrical Conductivity	Electrical conductivity (EC) of aqueous extract or calcium sulphate solution for topsoil	Measurement of the electrical resistance of a 2:1 water/soil extract.
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2115	Total Nitrogen in Soils	Nitrogen	Determination by elemental analyser
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2260	Carbonate	Carbonate	Titration
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2400	Cations	Cations	ICP-MS
2420	Phosphate	Phosphate	Spectrophotometry - Discrete analyser
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.

Test Methods

SOP	Title	Parameters included	Method summary
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2620	LOI 440	LOI 440 Trommel Fines	Determination of the proportion by mass that is lost from a soil by ignition at 440°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket

CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 21-09064-1

Initial Date of Issue: 29-Mar-2021

Client Quantum Geotechnic Ltd

Client Address: Plas Newydd

Llanedi

Pontarddulais Swansea SA4 0FQ

Contact(s): Steffan Picton

Project QO463 Tylorstown Phase 4 GI

Quotation No.: Date Received: 22-Mar-2021

Order No.: Date Instructed: 22-Mar-2021

No. of Samples: 3

Turnaround (Wkdays): 5 Results Due: 26-Mar-2021

Date Approved: 29-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Quantum Geotechnic Ltd			emtest Jo		21-09064	21-09064	21-09064
Quotation No.:			test Sam		1164539	1164540	1164541
		C	lient Sam	ple ID.:	1	1	1
			Sample Lo		BH07	SW01	SW02
				e Type:	WATER	WATER	WATER
			Top Dep	, ,	6.43	0	0
			Date Sa	ampled:	19-Mar-2021	19-Mar-2021	19-Mar-2021
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010		N/A	8.1	8.2	7.9
Electrical Conductivity	U	1020	μS/cm	1.0	580	260	130
Biochemical Oxygen Demand	N	1090	mg O2/I	4.0	[B] < 4.0	[B] < 4.0	[B] < 4.0
Chemical Oxygen Demand	U	1100	mg O2/I	10	13	14	15
Sulphur	N	1220	mg/l	1.0	25	6.3	4.0
Sulphate	U	1220	mg/l	1.0	75	19	12
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050
Thiocyanate	U	1300	mg/l	0.50	< 0.50	< 0.50	< 0.50
Calcium	U	1455	mg/l	2.00		26	5.1
Total Hardness as CaCO3	U	1270	mg/l	15	110	100	33
Arsenic (Dissolved)	U	1455	μg/l	0.20	0.68	0.35	0.56
Boron (Dissolved)	U	1455	μg/l	10.0	27	18	23
Barium (Dissolved)	U	1455	μg/l	5.00	16	32	5.5
Beryllium (Dissolved)	U	1455	μg/l	1.00	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1455	μg/l	0.12	< 0.12	< 0.12	< 0.12
Chromium (Dissolved)	U	1455	μg/l	0.50	5.0	7.7	8.7
Copper (Dissolved)	U	1455	μg/l	0.50	1.5	5.7	3.6
Iron (Dissolved)	N	1455	μg/l	5.0	< 5.0	38	21
Mercury (Dissolved)	U	1455	μg/l	0.05	< 0.05	< 0.05	< 0.05
Nickel (Dissolved)	U	1455	μg/l	0.50	1.7	1.1	1.9
Lead (Dissolved)	U	1455	μg/l	0.50	< 0.50	< 0.50	< 0.50
Selenium (Dissolved)	U	1455	μg/l	0.50	2.5	< 0.50	0.54
Vanadium (Dissolved)	U	1455	μg/l	0.50	< 0.50	< 0.50	< 0.50
Zinc (Dissolved)	U	1455	μg/l	3.0	< 3.0	< 3.0	< 3.0
Chromium (Hexavalent)	U	1490	μg/l	20	< 20	< 20	< 20
Dissolved Organic Carbon	U	1610	mg/l	2.0	7.5	6.1	6.2
Total Organic Carbon	U	1610	mg/l	2.0	7.0	6.2	7.1
Aliphatic TPH >C5-C6	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10

Client: Quantum Geotechnic Ltd		Chemtest Job No.:				21-09064	21-09064
Quotation No.:			test Sam		1164539	1164540	1164541
			lient Sam		1	1	1
		(Sample Lo		BH07	SW01	SW02
				е Туре:	WATER	WATER	WATER
			Top De	pth (m):	6.43	0	0
		Date Sampled: 19		19-Mar-2021	19-Mar-2021	19-Mar-2021	
Determinand	Accred.	SOP	Units	LOD			
Aromatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	1675	μg/l	10	< 10	< 10	< 10
Naphthalene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	μg/l	2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Chloromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Bromomethane	U	1760	μg/l	5	< 5	< 5	< 5
Chloroethane	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	U	1760	μg/l	5	< 5	< 5	< 5
Trichloromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0

Client: Quantum Geotechnic Ltd			emtest J		21-09064	21-09064	21-09064
Quotation No.:			test Sam		1164539	1164540	1164541
		C	lient Sam	ple ID.:	1	1	1
		,	Sample Lo		BH07	SW01	SW02
				е Туре:	WATER	WATER	WATER
			Top De	oth (m):	6.43	0	0
		Date Sampled: 19		19-Mar-2021	19-Mar-2021	19-Mar-2021	
Determinand	Accred.	SOP	Units	LOD			
Benzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Trichloroethene	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	U	1760	μg/l	10	< 10	< 10	< 10
Bromodichloromethane	U	1760	μg/l	5	< 5	< 5	< 5
cis-1,3-Dichloropropene	N	1760	μg/l	10	< 10	< 10	< 10
Toluene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	1760	μg/l	10	< 10	< 10	< 10
1,1,2-Trichloroethane	U	1760	μg/l	10	< 10	< 10	< 10
Tetrachloroethene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane	U	1760	μg/l	10	< 10	< 10	< 10
1.2-Dibromoethane	Ü	1760	μg/l	5	< 5	< 5	< 5
Chlorobenzene	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Styrene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	N	1760	μg/l	50	< 50	< 50	< 50
N-Propylbenzene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	N N	1760		1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
	U		μg/l				
1,4-Dichlorobenzene	U	1760 1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene			μg/l		< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-Chloropropane	U	1760	μg/l	50	< 50	< 50	< 50
1,2,4-Trichlorobenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0

Client: Quantum Geotechnic Ltd			emtest Jo		21-09064	21-09064	21-09064
Quotation No.:		Chem	test Sam	ple ID.:	1164539	1164540	1164541
			lient Sam		1	1	1
		(Sample Lo		BH07	SW01	SW02
			Sampl	е Туре:	WATER	WATER	WATER
			Top De	oth (m):	6.43	0	0
		Date Sampled: 1		19-Mar-2021	19-Mar-2021	19-Mar-2021	
Determinand	Accred.	SOP	Units	LOD			
1,2,3-Trichlorobenzene	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
N-Nitrosodimethylamine	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Phenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Chlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis-(2-Chloroethyl)Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,3-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,4-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,2-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Methylphenol (o-Cresol)	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis(2-Chloroisopropyl)Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachloroethane	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
N-Nitrosodi-n-propylamine	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Methylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Nitrobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Isophorone	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Nitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4-Dimethylphenol	N N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis(2-Chloroethoxy)Methane	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4-Dichlorophenol	T N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,2,4-Trichlorobenzene	N N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Naphthalene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Chloroaniline	T N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachlorobutadiene	T N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Chloro-3-Methylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Methylnaphthalene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachlorocyclopentadiene	T N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4,6-Trichlorophenol	T N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4,5-Trichlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Chloronaphthalene	N N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Nitroaniline	N N	1790		0.50	< 0.50	< 0.50	< 0.50
Acenaphthylene	N N	1790	μg/l μg/l	0.50	< 0.50	< 0.50	< 0.50
Dimethylphthalate	N N	1790	μg/l μg/l	0.50	< 0.50	< 0.50	< 0.50
2,6-Dinitrotoluene	N N						
Acenaphthene	N N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
3-Nitroaniline	N N	1790 1790	μg/l	0.50	< 0.50 < 0.50	< 0.50	< 0.50
	N N		μg/l			< 0.50	< 0.50
Dibenzofuran 4 Chlorophanylahanylathar		1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Chlorophenylphenylether	N N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50

Client: Quantum Geotechnic Ltd		Ch	emtest J	ob No.:	21-09064	21-09064	21-09064
Quotation No.:		Chem	test Sam	ple ID.:	1164539	1164540	1164541
			lient Sam		1	1	1
		Ç	Sample Lo	ocation:	BH07	SW01	SW02
			Sampl	е Туре:	WATER	WATER	WATER
		Top Depth (m):			6.43	0	0
			Date Sa	ampled:	19-Mar-2021	19-Mar-2021	19-Mar-2021
Determinand	Accred.	SOP	Units	LOD			
Fluorene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Diethyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Nitroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Methyl-4,6-Dinitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Azobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Bromophenylphenyl Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Pentachlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Phenanthrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Carbazole	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Di-N-Butyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Butylbenzyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[a]anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Chrysene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis(2-Ethylhexyl)Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Di-N-Octyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[b]fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[k]fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[a]pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Indeno(1,2,3-c,d)Pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Dibenz(a,h)Anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[g,h,i]perylene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Nitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Total Phenols	U	1920	mg/l	0.030	< 0.030	< 0.030	< 0.030

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1164539		1	BH07	19-Mar-2021	В	Coloured Winchester 1000ml
1164539		1	BH07	19-Mar-2021	В	EPA Vial 40ml
1164539		1	BH07	19-Mar-2021	В	Plastic Bottle 1000ml
1164540		1	SW01	19-Mar-2021	В	Coloured Winchester 1000ml
1164540		1	SW01	19-Mar-2021	В	EPA Vial 40ml
1164540		1	SW01	19-Mar-2021	В	Plastic Bottle 1000ml
1164541		1	SW02	19-Mar-2021	В	Coloured Winchester 1000ml
1164541		1	SW02	19-Mar-2021	В	EPA Vial 40ml
1164541		1	SW02	19-Mar-2021	В	Plastic Bottle 1000ml

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1090	Biochemical Oxygen Demand	Biochemical Oxygen demand (BOD)	Colorimetric determination of dissolved oxygen in seeded sample after 5 days incubation at 20°C.
1100	Chemical Oxygen Demand	Chemical Oxygen demand (COD)	Dichromate oxidation of organic matter in sample followed by colorimetric determination of residual Cr[VI].
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesium results, expressed as mg l-1 CaCO3 equivalent.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1790	Semi-Volatile Organic Compounds (SVOCs) in Waters by GC-MS	Semi-volatile organic compounds	Solvent extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Chemtest
Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 21-09064-2

Initial Date of Issue: 29-Mar-2021 Date of Re-Issue: 29-Mar-2021

Client Quantum Geotechnic Ltd

Client Address: Plas Newydd

Llanedi

Pontarddulais Swansea SA4 0FQ

Contact(s): Steffan Picton

Project QO463 Tylorstown Phase 4 GI

Quotation No.: Date Received: 22-Mar-2021

Order No.: Date Instructed: 22-Mar-2021

No. of Samples: 3

Turnaround (Wkdays): 8 Results Due: 31-Mar-2021

Date Approved: 29-Mar-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Client: Quantum Geotechnic Ltd			emtest Jo		21-09064	21-09064	21-09064
Quotation No.:			test Sam		1164539	1164540	1164541
		C	Client Sam	ple ID.:	1	1	1
		,	Sample Lo		BH07	SW01	SW02
				e Type:	WATER	WATER	WATER
			Top Dep	, ,	6.43	0	0
			Date Sa	ampled:	19-Mar-2021	19-Mar-2021	19-Mar-2021
Determinand	Accred.	SOP	Units	LOD			
рН	U	1010		N/A	8.1	8.2	7.9
Electrical Conductivity	U	1020	μS/cm	1.0	580	260	130
Biochemical Oxygen Demand	N	1090	mg O2/I	4.0	[B] < 4.0	[B] < 4.0	[B] < 4.0
Chemical Oxygen Demand	U	1100	mg O2/I	10	13	14	15
Sulphur	N	1220	mg/l	1.0	25	6.3	4.0
Sulphate	U	1220	mg/l	1.0	75	19	12
Cyanide (Total)	U	1300	mg/l	0.050	< 0.050	< 0.050	< 0.050
Thiocyanate	U	1300	mg/l	0.50	< 0.50	< 0.50	< 0.50
Calcium	U	1455	mg/l	2.00		26	5.1
Total Hardness as CaCO3	U	1270	mg/l	15	110	100	33
Aluminium (Dissolved)	N	1455	μg/l	5.0	5.8	13	11
Arsenic (Dissolved)	U	1455	μg/l	0.20	0.68	0.35	0.56
Boron (Dissolved)	U	1455	μg/l	10.0	27	18	23
Barium (Dissolved)	U	1455	μg/l	5.00	16	32	5.5
Beryllium (Dissolved)	U	1455	μg/l	1.00	< 1.0	< 1.0	< 1.0
Cadmium (Dissolved)	U	1455	μg/l	0.12	< 0.12	< 0.12	< 0.12
Chromium (Dissolved)	U	1455	μg/l	0.50	5.0	7.7	8.7
Copper (Dissolved)	U	1455	μg/l	0.50	1.5	5.7	3.6
Iron (Dissolved)	N	1455	μg/l	5.0	< 5.0	38	21
Mercury (Dissolved)	U	1455	μg/l	0.05	< 0.05	< 0.05	< 0.05
Manganese (Dissolved)	U	1455	μg/l	0.50	240	31	180
Nickel (Dissolved)	U	1455	μg/l	0.50	1.7	1.1	1.9
Lead (Dissolved)	U	1455	μg/l	0.50	< 0.50	< 0.50	< 0.50
Antimony (Dissolved)	Ü	1455	μg/l	0.50	0.63	< 0.50	< 0.50
Selenium (Dissolved)	U	1455	μg/l	0.50	2.5	< 0.50	0.54
Vanadium (Dissolved)	U	1455	μg/l	0.50	< 0.50	< 0.50	< 0.50
Zinc (Dissolved)	U	1455	μg/l	3.0	< 3.0	< 3.0	< 3.0
Chromium (Hexavalent)	U	1490	μg/l	20	< 20	< 20	< 20
Dissolved Organic Carbon	Ū	1610	mg/l	2.0	7.5	6.1	6.2
Total Organic Carbon	Ü	1610	mg/l	2.0	7.0	6.2	7.1
Aliphatic TPH >C5-C6	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C6-C8	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C8-C10	N	1675	µg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aliphatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aliphatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0	< 5.0	< 5.0

Client: Quantum Geotechnic Ltd			emtest J		21-09064 1164539	21-09064	21-09064
Quotation No.:		Chemtest Sample ID.:				1164540	1164541
		Client Sample ID.:				1	1
		Sample Location:				SW01	SW02
		Sample Type: Top Depth (m):				WATER	WATER
						0	0
			Date Sa	ampled:	19-Mar-2021	19-Mar-2021	19-Mar-2021
Determinand	Accred.	Accred. SOP Units LOD					
Aromatic TPH >C5-C7	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C7-C8	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C8-C10	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C10-C12	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C12-C16	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C16-C21	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C21-C35	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Aromatic TPH >C35-C44	N	1675	μg/l	0.10	< 0.10	< 0.10	< 0.10
Total Aromatic Hydrocarbons	N	1675	μg/l	5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	1675	μg/l	10	< 10	< 10	< 10
Naphthalene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Chrysene	N	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	1700	μg/l	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	1700	µg/l	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	1700	μg/l	2.0	< 2.0	< 2.0	< 2.0
Dichlorodifluoromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Chloromethane	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Bromomethane	U	1760	μg/l	5	< 5	< 5	< 5
Chloroethane	Ü	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Trichlorofluoromethane	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Trans 1,2-Dichloroethene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	Ū	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	Ü	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Bromochloromethane	Ü	1760	μg/l	5	< 5	< 5	< 5
Trichloromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0

Client: Quantum Geotechnic Ltd			emtest J		21-09064 1164539	21-09064	21-09064
Quotation No.:		Chemtest Sample ID.:				1164540	1164541
	Client Sample ID.: Sample Location:				1	1	1
				BH07 WATER	SW01	SW02	
		Sample Type:				WATER	WATER
		Top Depth (m):				0	0
		Date Sampled:			19-Mar-2021	19-Mar-2021	19-Mar-2021
Determinand	Accred.	SOP	Units	LOD			
1,1,1-Trichloroethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Tetrachloromethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Benzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Trichloroethene	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	U	1760	μg/l	10	< 10	< 10	< 10
Bromodichloromethane	U	1760	μg/l	5	< 5	< 5	< 5
cis-1,3-Dichloropropene	N	1760	μg/l	10	< 10	< 10	< 10
Toluene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Trans-1,3-Dichloropropene	N	1760	μg/l	10	< 10	< 10	< 10
1,1,2-Trichloroethane	U	1760	μg/l	10	< 10	< 10	< 10
Tetrachloroethene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane	U	1760	μg/l	10	< 10	< 10	< 10
1,2-Dibromoethane	U	1760	μg/l	5	< 5	< 5	< 5
Chlorobenzene	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Ethylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Styrene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Tribromomethane	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	N	1760	μg/l	50	< 50	< 50	< 50
N-Propylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
2-Chlorotoluene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Tert-Butylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Sec-Butylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
N-Butylbenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0

Client: Quantum Geotechnic Ltd			emtest J		21-09064	21-09064	21-09064
Quotation No.:	Client Sample ID.: Sample Location:				1164539	1164540	1164541
				1	1	1	
				BH07 WATER	SW01	SW02	
		Sample Type:				WATER	WATER
		Top Depth (m):				0	0
			Date Sa	ampled:	19-Mar-2021	19-Mar-2021	19-Mar-2021
Determinand	Accred.	SOP	Units	LOD			
1,2-Dibromo-3-Chloropropane	U	1760	μg/l	50	< 50	< 50	< 50
1,2,4-Trichlorobenzene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	U	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	U	1760	μg/l	2.0	< 2.0	< 2.0	< 2.0
Methyl Tert-Butyl Ether	N	1760	μg/l	1.0	< 1.0	< 1.0	< 1.0
N-Nitrosodimethylamine	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Phenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Chlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis-(2-Chloroethyl)Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,3-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,4-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,2-Dichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Methylphenol (o-Cresol)	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis(2-Chloroisopropyl)Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachloroethane	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
N-Nitrosodi-n-propylamine	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Methylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Nitrobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Isophorone	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Nitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4-Dimethylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis(2-Chloroethoxy)Methane	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4-Dichlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
1,2,4-Trichlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Naphthalene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Chloroaniline	N	1790	µg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachlorobutadiene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Chloro-3-Methylphenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Methylnaphthalene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachlorocyclopentadiene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4,6-Trichlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4,5-Trichlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Chloronaphthalene	N	1790	µg/l	0.50	< 0.50	< 0.50	< 0.50
2-Nitroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Acenaphthylene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Dimethylphthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,6-Dinitrotoluene	N N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Acenaphthene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
3-Nitroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50

Client: Quantum Geotechnic Ltd	Chemtest Job No.:			21-09064	21-09064	21-09064	
Quotation No.:	Chemtest Sample ID.:			1164539	1164540	1164541	
		Client Sample ID.:				1	1
		Sample Location:			BH07	SW01	SW02
		Sample Type:				WATER	WATER
		Top Depth (m):			6.43	0	0
			Date Sa	ampled:	19-Mar-2021	19-Mar-2021	19-Mar-2021
Determinand	Accred.	Accred. SOP Units LOD					
Dibenzofuran	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Chlorophenylphenylether	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2,4-Dinitrotoluene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Fluorene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Diethyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Nitroaniline	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
2-Methyl-4,6-Dinitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Azobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Bromophenylphenyl Ether	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Hexachlorobenzene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Pentachlorophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Phenanthrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Carbazole	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Di-N-Butyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Butylbenzyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[a]anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Chrysene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Bis(2-Ethylhexyl)Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Di-N-Octyl Phthalate	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[b]fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[k]fluoranthene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[a]pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Indeno(1,2,3-c,d)Pyrene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Dibenz(a,h)Anthracene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Benzo[g,h,i]perylene	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
4-Nitrophenol	N	1790	μg/l	0.50	< 0.50	< 0.50	< 0.50
Total Phenols	U	1920	mg/l	0.030	< 0.030	< 0.030	< 0.030

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1164539		1	BH07	19-Mar-2021	В	Coloured Winchester 1000ml
1164539		1	BH07	19-Mar-2021	В	EPA Vial 40ml
1164539		1	BH07	19-Mar-2021	В	Plastic Bottle 1000ml
1164540		1	SW01	19-Mar-2021	В	Coloured Winchester 1000ml
1164540		1	SW01	19-Mar-2021	В	EPA Vial 40ml
1164540		1	SW01	19-Mar-2021	В	Plastic Bottle 1000ml
1164541		1	SW02	19-Mar-2021	В	Coloured Winchester 1000ml
1164541		1	SW02	19-Mar-2021	В	EPA Vial 40ml
1164541		1	SW02	19-Mar-2021	В	Plastic Bottle 1000ml

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1090	Biochemical Oxygen Demand	Biochemical Oxygen demand (BOD)	Colorimetric determination of dissolved oxygen in seeded sample after 5 days incubation at 20°C.
1100	Chemical Oxygen Demand	Chemical Oxygen demand (COD)	Dichromate oxidation of organic matter in sample followed by colorimetric determination of residual Cr[VI].
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1270	Total Hardness of Waters	Total hardness	Calculation applied to calcium and magnesium results, expressed as mg l-1 CaCO3 equivalent.
1300	Cyanides & Thiocyanate in Waters	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Continuous Flow Analysis.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1490	Hexavalent Chromium in Waters	Chromium [VI]	Automated colorimetric analysis by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1675	TPH Aliphatic/Aromatic split in Waters by GC-FID(cf. Texas Method 1006 / TPH CWG)	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Pentane extraction / GCxGC FID detection
1700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
1760	Volatile Organic Compounds (VOCs) in Waters by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics. (cf. USEPA Method 8260)	Automated headspace gas chromatographic (GC) analysis of water samples with mass spectrometric (MS) detection of volatile organic compounds.
1790	Semi-Volatile Organic Compounds (SVOCs) in Waters by GC-MS	Semi-volatile organic compounds	Solvent extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

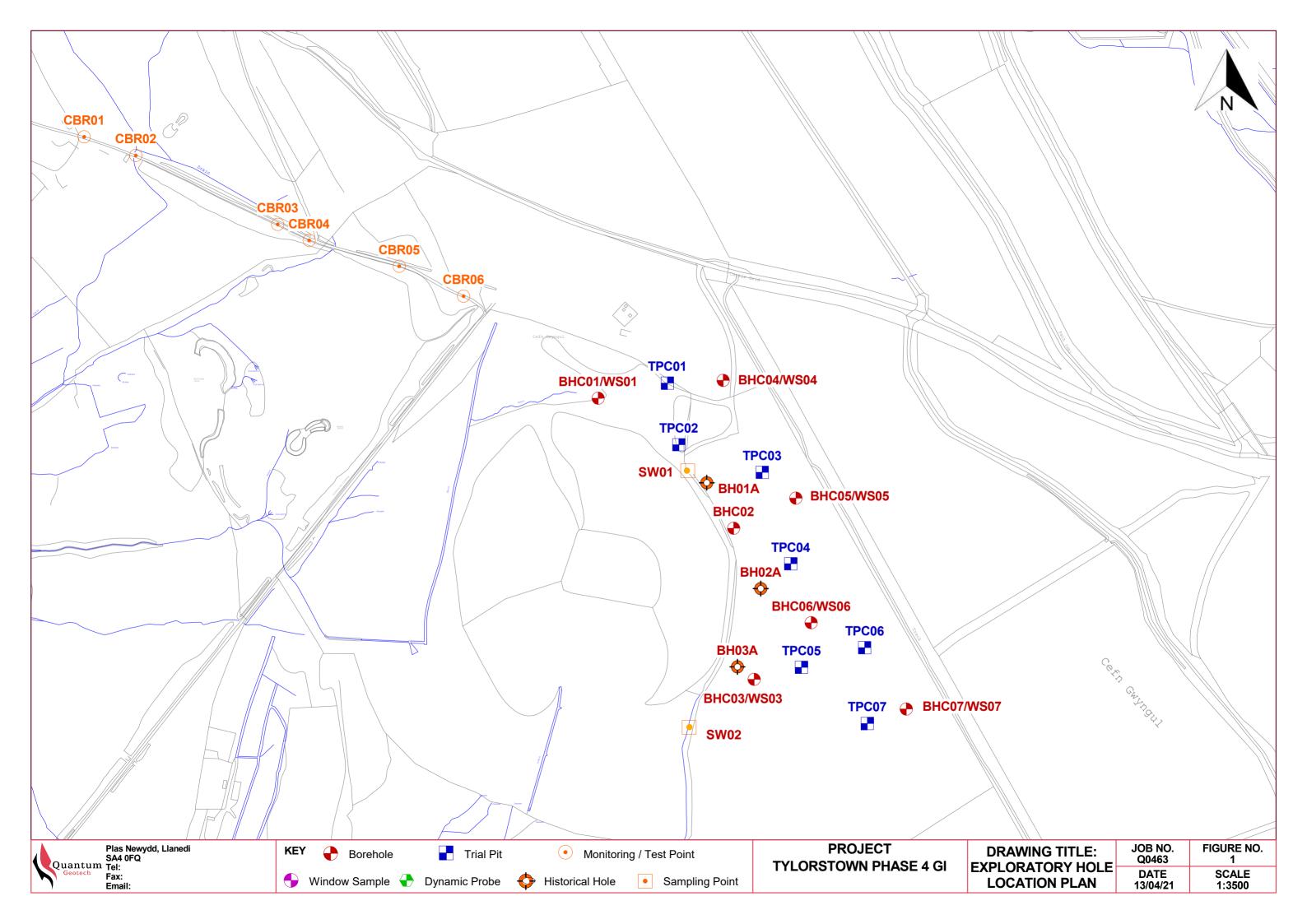
For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

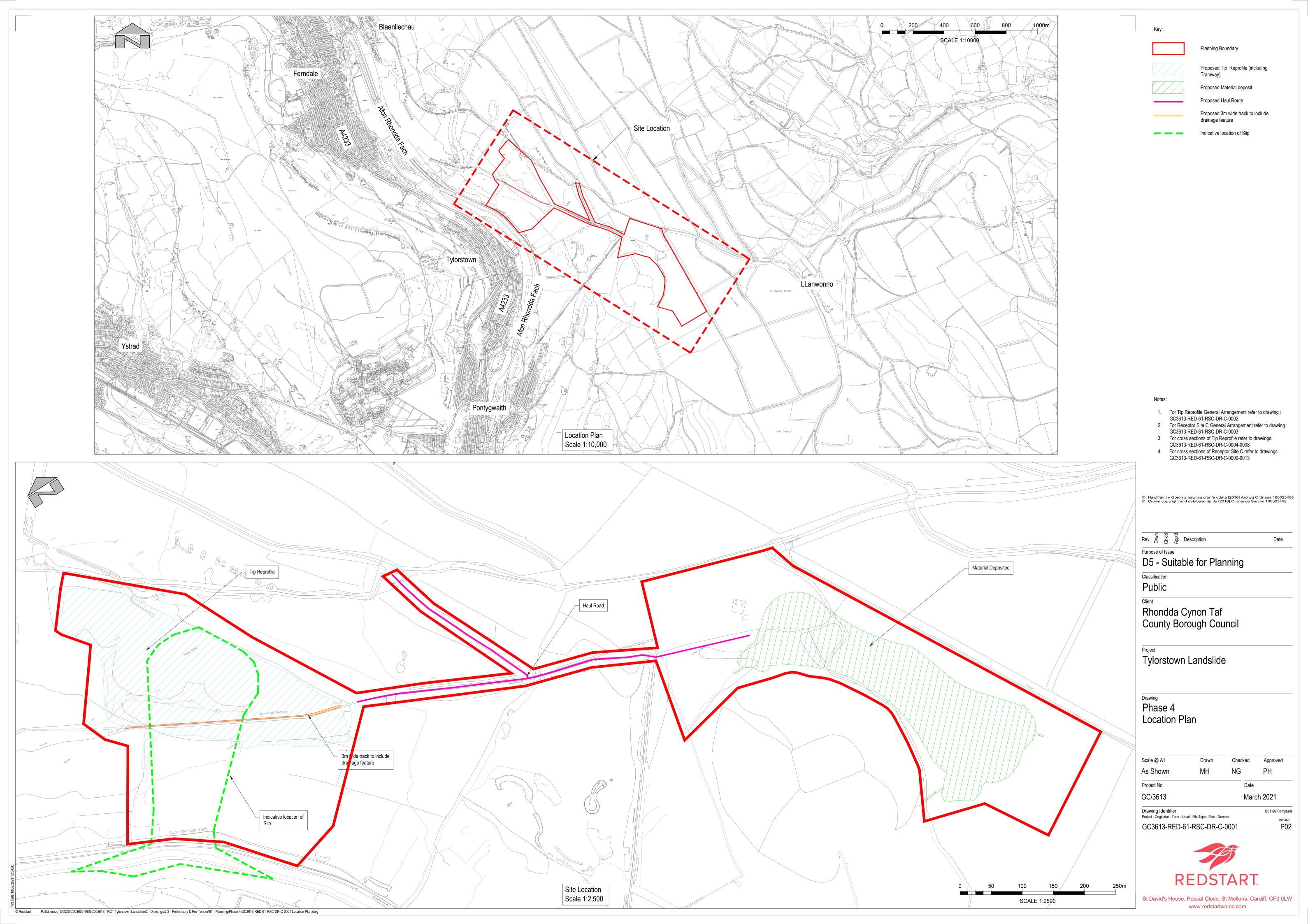

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>


Appendix C

Drawings

C.1 Location plan

Calculations

- C.2 Greenfield run-off calculation (UKSuDS tool)
- C.3 Spring flow estimation
- C.4 Donor Site Greenfield rate calculation Flow output

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by: Jacques Calitz Site name: Tylorstown Ph4 - Receptor C Site location: Tylorstown Ph4 - Receptor C

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may

the basis for setting consents for the drainage of surface water runoff from sites.

Site Details

Latitude: 51.65110° N Longitude: 3.41913° W

Reference: 1493243335

Date: May 16 2021 11:54

Runoff estimation approach

IH124

Site characteristics

Notes

Total site area (ha):

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

Methodology

Q_{BAR} estimation method: SPR estimation method:

Calculate from SPR and SAAR Calculate from SOIL type

Default

3

N/A

0.37

Edited

3

N/A

0.37

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

SOIL type:

HOST class:

SPR/SPRHOST:

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Default	Edited
1920	1920
9	9
0.88	0.88
1.78	1.78
2.18	2.18
2.46	2.46

(3) Is SPR/SPRHOST ≤ 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates

Q_{BAR} (I/s):

1 in 1 year (l/s):

1 in 30 years (I/s):

1 in 100 year (l/s):

1 in 200 years (I/s):

Default Edited 9.35 9.35 8.23 8.23 16.65 16.65 20.39 20.39 23.01 23.01

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme

RCT Tylorstown Landslide Phase 4

Spring flow calculation 24 May 2021

GENERAL DISCLAIMER:

This report has been prepared by Redstart in favour of Rhondda Cynon Taf County Borough Council ("the Client") and is for the sole use and benefit of the Client in accordance with the agreement between the Client and Redstart dated November 2018 under which Redstart's services were performed. Other than in respect of liability which cannot be excluded by law, Redstart accepts no liability to any other party in respect of the contents of this report. This report is confidential and may not be disclosed by the Client or relied on by any other party without the express prior written consent of Redstart.

Whilst care has been taken in the construction of this report, the conclusions and recommendations which it contains are based upon information provided by third parties ("Third Party Information"). Redstart has for the purposes of this report relied upon and assumed that the Third Party Information is accurate and complete and has not independently verified such information for the purposes of this report. Redstart makes no representation, warranty or undertaking (express or implied) in the context of the Third Party Information and no responsibility is taken or accepted by Redstart for the adequacy, completeness or accuracy of the report in the context of the Third Party Information on which it is based.

FREEDOM OF INFORMATION:

Redstart understands and acknowledges the Authority's legal obligations and responsibilities under the Freedom of Information Act 2000 (the "Act") and fully appreciates that the Authority may be required under the terms of the Act to disclose any information which it holds. Redstart maintains that the report contains commercially sensitive information that could be prejudicial to the commercial interests of the parties. On this basis Redstart believes that the report should attract exemption from disclosure, at least in the first instance, under Sections 41 and/or 43 of the Act. Redstart accepts that the damage which it would suffer in the event of disclosure of certain of the confidential information would, to some extent, reduce with the passage of time and therefore proposes that any disclosure (pursuant to the Act) of the confidential information contained in the report should be restricted until after the expiry of 24 months from the date of the report.

1. Spring/Groundwater flow estimation

1.1 Methods

Three different methods have been used to attempt to estimate the groundwater flow rates that the herringbone drainage system may receive.

- 1. Using estimated hydraulic gradients, hydraulic conductivities, and groundwater level heights above the argillaceous layers to obtain flow rates via Darcy's Law
- 2. Using the estimated catchment area of the herringbone drains combined with estimates of the groundwater recharge in the area; and
- 3. Using data from the 1971 report on flow rates of streams towards Old Smokey and applying a baseflow index common to much of the coalfield region.

By using three methods more confidence can be given in the ultimate estimate of the flow rates from groundwater to the drainage system, whilst giving some bounds on the degree of uncertainty of these rates. It has been assumed in each of these three methods that 4 herringbone systems will be used at the site. If fewer or more systems are used the flow rates should be factored accordingly to obtain a rate per system.

1.2 Method 1 - Darcy's Law

In order to apply Darcy's Law for the region of the drainage system then for each perched groundwater body on each of the argillaceous layers the relevant hydraulic conductivity, hydraulic gradient and saturated thickness of groundwater in each sandstone is required. It has been assumed, from the nomenclature used in the Capita Phase 4 PSSR, that there are two relevant sandstone units providing the groundwater; sandstone 4 and sandstone 5. The sandstone layer beneath the Daren Rhestyn and above the 1st Rhondda Rider are below the area that will provide flow to the herringbone drainage system or are too far above it respectively, and are assumed to flow to other parts of the drainage network.

The available historical reports have been analysed in detail and no set of individual groundwater levels over time have been found for the known historical boreholes. The relevant data found are the summary of groundwater levels in Table 2.1 of the 2004 Halcrow report, the geological cross sections of this 2004 report and piezeometer data and hydraulic conductivity data in the text of the 1971 Halcrow report.

The table below shows the data considered prior to the Darcy calculation.

Borehole	Screened Unit	Water strikes above underlying argillaceous layer from borehole log?	Hydraulic Conductivity value m/s	Halcrow cross section evidence for water level above next argillaceous layer
LWT1	Not relevant – below Daren Rhestyn	N/A	N/A	No evidence

Borehole	Screened Unit	Water strikes above underlying argillaceous layer from borehole log?	Hydraulic Conductivity value m/s	Halcrow cross section evidence for water level above next argillaceous layer
LWT2	In Sandstone 4 above 1 st Rhondda Rider	Dry on drilling	N/A	5 m above 1 st Rhondda Rider
LWT3	In Sandstone 4 above 1 st Rhondda Rider	No evidence	N/A	No evidence
LWT4	In Sandstone 4 above 1 st Rhondda Rider	No evidence	N/A	10 m above 1st Rhondda Rider
LWT5	In Sandstone 4 above 1 st Rhondda Rider	4.5 m of groundwater from 16.2 m bgl water level for the layer at 20.75 m bgl.	N/A	No evidence
LWT6	In Sandstone 5 above 1 st Rhondda Rider	No evidence – some water strikes but not obviously above argillaceous layer	N/A	No evidence
LWT7	In Sandstone 5 above 1 st Rhondda Rider	Siltstone at 14.7 m bgl and water rises to 11.2 m bgl so potentially 3.5 m of groundwater.	N/A	No evidence
LWT8	Not relevant in lower tip.	Dry on drilling	N/A	No evidence
LWN1	Likely to be Sandstone 3 but have not seen log.	Not known.	2.12 x 10 ⁻⁷ – 7.74 x 10 ⁻⁶	No evidence
LWN2	Not known.	Not known.	2.02 x 10 ⁻⁵ – 8.80 x 10 ⁻⁶	No evidence
LWN3	Not known.	Not known.	2.45x10 ⁻⁶ – 2.94 x 10 ⁻⁶	No evidence
LWN4	Not relevant – on lower tip	Not known.	6.50 x 10 ⁻⁶	No evidence

The 1971 Halcrow Report does present other potentially relevant information on saturated thickness for BH9 where coal was encountered at 158' depth and water rose to 145' bgl. Hence there would have been 13' of water or 3.96 m of water above the argillaceous aquitard. In BH8 the log indicates a massive sandstone overlying coal at 184' bgl. Groundwater was encountered at 116' bgl which corresponds to 68' water or 20.7 m above the aquitard. This is likely to be sandstone 3 above the Brithdir and so potentially not applicable for the calculations here. Piezometer 1b is quoted in the 1971 report as having 3.7 m of water above the Brithdir Rider and piezometer 5b to have around 1.2 m. An average saturated thickness of 5 m has therefore been assumed.

To obtain the hydraulic gradient then data are required deeper into the hillside than the outcrop where interference from the groundwater with the superficial deposits and colliery spoil will occur.

There are only two obvious boreholes with piezometer tips screened in the same unit away from outcrop; LWN1 and LWT5 in sandstone 4. Very approximately from the cross section LWTR2/3, groundwater levels are ~312 m AOD in LWN1 and 299.89 m AOD in LWT5 which is ~ 50 m projected down hydraulic gradient. This produces an extremely steep gradient of 12/50 = 0.24. This approximately matches the topographic gradient and is much steeper than would be expected for a very permeable fractured sandstone. If the hydraulic gradient were to be this steep in groundwater, then a low hydraulic conductivity would be expected. Hydraulic conductivities from the variable head tests (1971 report) indicate between 0.018 m/day and 1.7 m/day, which although are very low for a fractured sandstone, and would need to be even lower to agree with extremely steep gradient calculated here.

However, the hydraulic gradient further away from "outcrop" into the hillside is likely to be much lower, but there is no evidence to suggest how much lower. The hydraulic conductivities for the variable head tests are unlikely to be representative of the aquifer as a whole which is known to be heavily fractured from both tension and compression movements due to the mining activities. A hydraulic conductivity of approximately 50 m/day would not be unreasonable for such a heavily fractured sandstone. If there is such a high hydraulic conductivity then the hydraulic gradient would be expected to be of the order of 0.001. From the table above and data from the 1971 report approximately 5 m of saturated thickness is assumed.

Flow per metre of outcrop length of aquifer would be

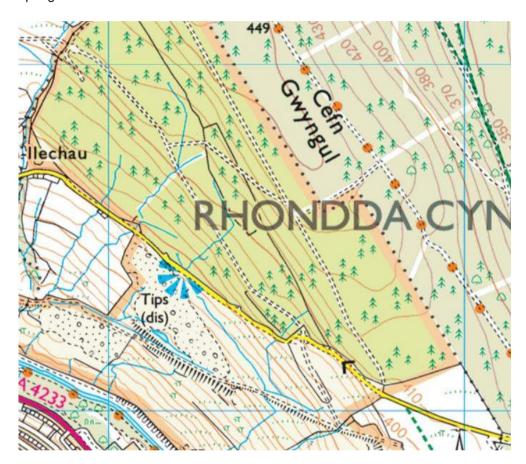
Q = KiA $50 \times 0.001 \times 5$ $0.25 \text{ m3/day or } 2.9 \times 10^{-3} \text{ l/s}.$

If 500 m of the site is of interest along topographic contours (i.e. across the hillside at the same height) beneath the herringbone drains and the drainage comprises 4 systems then this would be 0.4 l/s for each herringbone system. This is for each spring line and if it is assumed that there are two full length spring lines across the site that require capture then is equates to 0.8 l/s.

If the gradient were indeed to be 0.24 rather than 0.001 and a much lower hydraulic conductivity of 1 m/day is also applicable, then if:

Q = KiA1 x 0.24 x 5

1.2 m3/day this equates to 3.84 l/s on average for each of the 4 herringbone structures proposed.


1.3 Method 2 - Groundwater Recharge

Robins et al. (2008) suggests that rainfall in the region is approximately 1500 mm/year with 500 mm of evapotranspiration, 520 mm/year of runoff and rainfall recharge in the region of 480 mm/year. Assuming that groundwater is likely to follow topography, then the ridge along Cefyn Gwyng should be approximately the line of a groundwater divide (conjecture only – there is no evidence for this other than the surface water pattern and topography). Hence only the area that is south and west of there will contribute to the groundwater flowing into the herringbone drains. An assumption that the herringbone drain system covers a length perpendicular to groundwater flow of approximately 500 m and the dimension parallel to groundwater flow is about 800 m has been made (see map below).

Area x recharge = volume this area receives $800 \times 500 \times 0.48$ $192000 \text{ m}^3\text{/year.}$

This is equivalent to 6.08 x 10⁻³ m³/s or 6 l/s. This would mean on average 1.5 l/s would be received by each of the four herringbone drains from groundwater. However, there will be huge variability in flow; as noted in the 1971 report it is expected that due to the dip of the beds back into the hillside towards the northeast, only during extreme rainfall will the groundwater table in each of the sandstone units overtop the argillaceous beds in a significant manner leading to high spring flows down the hillside.

1.4 Method 2 - Baseflow Index

The 1971 report indicates that that the maximum flow from the issuing streams above the Brithdir Rider seam is 41.29 l/s and the Brithdir Seam is 10.2 l/s. Combined this is approximately 51.4 l/s. It is not exactly known what area/length this is considered over (diagrams from 1971 report not available) but is for streams issuing towards Old Smokey. Assuming roughly the same area is covered then if a baseflow index of 0.48 is applied (Robins et al., 2008 for major rivers traversing the coalfield) then 24.8 l/s is obtained. Dividing this between then four herringbone systems planned then 6 l/s is obtained, which is higher but the same order of magnitude as that from the recharge method and only twice as high as the method assuming approximate sandstone aquifer properties.

2. Summary

For each of the 4 herringbone structures planned it is envisaged that at low flows then 0.4 l/s may issue from groundwater but in higher flow conditions then 4 l/s per second may be more appropriate using the Darcy approach. The recharge approach gives a value in between these two values at 1.5 l/s for each of the 4 herringbone structures, supporting the Darcy range of values.

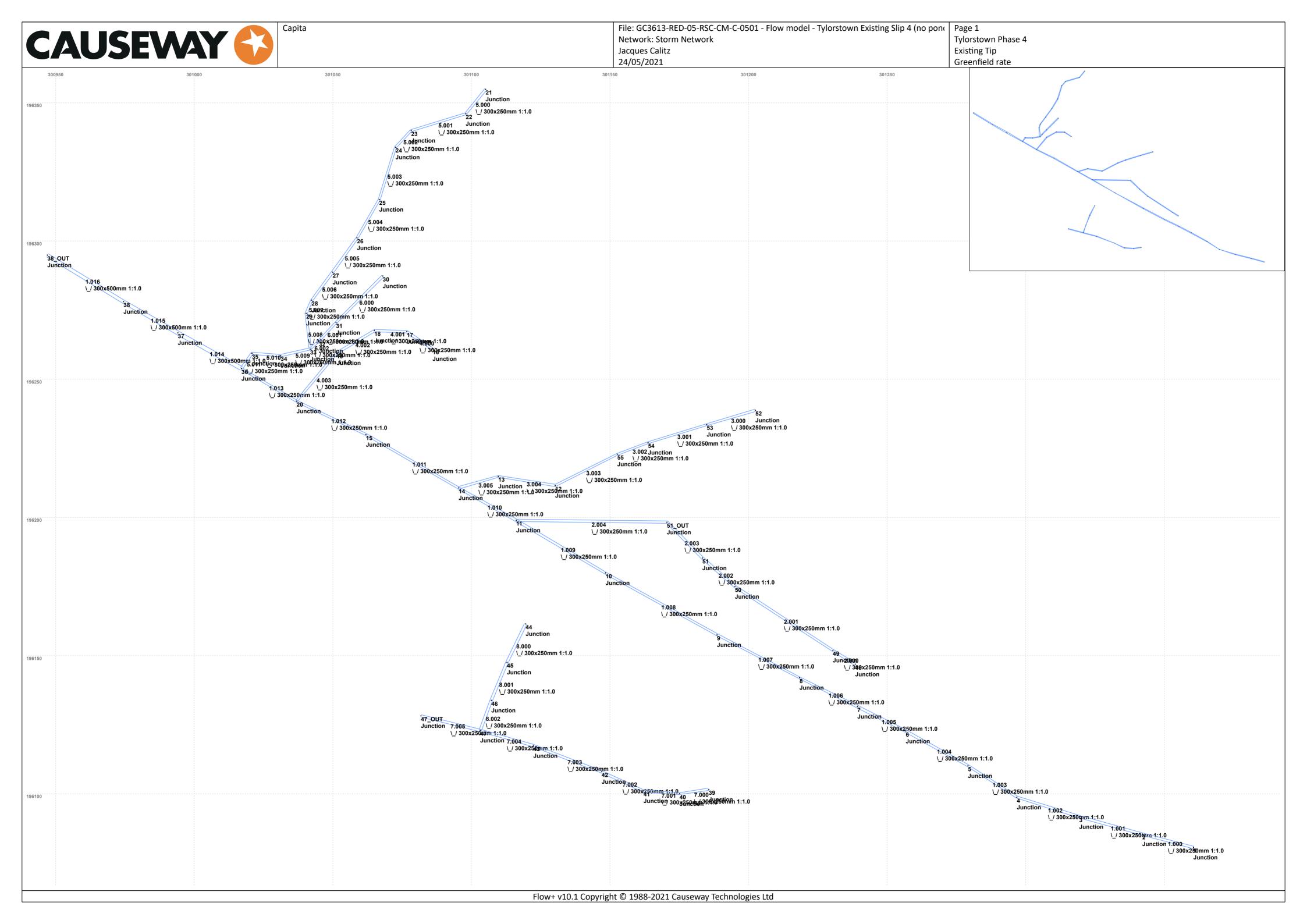
The value given from the baseflow index method should be treated with caution since the area is not thought to be specifically for the site in question and flows may be higher than those expected for the site. From the 1:25,000 Ordnance Survey map of the area, the number of springs in the vicinity of Old Smokey is higher than that of the Llanwonno Upper Tip.

UKCP18 climate change projections suggest that on average up to 18% more precipitation could occur for the 95th percentile predictions in Wales, with a worst case scenario of 60% more, so 1.6 x 3.84 = 6.1 l/s may be more appropriate to future proof any design on average. This is assuming that the extra rainfall is not associated with extreme events which would likely result in more overland flow rather than recharging groundwater levels. The impact of climate change on groundwater levels and quantities is an area of ongoing research and currently the evidence for the impacts of future climate change on UK groundwater recharge and levels is limited (Jackson et al. (2015). Jackson et al. (2015) suggest that reductions in annual and average summer groundwater levels may be seen, with increases in average winter levels overall, but that responses will be highly dependent on catchment and hydrogeological characteristics.

The possible range of flows (excluding extreme groundwater recharge events) is considered to be between 0.8 and 6.1 l/s, with an expected value of 3.8 l/s. It is therefore recommended that an uncertainty analysis be conducted on the herringbone design that examines the range of 0.8 to 6.1 l/s for groundwater flow into each of the 4 herringbone systems.

3. References

Jackson, C.R., Bloomfield, J.P., and Mackay, J.D., 2015. Evidence for changes in historic and future groundwater levels in the UK. *Progress in Physical Geography: Earth and Environment* 39(1) pp:49-67. doi:10.1177/0309133314550668.


Robins, N.S., Davies, J & Dumpleton, S., 2008. Groundwater flow in the South Wales coalfield: historical data informing 3D modelling. *Quarterly Journal of Engineering Geology and Hydrogeology*, 41, 477–486 1470-9236. DOI 10.1144/1470-9236/07-055

REDSTART

St David's House Pascal Close St Mellons Cardiff CF3 OLW

www.redstartwales.com

Capita

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021

Page 1 Tylorstown Phase 4 Existing Tip Greenfield rate

Design Settings

Rainfall Methodology FSR Return Period (years) 2 Additional Flow (%) 0

FSR Region England and Wales

M5-60 (mm) 20.000 Ratio-R 0.200 CV 0.750

Time of Entry (mins) 10.00

Maximum Time of Concentration (mins) 60.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200
Preferred Cover Depth (m) 1.200
Include Intermediate Ground ✓
Enforce best practice design rules x

Nodes

Name	Area	T of E	Add	Cover	Easting	Northing	Depth
	(ha)	(mins)	Inflow	Level	(m)	(m)	(m)
			(I/s)	(m)			
21	0.053	10.00	3.0	306.947	301105.156	196354.900	0.250
22	0.020	10.00		303.127	301097.981	196346.079	0.250
23				298.905	301078.275	196339.987	0.250
24				296.928	301072.659	196333.929	0.250
25	0.031	10.00		292.736	301066.760	196315.022	0.250
26				288.137	301058.729	196301.153	0.250
27				282.712	301049.945	196288.737	0.250
28				277.626	301042.340	196278.619	0.250
49	0.050	10.00	6.0	288.104	301230.459	196151.913	0.250
48	0.021	10.00		288.865	301238.536	196146.901	0.250
39		10.00		262.707	301185.669	196101.559	0.250
50				287.468	301195.118	196175.028	0.250
40				259.506	301175.123	196100.049	0.250
41				255.323	301162.147	196101.027	0.250
42				252.201	301147.020	196107.988	0.250
43				246.063	301122.390	196117.372	0.250
47				240.488	301103.205	196122.935	0.250
47_OUT				235.018	301081.810	196128.195	0.250
1		10.00		305.000	301360.569	196080.612	0.250
4	0.031	10.00		296.000	301296.835	196098.735	0.250
5				293.184	301279.209	196110.137	0.250
2	0.027	10.00		302.000	301342.107	196085.479	0.250
3	0.028	10.00		298.226	301319.363	196091.694	0.250
6	0.033	10.00		291.448	301256.777	196122.695	0.250
7	0.017	10.00		288.124	301239.311	196131.563	0.250
8	0.024	10.00		286.211	301218.432	196142.025	0.250
9	0.046	10.00		282.719	301188.656	196157.494	0.250
10	0.036	10.00		278.247	301148.422	196179.918	0.250
11	0.049	10.00		274.066	301116.195	196198.947	0.250
14	0.090	10.00		271.132	301095.419	196210.668	0.250
15	0.043	10.00	10.0	267.424	301061.961	196229.964	0.250
20	0.038	10.00		264.196	301036.949	196242.049	0.250
36	0.058	10.00		262.369	301017.062	196253.866	0.500
37	0.082	10.00		259.442	300994.099	196266.775	0.500
38	0.087	10.00		256.979	300974.492	196278.059	0.500
38_OUT				253.164	300947.000	196294.911	0.500
30	0.050	10.00	3.0	286.115	301068.031	196287.348	0.250

Capita

File: GC3613-RED-05-RSC-CM-0 Network: Storm Network Jacques Calitz Page 2 Tylorstown Phase 4 Existing Tip Greenfield rate

Nodes

24/05/2021

Name	Area (ha)	T of E (mins)	Add Inflow (I/s)	Cover Easting Level (m) (m)		Northing (m)	Depth (m)
31				276.625	301051.167	196270.525	0.250
32				273.384	301044.971	196263.850	0.250
33	0.018	10.00		271.523	301041.824	196260.892	0.250
29				275.504	301040.399	196273.829	0.250
17	0.026	10.00		284.547	301076.700	196267.245	0.250
18	0.057	10.00		281.543	301064.976	196267.651	0.250
16	0.039	10.00		286.516	301086.016	196260.991	0.250
19	0.026	10.00		274.860	301051.386	196259.493	0.250
34				268.777	301031.206	196258.552	0.250
35				266.489	301020.835	196259.352	0.250
51	0.048	10.00	6.0	287.230	301183.380	196185.316	0.250
51_OUT	0.026	10.00	3.0	285.617	301170.563	196198.262	0.250
12	0.018	10.00		285.732	301130.261	196211.518	0.250
13				278.592	301109.699	196214.844	0.250
52	0.042	10.00		305.129	301202.502	196238.764	0.250
53				298.364	301184.931	196233.583	0.250
54	0.013	10.00		291.544	301163.755	196227.050	0.250
55	0.076	10.00		287.778	301152.655	196222.882	0.250
44		10.00		262.144	301119.613	196161.470	0.250
45				253.929	301112.857	196147.582	0.250
46				245.665	301107.227	196133.820	0.250

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.016	38	38_OUT	32.246	0.040	256.479	252.664	3.815	8.5	500	30.99	22.7
1.015	37	38	22.622	0.040	258.942	256.479	2.463	9.2	500	30.83	22.7
1.014	36	37	26.343	0.040	261.869	258.942	2.927	9.0	500	30.71	22.8
5.011	35	36	6.658	0.040	266.239	262.119	4.120	1.6	250	20.23	27.8
1.013	20	36	23.133	0.040	263.946	262.119	1.827	12.7	250	30.57	22.8
1.012	15	20	27.779	0.040	267.174	263.946	3.228	8.6	250	30.36	22.9
4.003	19	20	22.643	0.040	274.610	263.946	10.664	2.1	250	10.27	37.7
4.002	18	19	15.851	0.040	281.293	274.610	6.683	2.4	250	10.19	37.8

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.016	3.259	1303.7	190.1	0.000	0.000	2.590	31.0	193	2.003
1.015	3.127	1250.6	173.1	0.000	0.000	2.306	31.0	187	1.892
1.014	3.159	1263.4	149.5	0.000	0.000	1.920	31.0	172	1.836
5.011	5.214	717.0	29.4	0.000	0.000	0.310	6.0	42	2.062
1.013	1.863	256.1	109.5	0.000	0.000	1.366	25.0	160	1.490
1.012	2.260	310.7	98.2	0.000	0.000	1.179	25.0	135	1.664
4.003	4.549	625.5	15.1	0.000	0.000	0.148	0.0	31	1.517
4.002	4.304	591.8	12.5	0.000	0.000	0.122	0.0	28	1.354

File: GC3613-RED-05-RSC-CM-(Network: Storm Network Jacques Calitz 24/05/2021 Page 3 Tylorstown Phase 4 Existing Tip Greenfield rate

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
4.001	17	18	11.731	0.040	284.297	281.293	3.004	3.9	250	10.13	37.9
4.000	16	17	11.221	0.040	286.266	284.297	1.969	5.7	250	10.07	38.0
1.011	14	15	38.623	0.040	270.882	267.174	3.708	10.4	250	30.16	23.0
1.010	11	14	23.854	0.040	273.816	270.882	2.934	8.1	250	21.85	26.9
3.005	13	14	14.878	0.040	278.342	270.882	7.460	2.0	250	20.10	27.9
3.004	12	13	20.829	0.040	285.482	278.342	7.140	2.9	250	20.04	28.0
1.009	10	11	37.426	0.040	277.997	273.816	4.181	9.0	250	12.09	35.1
1.008	9	10	46.061	0.040	282.469	277.997	4.472	10.3	250	11.81	35.5
1.007	8	9	33.554	0.040	285.961	282.469	3.492	9.6	250	11.44	36.0
1.006	7	8	23.354	0.040	287.874	285.961	1.913	12.2	250	11.18	36.3
1.005	6	7	19.588	0.040	291.198	287.874	3.324	5.9	250	10.97	36.6
1.004	5	6	25.708	0.040	292.934	291.198	1.736	14.8	250	10.86	36.8
1.003	4	5	20.992	0.040	295.750	292.934	2.816	7.5	250	10.61	37.1
1.002	3	4	23.603	0.040	297.976	295.750	2.226	10.6	250	10.46	37.4
1.001	2	3	23.578	0.040	301.750	297.976	3.774	6.2	250	10.27	37.7
1.000	1	2	19.093	0.040	304.750	301.750	3.000	6.4	250	10.12	37.9
5.010	34	35	10.402	0.040	268.527	266.239	2.288	4.5	250	20.21	27.9
5.009	33	34	10.873	0.040	271.273	268.527	2.746	4.0	250	20.16	27.9
5.008	29	33	13.015	0.040	275.254	271.273	3.981	3.3	250	10.58	37.2
6.002	32	33	4.319	0.040	273.134	271.273	1.861	2.3	250	20.10	27.9
6.001	31	32	9.107	0.040	276.375	273.134	3.241	2.8	250	20.09	27.9
6.000	30	31	23.820	0.040	285.865	276.375	9.490	2.5	250	20.05	28.0
5.007	28	29	5.168	0.040	277.376	275.254	2.122	2.4	250	10.52	37.3
5.006	27	28	12.657	0.040	282.462	277.376	5.086	2.5	250	10.50	37.3

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
4.001	3.354	461.2	6.7	0.000	0.000	0.065	0.0	22	0.918
4.000	2.777	381.8	4.0	0.000	0.000	0.039	0.0	18	0.675
1.011	2.054	282.4	85.7	0.000	0.000	1.136	15.0	132	1.496
1.010	2.325	319.7	65.2	0.000	0.000	0.690	15.0	106	1.514
3.005	4.694	645.4	21.1	0.000	0.000	0.278	0.0	37	1.730
3.004	3.881	533.6	21.1	0.000	0.000	0.278	0.0	41	1.515
1.009	2.216	304.6	28.3	0.000	0.000	0.298	0.0	68	1.145
1.008	2.065	284.0	25.2	0.000	0.000	0.262	0.0	66	1.051
1.007	2.138	294.0	21.0	0.000	0.000	0.216	0.0	58	1.017
1.006	1.897	260.9	18.9	0.000	0.000	0.192	0.0	58	0.903
1.005	2.731	375.5	17.3	0.000	0.000	0.175	0.0	44	1.122
1.004	1.723	236.8	11.4	0.000	0.000	0.114	0.0	45	0.716
1.003	2.428	333.8	11.5	0.000	0.000	0.114	0.0	38	0.908
1.002	2.036	279.9	7.0	0.000	0.000	0.069	0.0	31	0.679
1.001	2.652	364.6	3.2	0.000	0.000	0.031	0.0	16	0.601
1.000	2.628	361.3	0.0	0.000	0.000	0.000	0.0	0	0.000
5.010	3.109	427.5	29.4	0.000	0.000	0.310	6.0	56	1.452
5.009	3.331	458.0	29.4	0.000	0.000	0.310	6.0	54	1.526
5.008	3.666	504.1	22.5	0.000	0.000	0.194	3.0	43	1.488
6.002	4.351	598.3	10.4	0.000	0.000	0.097	3.0	25	1.282
6.001	3.954	543.7	10.4	0.000	0.000	0.097	3.0	27	1.218
6.000	4.184	575.3	10.4	0.000	0.000	0.097	3.0	26	1.261
5.007	4.247	584.0	22.6	0.000	0.000	0.194	3.0	41	1.658
5.006	4.202	577.8	22.6	0.000	0.000	0.194	3.0	41	1.640

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021 Page 4 Tylorstown Phase 4 Existing Tip Greenfield rate

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
5.005	26	27	15.209	0.040	287.887	282.462	5.425	2.8	250	10.45	37.4
5.004	25	26	16.026	0.040	292.486	287.887	4.599	3.5	250	10.39	37.5
5.003	24	25	19.806	0.040	296.678	292.486	4.192	4.7	250	10.31	37.6
5.002	23	24	8.261	0.040	298.655	296.678	1.977	4.2	250	10.21	37.7
5.001	22	23	20.626	0.040	302.877	298.655	4.222	4.9	250	10.16	37.8
5.000	21	22	11.371	0.040	306.697	302.877	3.820	3.0	250	10.05	38.0
2.003	51	51_OUT	18.217	0.040	286.980	285.367	1.613	11.3	250	21.38	27.1
2.002	50	51	15.608	0.040	287.218	286.980	0.238	65.6	250	21.23	27.2
2.001	49	50	42.229	0.040	287.854	287.218	0.636	66.4	250	20.91	27.4
2.000	48	49	9.506	0.040	288.615	287.854	0.761	12.5	250	20.04	28.0
7.005	47	47_OUT	22.032	0.040	240.238	234.768	5.470	4.0	250	10.55	37.2
7.004	43	47	19.975	0.040	245.813	240.238	5.575	3.6	250	10.44	37.4
8.002	46	47	11.604	0.040	245.415	240.238	5.177	2.2	250	10.15	37.8
8.001	45	46	14.869	0.040	253.679	245.415	8.264	1.8	250	10.10	37.9
8.000	44	45	15.444	0.040	261.894	253.679	8.215	1.9	250	10.05	38.0
7.003	42	43	26.357	0.040	251.951	245.813	6.138	4.3	250	10.34	37.5
7.002	41	42	16.652	0.040	255.073	251.951	3.122	5.3	250	10.20	37.8
7.001	40	41	13.013	0.040	259.256	255.073	4.183	3.1	250	10.11	37.9
7.000	39	40	10.654	0.040	262.457	259.256	3.201	3.3	250	10.05	38.0
3.003	55	12	25.112	0.040	287.528	285.482	2.046	12.3	250	10.45	37.4
2.004	51_OUT	11	54.372	0.040	285.367	273.816	11.551	4.7	250	21.68	27.0
3.002	54	55	11.857	0.040	291.294	287.528	3.766	3.1	250	10.23	37.7
3.001	53	54	22.161	0.040	298.114	291.294	6.820	3.2	250	10.18	37.8

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
5.005	3.959	544.3	22.6	0.000	0.000	0.194	3.0	42	1.566
5.004	3.551	488.2	22.7	0.000	0.000	0.194	3.0	44	1.459
5.003	3.050	419.3	19.6	0.000	0.000	0.163	3.0	45	1.268
5.002	3.243	445.9	19.7	0.000	0.000	0.163	3.0	43	1.316
5.001	2.999	412.4	19.7	0.000	0.000	0.163	3.0	45	1.247
5.000	3.842	528.3	12.2	0.000	0.000	0.089	3.0	30	1.257
2.003	1.972	271.2	33.9	0.000	0.000	0.298	12.0	81	1.116
2.002	0.819	112.5	22.3	0.000	0.000	0.221	6.0	104	0.528
2.001	0.813	111.9	19.7	0.000	0.000	0.184	6.0	97	0.507
2.000	1.876	257.9	3.0	0.000	0.000	0.040	0.0	20	0.485
7.005	3.303	454.1	6.4	0.000	0.000	0.064	0.0	22	0.904
7.004	3.502	481.5	5.7	0.000	0.000	0.056	0.0	20	0.906
8.002	4.427	608.8	0.8	0.000	0.000	0.008	0.0	5	0.501
8.001	4.942	679.5	0.8	0.000	0.000	0.008	0.0	5	0.560
8.000	4.834	664.7	0.8	0.000	0.000	0.008	0.0	5	0.548
7.003	3.199	439.8	5.7	0.000	0.000	0.056	0.0	21	0.852
7.002	2.870	394.7	2.7	0.000	0.000	0.027	0.0	14	0.601
7.001	3.758	516.8	2.8	0.000	0.000	0.027	0.0	12	0.718
7.000	3.633	499.6	0.0	0.000	0.000	0.000	0.0	0	0.000
3.003	1.892	260.2	17.9	0.000	0.000	0.177	0.0	57	0.892
2.004	3.055	420.1	40.1	0.000	0.000	0.343	15.0	69	1.591
3.002	3.736	513.7	10.3	0.000	0.000	0.101	0.0	27	1.151
3.001	3.677	505.6	9.0	0.000	0.000	0.088	0.0	25	1.084

Capita

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021 Page 5 Tylorstown Phase 4 Existing Tip Greenfield rate

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
3.000	52	53	18.319	0.040	304.879	298.114	6.765	2.7	250	10.08	38.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
3 000	4 028	553 9	9 1	0.000	0.000	0.088	0.0	24	1 159

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
1.016	32.246	8.5	500	Swale trapezoidal	256.979	256.479	0.000	253.164	252.664	0.000
1.015	22.622	9.2	500	Swale trapezoidal	259.442	258.942	0.000	256.979	256.479	0.000
1.014	26.343	9.0	500	Swale trapezoidal	262.369	261.869	0.000	259.442	258.942	0.000
5.011	6.658	1.6	250	Swale trapezoidal	266.489	266.239	0.000	262.369	262.119	0.000
1.013	23.133	12.7	250	Swale trapezoidal	264.196	263.946	0.000	262.369	262.119	0.000
1.012	27.779	8.6	250	Swale trapezoidal	267.424	267.174	0.000	264.196	263.946	0.000
4.003	22.643	2.1	250	Swale trapezoidal	274.860	274.610	0.000	264.196	263.946	0.000
4.002	15.851	2.4	250	Swale trapezoidal	281.543	281.293	0.000	274.860	274.610	0.000
4.001	11.731	3.9	250	Swale trapezoidal	284.547	284.297	0.000	281.543	281.293	0.000
4.000	11.221	5.7	250	Swale trapezoidal	286.516	286.266	0.000	284.547	284.297	0.000
1.011	38.623	10.4	250	Swale trapezoidal	271.132	270.882	0.000	267.424	267.174	0.000
1.010	23.854	8.1	250	Swale trapezoidal	274.066	273.816	0.000	271.132	270.882	0.000
3.005	14.878	2.0	250	Swale trapezoidal	278.592	278.342	0.000	271.132	270.882	0.000
3.004	20.829	2.9	250	Swale trapezoidal	285.732	285.482	0.000	278.592	278.342	0.000
1.009	37.426	9.0	250	Swale trapezoidal	278.247	277.997	0.000	274.066	273.816	0.000
1.008	46.061	10.3	250	Swale trapezoidal	282.719	282.469	0.000	278.247	277.997	0.000
1.007	33.554	9.6	250	Swale trapezoidal	286.211	285.961	0.000	282.719	282.469	0.000
1.006	23.354	12.2	250	Swale trapezoidal	288.124	287.874	0.000	286.211	285.961	0.000
1.005	19.588	5.9	250	Swale trapezoidal	291.448	291.198	0.000	288.124	287.874	0.000

Link	US	Node	DS	Node
	Node	Type	Node	Type
1.016	38	Junction	38_OUT	Junction
1.015	37	Junction	38	Junction
1.014	36	Junction	37	Junction
5.011	35	Junction	36	Junction
1.013	20	Junction	36	Junction
1.012	15	Junction	20	Junction
4.003	19	Junction	20	Junction
4.002	18	Junction	19	Junction
4.001	17	Junction	18	Junction
4.000	16	Junction	17	Junction
1.011	14	Junction	15	Junction
1.010	11	Junction	14	Junction
3.005	13	Junction	14	Junction
3.004	12	Junction	13	Junction
1.009	10	Junction	11	Junction
1.008	9	Junction	10	Junction
1.007	8	Junction	9	Junction
1.006	7	Junction	8	Junction
1.005	6	Junction	7	Junction

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021 Page 6 Tylorstown Phase 4 Existing Tip Greenfield rate

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.004	25.708	14.8	250	Swale trapezoidal	293.184	292.934	0.000	291.448	291.198	0.000
1.003	20.992	7.5	250	Swale trapezoidal	296.000	295.750	0.000	293.184	292.934	0.000
1.002	23.603	10.6	250	Swale trapezoidal	298.226	297.976	0.000	296.000	295.750	0.000
1.001	23.578	6.2	250	Swale trapezoidal	302.000	301.750	0.000	298.226	297.976	0.000
1.000	19.093	6.4	250	Swale trapezoidal	305.000	304.750	0.000	302.000	301.750	0.000
5.010	10.402	4.5	250	Swale trapezoidal	268.777	268.527	0.000	266.489	266.239	0.000
5.009	10.873	4.0	250	Swale trapezoidal	271.523	271.273	0.000	268.777	268.527	0.000
5.008	13.015	3.3	250	Swale trapezoidal	275.504	275.254	0.000	271.523	271.273	0.000
6.002	4.319	2.3	250	Swale trapezoidal	273.384	273.134	0.000	271.523	271.273	0.000
6.001	9.107	2.8	250	Swale trapezoidal	276.625	276.375	0.000	273.384	273.134	0.000
6.000	23.820	2.5	250	Swale trapezoidal	286.115	285.865	0.000	276.625	276.375	0.000
5.007	5.168	2.4	250	Swale trapezoidal	277.626	277.376	0.000	275.504	275.254	0.000
5.006	12.657	2.5	250	Swale trapezoidal	282.712	282.462	0.000	277.626	277.376	0.000
5.005	15.209	2.8	250	Swale trapezoidal	288.137	287.887	0.000	282.712	282.462	0.000
5.004	16.026	3.5	250	Swale trapezoidal	292.736	292.486	0.000	288.137	287.887	0.000
5.003	19.806	4.7	250	Swale trapezoidal	296.928	296.678	0.000	292.736	292.486	0.000
5.002	8.261	4.2	250	Swale trapezoidal	298.905	298.655	0.000	296.928	296.678	0.000
5.001	20.626	4.9	250	Swale trapezoidal	303.127	302.877	0.000	298.905	298.655	0.000
5.000	11.371	3.0	250	Swale trapezoidal	306.947	306.697	0.000	303.127	302.877	0.000
2.003	18.217	11.3	250	Swale trapezoidal	287.230	286.980	0.000	285.617	285.367	0.000
2.002	15.608	65.6	250	Swale trapezoidal	287.468	287.218	0.000	287.230	286.980	0.000
2.001	42.229	66.4	250	Swale trapezoidal	288.104	287.854	0.000	287.468	287.218	0.000
2.000	9.506	12.5	250	Swale trapezoidal	288.865	288.615	0.000	288.104	287.854	0.000
7.005	22.032	4.0	250	Swale trapezoidal	240.488	240.238	0.000	235.018	234.768	0.000
7.004	19.975	3.6	250	Swale trapezoidal	246.063	245.813	0.000	240.488	240.238	0.000

Link	US Node	Node Type	DS Node	Node Type
1.004	5	Junction	6	Junction
1.004	4	Junction	5	Junction
1.003	3	Junction	4	Junction
1.001	2	Junction	3	Junction
1.000	1	Junction	2	Junction
5.010	34	Junction	35	Junction
5.009	33	Junction	34	Junction
5.008	29	Junction	33	Junction
6.002	32	Junction	33	Junction
6.001	31	Junction	32	Junction
6.000	30	Junction	31	Junction
5.007	28	Junction	29	Junction
5.006	27	Junction	28	Junction
5.005	26	Junction	27	Junction
5.004	25	Junction	26	Junction
5.003	24	Junction	25	Junction
5.002	23	Junction	24	Junction
5.001	22	Junction	23	Junction
5.000	21	Junction	22	Junction
2.003	51	Junction	51_OUT	Junction
2.002	50	Junction	51	Junction
2.001	49	Junction	50	Junction
2.000	48	Junction	49	Junction
7.005	47	Junction	47_OUT	Junction
7.004	43	Junction	47	Junction

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021 Page 7 Tylorstown Phase 4 Existing Tip Greenfield rate

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
8.002	11.604	2.2	250	Swale trapezoidal	245.665	245.415	0.000	240.488	240.238	0.000
8.001	14.869	1.8	250	Swale trapezoidal	253.929	253.679	0.000	245.665	245.415	0.000
8.000	15.444	1.9	250	Swale trapezoidal	262.144	261.894	0.000	253.929	253.679	0.000
7.003	26.357	4.3	250	Swale trapezoidal	252.201	251.951	0.000	246.063	245.813	0.000
7.002	16.652	5.3	250	Swale trapezoidal	255.323	255.073	0.000	252.201	251.951	0.000
7.001	13.013	3.1	250	Swale trapezoidal	259.506	259.256	0.000	255.323	255.073	0.000
7.000	10.654	3.3	250	Swale trapezoidal	262.707	262.457	0.000	259.506	259.256	0.000
3.003	25.112	12.3	250	Swale trapezoidal	287.778	287.528	0.000	285.732	285.482	0.000
2.004	54.372	4.7	250	Swale trapezoidal	285.617	285.367	0.000	274.066	273.816	0.000
3.002	11.857	3.1	250	Swale trapezoidal	291.544	291.294	0.000	287.778	287.528	0.000
3.001	22.161	3.2	250	Swale trapezoidal	298.364	298.114	0.000	291.544	291.294	0.000
3.000	18.319	2.7	250	Swale trapezoidal	305.129	304.879	0.000	298.364	298.114	0.000

Link	US Node	Node Type	DS Node	Node Type
8.002	46	Junction	47	Junction
8.001	45	Junction	46	Junction
8.000	44	Junction	45	Junction
7.003	42	Junction	43	Junction
7.002	41	Junction	42	Junction
7.001	40	Junction	41	Junction
7.000	39	Junction	40	Junction
3.003	55	Junction	12	Junction
2.004	51_OUT	Junction	11	Junction
3.002	54	Junction	55	Junction
3.001	53	Junction	54	Junction
3.000	52	Junction	53	Junction

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
21	301105.156	196354.900	306.947	0.250				
					o C	5.000	306.697	250
22	301097.981	196346.079	303.127	0.250	, 1	5.000	302.877	250
					0			
					C	5.001	302.877	250
23	301078.275	196339.987	298.905	0.250	1	5.001	298.655	250
					1			
					o .	5.002	298.655	250
24	301072.659	196333.929	296.928	0.250	, 1	5.002	296.678	250
					o ^v C	5.003	296.678	250

File: GC3613-RED-05-RSC-CM-(Network: Storm Network Jacques Calitz Page 8 Tylorstown Phase 4 Existing Tip Greenfield rate

Manhole Schedule

24/05/2021

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	S	Link	IL (m)	Dia (mm)
25	301066.760	196315.022	292.736	0.250	1	1	5.003	292.486	250
					0	0	5.004	292.486	250
26	301058.729	196301.153	288.137	0.250	1	1	5.004	287.887	250
					0 4	0	5.005	287.887	250
27	301049.945	196288.737	282.712	0.250	1	1	5.005	282.462	250
	204042.040	100070 610	277.525	0.050	0	0	5.006	282.462	250
28	301042.340	196278.619	277.626	0.250	1	1	5.006	277.376	250
49	301230.459	106151 012	288.104	0.250	0	0	5.007	277.376	250
49	301230.459	196151.913	288.104	0.250	0 5 0		2.000	287.854	250
48	301238.536	106146 001	288.865	0.250		0	2.001	287.854	250
46	301238.530	196146.901	200.000	0.250	0 5				
20	201105 660	100101 550	262 707	0.350		0	2.000	288.615	250
39	301185.669	196101.559	262.707	0.250	0 ←				
FO	201105 110	106175 020	207 460	0.250		0	7.000	262.457	250
50	301195.118	196175.028	287.468	0.250	0 5	1	2.001	287.218	250
40	204475 422	100100 010	250 500	0.250		0	2.002	287.218	250
40	301175.123	196100.049	259.506	0.250	0 ← _ 1	1	7.000	259.256	250
41	301162.147	196101.027	255.323	0.250		0	7.001	259.256 255.073	250 250
41	301102.147	190101.027	233.323	0.230	0 ~ 1				
42	301147.020	196107.988	252.201	0.250		0	7.002	255.073 251.951	250 250
42	301147.020	190107.988	232.201	0.230	0 ~ 1	1	7.002	231.931	230
42	204422 222	406447.272	246.662	0.353		0	7.003	251.951	250
43	301122.390	196117.372	246.063	0.250	0 ~ 1	1	7.003	245.813	250
47	204402 205	400422.025	240 400	0.250		0	7.004	245.813	250
47	301103.205	196122.935	240.488	0.250	0 < 1	1 2	8.002 7.004	240.238 240.238	250 250
						0	7.005	240.238	250

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021 Page 9 Tylorstown Phase 4 Existing Tip Greenfield rate

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
47_OUT	301081.810	196128.195	235.018	0.250	•1	7.005	234.768	250
1	301360.569	196080.612	305.000	0.250				
					0 ←			
						1.000	304.750	250
4	301296.835	196098.735	296.000	0.250	0 1	1 1.002	295.750	250
						1.003	295.750	250
5	301279.209	196110.137	293.184	0.250	0 1	1 1.003	292.934	250
					1	1.004	292.934	250
2	301342.107	196085.479	302.000	0.250		1 1.000	301.750	250
					0 € 1			
	204240 262	100001 001	200.226	0.250		1.001	301.750	250
3	301319.363	196091.694	298.226	0.250	0 ~ 1	1 1.001	297.976	250
						1.002	297.976	250
6	301256.777	196122.695	291.448	0.250	0 0	1 1.004	291.198	250
						1.005	291.198	250
7	301239.311	196131.563	288.124	0.250	0 6	1 1.005	287.874	250
					(1.006	287.874	250
8	301218.432	196142.025	286.211	0.250	0 0	1 1.006	285.961	250
						1.007	285.961	250
9	301188.656	196157.494	282.719	0.250	0 6	1 1.007	282.469	250
					(1.008	282.469	250
10	301148.422	196179.918	278.247	0.250	0 %	1 1.008	277.997	250
					1	1.009	277.997	250
11	301116.195	196198.947	274.066	0.250		1 2.004	273.816	250
					1 2	2 1.009	273.816	250
4.4	204005 445	406242.665	274 425	0.050		1.010	273.816	250
14	301095.419	196210.668	271.132	0.250		1 3.005 2 1.010	270.882 270.882	250 250
						1.011	270.882	250

Capita

File: GC3613-RED-05-RSC-CM-0 Network: Storm Network Jacques Calitz Page 10 Tylorstown Phase 4 Existing Tip Greenfield rate

Manhole Schedule

24/05/2021

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	S	Link	IL (m)	Dia (mm)
15	301061.961	196229.964	267.424	0.250		1	1.011	267.174	250
					1	0	1.012	267.174	250
20	301036.949	196242.049	264.196	0.250	, ,1	1	4.003	263.946	250
						2	1.012	263.946	250
					2	0	1.013	263.946	250
36	301017.062	196253.866	262.369	0.500	1	1	5.011	262.119	250
					0 €	2	1.013	262.119	250
					2	0	1.014	261.869	500
37	300994.099	196266.775	259.442	0.500		1	1.014	258.942	500
					0 10				
					1	0	1.015	250.042	500
38	300974.492	196278.059	256.979	0.500		1	1.015	258.942 256.479	500
					0 5				
					1	_	4 04 6	256 470	F.00
38 OUT	300947.000	196294.911	253.164	0.500		0	1.016 1.016	256.479 252.664	500 500
00_00.				0.500		-			
					1				
30	301068.031	196287.348	286.115	0.250					
					٨				
					0 4	0	6.000	285.865	250
31	301051.167	196270.525	276.625	0.250	1	1	6.000	276.375	250
					,				
					0 4	0	6.001	276.375	250
32	301044.971	196263.850	273.384	0.250	1	1	6.001	273.134	250
					· .				
					0 4	0	6.002	272 124	250
33	301041.824	196260.892	271.523	0.250	2	0	6.002	273.134 271.273	250
						2	5.008	271.273	250
					0 ←	_	F 000	274 272	250
29	301040.399	196273.829	275.504	0.250	1	0	5.009	271.273 275.254	250 250
23	301040.333	130273.023	273.304	0.230	<i></i>	_	3.007	273.234	230
),				
17	301076.700	106267 245	201 517	0.250	ő	0	5.008 4.000	275.254 284.297	250
17	3010/0./00	196267.245	284.547	0.250		_	4.000	204.23/	250
					1				
10	201064-076	100207.054	201 542	0.350		0	4.001	284.297	250
18	301064.976	196267.651	281.543	0.250		1	4.001	281.293	250
					0 -1				
						0	4.002	281.293	250

File: GC3613-RED-05-RSC-CM-(Network: Storm Network Jacques Calitz 24/05/2021 Page 11 Tylorstown Phase 4 Existing Tip Greenfield rate

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections		Link	IL (m)	Dia (mm)
16	301086.016	196260.991	286.516	0.250	0 5				
						0	4.000	286.266	250
19	301051.386	196259.493	274.860	0.250	1	1	4.002	274.610	250
					0	0	4.003	274.610	250
34	301031.206	196258.552	268.777	0.250	0 ← 1	1	5.009	268.527	250
						0	5.010	268.527	250
35	301020.835	196259.352	266.489	0.250	1	1	5.010	266.239	250
					0 *	0	5.011	266.239	250
51	301183.380	196185.316	287.230	0.250	0	1	2.002	286.980	250
					1	0	2.003	286.980	250
51_OUT	301170.563	196198.262	285.617	0.250	0 ←	1	2.003	285.367	250
					1	0	2.004	285.367	250
12	301130.261	196211.518	285.732	0.250	0 ← 1	1	3.003	285.482	250
13	201100 600	106214 044	279 502	0.250		0	3.004	285.482	250 250
15	301109.699	196214.844	278.592	0.250	0 ~~1			278.342	
52	301202.502	196238.764	305.129	0.250		0	3.005	278.342	250
32	301202.302	130230.704	303.123	0.230	0 ←	0	2.000	204.070	250
53	301184.931	196233.583	298.364	0.250		0	3.000	304.879 298.114	250 250
				0.200	0 - 1	0	3.001	298.114	250
54	301163.755	196227.050	291.544	0.250		1	3.001	291.294	250
					0 4 - 1	•			
55	301152.655	196222.882	287.778	0.250		0	3.002	291.294 287.528	250 250
	501152.055	130222.002	207.770	0.230	0 6				
44	301119.613	196161.470	262.144	0.250		0	3.003	287.528	250
***	501115.013	150101.470	ZUZ.144	0.230					
					0	0	8.000	261.894	250

Capita

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021 Page 12 Tylorstown Phase 4 Existing Tip Greenfield rate

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
45	301112.857	196147.582	253.929	0.250	1	8.000	253.679	250
					0	8.001	253.679	250
46	301107.227	196133.820	245.665	0.250	1 1	8.001	245.415	250
					0	8.002	245.415	250

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	Х
M5-60 (mm)	20.000	Drain Down Time (mins)	240
Ratio-R	0.200	Additional Storage (m³/ha)	20.0
Summer CV	0.750	Check Discharge Rate(s)	Х
Winter CV	0.840	Check Discharge Volume	X

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
30	0	0	0
100	0	0	0
100	40	0	0
200	0	0	0

Rainfall

Event	Peak	Average	Event	Peak	Average
	Intensity	Intensity		Intensity	Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
2 year 15 minute summer	112.777	31.912	2 year 720 minute winter	10.561	4.212
2 year 15 minute winter	79.142	31.912	2 year 960 minute summer	13.650	3.594
2 year 30 minute summer	81.416	23.038	2 year 960 minute winter	9.042	3.594
2 year 30 minute winter	57.134	23.038	2 year 1440 minute summer	10.717	2.872
2 year 60 minute summer	61.301	16.200	2 year 1440 minute winter	7.203	2.872
2 year 60 minute winter	40.727	16.200	30 year 15 minute summer	212.586	60.154
2 year 120 minute summer	42.559	11.247	30 year 15 minute winter	149.183	60.154
2 year 120 minute winter	28.275	11.247	30 year 30 minute summer	155.010	43.862
2 year 180 minute summer	35.121	9.038	30 year 30 minute winter	108.779	43.862
2 year 180 minute winter	22.829	9.038	30 year 60 minute summer	116.589	30.811
2 year 240 minute summer	29.197	7.716	30 year 60 minute winter	77.459	30.811
2 year 240 minute winter	19.398	7.716	30 year 120 minute summer	78.946	20.863
2 year 360 minute summer	23.988	6.173	30 year 120 minute winter	52.450	20.863
2 year 360 minute winter	15.593	6.173	30 year 180 minute summer	63.479	16.335
2 year 480 minute summer	19.942	5.270	30 year 180 minute winter	41.263	16.335
2 year 480 minute winter	13.249	5.270	30 year 240 minute summer	51.899	13.715
2 year 600 minute summer	17.030	4.658	30 year 240 minute winter	34.480	13.715
2 year 600 minute winter	11.636	4.658	30 year 360 minute summer	41.522	10.685
2 year 720 minute summer	15.715	4.212	30 year 360 minute winter	26.991	10.685

File: GC3613-RED-05-RSC-CM-(Network: Storm Network Jacques Calitz 24/05/2021 Page 13 Tylorstown Phase 4 Existing Tip Greenfield rate

Rainfall

Event	Peak	Average	Event	Peak	Average
	Intensity	Intensity		Intensity	Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
30 year 480 minute summer	33.795	8.931	100 year +40% CC 120 minute winter	96.105	38.228
30 year 480 minute winter	22.452	8.931	100 year +40% CC 180 minute summer	115.119	29.624
30 year 600 minute summer	28.377	7.762	100 year +40% CC 180 minute winter	74.831	29.624
30 year 600 minute winter	19.389	7.762	100 year +40% CC 240 minute summer	93.436	24.692
30 year 720 minute summer	25.804	6.916	100 year +40% CC 240 minute winter	62.077	24.692
30 year 720 minute winter	17.342	6.916	100 year +40% CC 360 minute summer	73.898	19.016
30 year 960 minute summer	21.860	5.756	100 year +40% CC 360 minute winter	48.036	19.016
30 year 960 minute winter	14.481	5.756	100 year +40% CC 480 minute summer	59.596	15.750
30 year 1440 minute summer	16.557	4.437	100 year +40% CC 480 minute winter	39.594	15.750
30 year 1440 minute winter	11.127	4.437	100 year +40% CC 600 minute summer	49.658	13.583
100 year 15 minute summer	273.602	77.420	100 year +40% CC 600 minute winter	33.930	13.583
100 year 15 minute winter	192.002	77.420	100 year +40% CC 720 minute summer	44.855	12.022
100 year 30 minute summer	202.154	57.203	100 year +40% CC 720 minute winter	30.145	12.022
100 year 30 minute winter	141.863	57.203	100 year +40% CC 960 minute summer	37.573	9.894
100 year 60 minute summer	153.288	40.510	100 year +40% CC 960 minute winter	24.889	9.894
100 year 60 minute winter	101.841	40.510	100 year +40% CC 1440 minute summer	27.987	7.501
100 year 120 minute summer	103.325	27.306	100 year +40% CC 1440 minute winter	18.809	7.501
100 year 120 minute winter	68.647	27.306	200 year 15 minute summer	316.381	89.525
100 year 180 minute summer	82.228	21.160	200 year 15 minute winter	222.022	89.525
100 year 180 minute winter	53.450	21.160	200 year 30 minute summer	235.547	66.652
100 year 240 minute summer	66.740	17.637	200 year 30 minute winter	165.296	66.652
100 year 240 minute winter	44.341	17.637	200 year 60 minute summer	179.445	47.422
100 year 360 minute summer	52.784	13.583	200 year 60 minute winter	119.219	47.422
100 year 360 minute winter	34.311	13.583	200 year 120 minute summer	120.640	31.882
100 year 480 minute summer	42.569	11.250	200 year 120 minute winter	80.151	31.882
100 year 480 minute winter	28.282	11.250	200 year 180 minute summer	95.439	24.560
100 year 600 minute summer	35.470	9.702	200 year 180 minute winter	62.038	24.560
100 year 600 minute winter	24.235	9.702	200 year 240 minute summer	77.139	20.386
100 year 720 minute summer	32.039	8.587	200 year 240 minute winter	51.249	20.386
100 year 720 minute winter	21.532	8.587	200 year 360 minute summer	60.605	15.596
100 year 960 minute summer	26.838	7.067	200 year 360 minute winter	39.395	15.596
100 year 960 minute winter	17.778	7.067	200 year 480 minute summer	48.619	12.848
100 year 1440 minute summer	19.990	5.358	200 year 480 minute winter	32.301	12.848
100 year 1440 minute winter	13.435	5.358	200 year 600 minute summer	40.332	11.032
100 year +40% CC 15 minute summer	383.043	108.388	200 year 600 minute winter	27.558	11.032
100 year +40% CC 15 minute winter	268.802	108.388	200 year 720 minute summer	36.291	9.726
100 year +40% CC 30 minute summer	283.016	80.084	200 year 720 minute winter	24.390	9.726
100 year +40% CC 30 minute winter	198.608	80.084	200 year 960 minute summer	30.202	7.953
100 year +40% CC 60 minute summer	214.603	56.713	200 year 960 minute winter	20.007	7.953
100 year +40% CC 60 minute winter	142.577	56.713	200 year 1440 minute summer	22.281	5.972
100 year +40% CC 120 minute summer	144.655	38.228	200 year 1440 minute winter	14.974	5.972

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network Jacques Calitz 24/05/2021 Page 14 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Event		JS	Peak	Level	Depth	Inflow	Node	Flood	Status
30 minute winter		ode	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	OK
	21	3.F00/	20	306.721	0.024	8.6	0.1006	0.0000	OK
30 minute winter 30 minute winter	22	0:50%	20 20	304.816 302.915	0.029 0.038	12.4 14.5	0.0000 0.0606	0.0000	PONDING OK
15 minute winter		1:50%	11	300.814	0.038	20.8	0.0000	0.0000	OK
15 minute winter		1.50%	11	298.700	0.048	20.8	0.0000	0.0000	OK
15 minute winter	23 24		11	296.700	0.043	20.8	0.0000	0.0000	OK
				290.723					
15 minute winter 15 minute winter	25 26		11 11	292.533	0.047 0.043	23.8 23.7	0.1153 0.0000	0.0000	OK OK
15 minute winter	27		12	282.504	0.043	23.7	0.0000	0.0000	OK
15 minute winter	28		12	277.417	0.042	23.7	0.0000	0.0000	OK
30 minute winter	49		21	287.936	0.041	14.6	0.3249	0.0000	OK
30 minute winter		1:50%	21	287.646	0.082	24.3	0.3249	0.0000	OK
30 minute winter	48	1.30%	20	288.631	0.110	24.3	0.3227	0.0000	OK
30 minute winter		D.E.O.0/	22	288.256	0.010	3.5		0.0000	OK
30 minute winter	2.000	0:50%	22	200.230	0.021	3.3	0.1123	0.0000	UK
15 minute summer			1	262.457	0.000	0.0	0.0000	0.0000	OK
30 minute winter	50	2.500/	21	287.328	0.110	24.3	0.0000	0.0000	OK
30 minute winter		2:50%	26	287.211	0.112	26.9	2.1598	0.0000	PONDING
15 minute summer		1.500/	1	259.256	0.000	0.0	0.0000	0.0000	OK
30 minute winter		1:50%	20	257.177	0.012	2.8	0.0017	0.0000	OK
30 minute winter	41		20	255.088	0.015	2.8	0.0000	0.0000	OK
30 minute winter	42	2.500/	21	251.965	0.014	2.8	0.0000	0.0000	OK
30 minute winter		3:50%	21	248.903	0.021	5.8	0.0392	0.0000	OK
30 minute winter	43		21	245.833	0.020	5.8	0.0000	0.0000	OK
30 minute winter	47		21	240.260	0.022	6.6	0.0000	0.0000	OK
Link Event	US	Link	DS			-	Flow/Cap	Link	Discharge
(Outflow)	Node		Noc	le (l/s)	(m/s)		Vol (m³)	_
(Outflow) 30 minute winter	Node 21	5.000	Noc 5.000:	le (l /s) 8.6	(m/s) 0.996	0.016	Vol (m³) 0.0491	_
(Outflow) 30 minute winter 30 minute winter	Node 21 21	5.000 5.000	Noc 5.000: 22	le (50%	8.6 12.4	(m/s) 0.996 1.108	0.016 0.023	Vol (m³) 0.0491 0.0636	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22	5.000 5.000 5.001	Noc 5.000: 22 5.001:	l e (50%	8.6 12.4 14.4	(m/s) 0.996 1.108 1.018	0.016 0.023 0.035	Vol (m³) 0.0491 0.0636 0.1492	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter	Node 21 21 22 22	5.000 5.000 5.001 5.001	Noc 5.000: 22 5.001: 23	l e (50%	8.6 12.4 14.4 20.8	(m/s) 0.996 1.108 1.018 1.304	0.016 0.023 0.035 0.051	Vol (m³) 0.0491 0.0636 0.1492 0.1648	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 23	5.000 5.000 5.001 5.001 5.002	5.000: 22 5.001: 23 24	l e (50%	8.6 12.4 14.4 20.8 20.8	(m/s) 0.996 1.108 1.018 1.304 1.319	0.016 0.023 0.035 0.051 0.047	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 22 23 24	5.000 5.000 5.001 5.001 5.002 5.003	5.000: 22 5.001: 23 24 25	l e (50%	8.6 12.4 14.4 20.8 20.8 20.8	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288	0.016 0.023 0.035 0.051 0.047 0.050	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 22 23 24 25	5.000 5.000 5.001 5.001 5.002 5.003 5.004	5.000: 22 5.001: 23 24 25 26	l e (50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529	0.016 0.023 0.035 0.051 0.047 0.050 0.049	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 23 24 25 26	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005	5.000: 22 5.001: 23 24 25 26 27	l e (50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 23 24 25 26 27	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006	5.000: 22 5.001: 23 24 25 26 27	l e (50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 23 24 25 26 27 28	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007	5.000: 22 5.001: 23 24 25 26 27 28 29	le (50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001:	le (50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.041	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	le (50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000:	le (50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	le (50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3 2.2 3.5	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48 39 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3 2.2 3.5	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 2.000 2.000 2.002 2.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51	50% 50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3 2.2 3.5	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543 0.602	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501 0.2932	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 50 50 40	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 7.000 2.002 2.002 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001:	50% 50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.6 23.7 14.5 24.3 2.2 3.5 0.0 24.3 22.3 0.0	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543 0.602 0.000	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013 0.000 0.215 0.198 0.000	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501 0.2932 0.0113	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 40	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	50% 50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3 2.2 3.5	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543 0.602 0.000 0.664	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013 0.000 0.215 0.198 0.000 0.005	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501 0.2932 0.0113 0.0275	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40 41	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	50% 50% 50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3 2.2 3.5	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543 0.602 0.000 0.664 0.631	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013 0.000 0.215 0.198 0.000 0.005 0.007	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501 0.2932 0.0113 0.0275 0.0740	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 41 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	50% 50% 50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3 2.2 3.5 0.0 24.3 22.3 0.0 2.8 2.8	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543 0.602 0.000 0.664 0.631 0.505	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013 0.000 0.215 0.198 0.000 0.005 0.007 0.006	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501 0.2932 0.0113 0.0275 0.0740 0.0732	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 41 42 42 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.002 7.003 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003: 43	50% 50% 50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.6 23.7 14.5 24.3 2.2 3.5 0.0 24.3 22.3 0.0 2.8 2.8 2.8 2.8	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543 0.602 0.000 0.664 0.631 0.505 0.879	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013 0.000 0.215 0.198 0.000 0.005 0.007 0.006 0.013	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501 0.2932 0.0113 0.0275 0.0740 0.0732 0.0870	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 41 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	50% 50% 50% 50% 50%	8.6 12.4 14.4 20.8 20.8 20.8 23.7 23.7 23.6 23.7 14.5 24.3 2.2 3.5 0.0 24.3 22.3 0.0 2.8 2.8	(m/s) 0.996 1.108 1.018 1.304 1.319 1.288 1.529 1.623 1.679 1.621 0.382 0.540 0.375 0.191 0.000 0.543 0.602 0.000 0.664 0.631 0.505	0.016 0.023 0.035 0.051 0.047 0.050 0.049 0.043 0.041 0.130 0.218 0.009 0.013 0.000 0.215 0.198 0.000 0.005 0.007 0.006	Vol (m³) 0.0491 0.0636 0.1492 0.1648 0.1304 0.3202 0.2489 0.2218 0.1783 0.0756 0.8074 0.9512 0.0284 0.0905 0.0001 0.3501 0.2932 0.0113 0.0275 0.0740 0.0732	Vol (m³)

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network Jacques Calitz 24/05/2021 Page 15 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Event		JS ode	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	47_C		21	234.790	0.022		0.0000	0.0000	ОК
30 minute winter	4/_0	701	21	234.730	0.022	0.0	0.0000	0.0000	OK
15 minute summer	. 1		1	304.750	0.000	0.0	0.0000	0.0000	OK
30 minute winter	4		21	295.785	0.035		0.0872	0.0000	OK
30 minute winter		3:50%	21	294.380	0.038		0.0000	0.0000	OK
30 minute winter	5	3.3070	21	292.982	0.048		0.0000	0.0000	OK
30 minute winter	3		21	232.302	0.040	11.5	0.0000	0.0000	OK
30 minute winter	2		21	301.765	0.015		0.0328	0.0000	ОК
30 minute winter	1.003	1:50%	21	299.880	0.016		0.0000	0.0000	OK
30 minute winter	3		20	298.005	0.029	6.2	0.0649	0.0000	OK
30 minute winter	1.002	2:50%	21	296.894	0.031	7.2	0.0000	0.0000	OK
20 minute winter	_		21	204 220	0.041	15.2	0.1001	0.0000	OK
30 minute winter	6	F.F.00/	21	291.239	0.041		0.1081	0.0000	OK
30 minute winter		5:50%	21	289.582	0.046		0.0049	0.0000	OK
30 minute winter	7		21	287.934	0.060		0.0817	0.0000	OK
30 minute winter	8		21	286.021	0.060		0.1142	0.0000	OK
30 minute winter	9		22	282.537	0.068		0.2520	0.0000	OK
30 minute winter	10		22	278.067	0.070		0.1999	0.0000	OK
30 minute winter	11		22	273.933	0.117		0.4552	0.0000	OK
30 minute winter	14	4 500/	22	271.044	0.162		1.1659	0.0000	OK
60 minute winter		1:50%	48	269.147	0.119		32.3801	0.0000	PONDING
60 minute winter	15		46	267.297	0.123		0.4215	0.0000	OK
30 minute winter	20		23	264.096	0.150		0.4605	0.0000	OK
30 minute winter	36		21	262.035	0.166		0.3855	0.0000	OK
30 minute winter	1.014	4:50%	22	260.579	0.174	152.4	0.3390	0.0000	OK
Link Event	US	Link	DS	Ou	tflow	/elocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	DS Nod		tflow \ l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	_
		Link				_	Flow/Cap		_
(Outflow)	Node		Nod		l/s)	(m/s)	·	Vol (m³)	_
(Outflow) 15 minute summer	Node 1	1.000	Nod	le (I/s) 0.0	(m/s)	0.000	Vol (m³)	_
(Outflow) 15 minute summer 30 minute winter	Node 1 4	1.000 1.003	2 1.003:	le (0.0 10.4	0.000 0.839	0.000 0.031	0.0416 0.1295	_
(Outflow) 15 minute summer	Node 1	1.000 1.003 1.003	2 1.003:	le (0.0 10.4 11.9	(m/s)	0.000	0.0416 0.1295 0.1552	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter	1 4 4	1.000 1.003	2 1.003:	le (0.0 10.4	0.000 0.839 0.803	0.000 0.031 0.036	0.0416 0.1295	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter	1 4 4 5	1.000 1.003 1.003 1.004	2 1.003: 5 6	le (0.0 10.4 11.9 11.8	0.000 0.839 0.803 0.771	0.000 0.031 0.036 0.050	0.0416 0.1295 0.1552 0.3949	Vol (m ³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003: 5 6 1.001:	1e (0.0 10.4 11.9 11.8 2.8 3.2	0.000 0.839 0.803 0.771 0.560 0.440	0.000 0.031 0.036 0.050 0.008 0.009	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863	Vol (m ³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003: 5 6 1.001: 3 1.002:	1e (0.0 10.4 11.9 11.8 2.8 3.2 6.2	0.000 0.839 0.803 0.771 0.560 0.440 0.622	0.000 0.031 0.036 0.050 0.008 0.009 0.022	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167	Vol (m ³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003: 5 6 1.001:	1e (0.0 10.4 11.9 11.8 2.8 3.2	0.000 0.839 0.803 0.771 0.560 0.440	0.000 0.031 0.036 0.050 0.008 0.009	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863	Vol (m ³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003: 5 6 1.001: 3 1.002:	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 3 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003: 5 6 1.001: 3 1.002: 4	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005	2 1.003: 5 6 1.001: 3 1.002: 4	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006	1.001: 3 1.002: 4 1.005: 7	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076 0.075	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076 0.075 0.095	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 6 7 8 9 10	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9 30.4	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054 0.827	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076 0.075 0.095 0.100	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759 1.3948	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9 10 11	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10 11	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9 30.4 77.4	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054 0.827 1.269	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076 0.075 0.095 0.100 0.242	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759 1.3948 1.4695	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10 11 14 1.011:	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9 30.4 77.4 112.3	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054 0.827 1.269 1.864	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076 0.075 0.095 0.100 0.242 0.398	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759 1.3948 1.4695 1.1747	Vol (m³)
15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10 11 14 1.011: 15	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9 30.4 77.4 112.3 71.1	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054 0.827 1.269 1.864 1.397	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076 0.075 0.095 0.100 0.242 0.398 0.252	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759 1.3948 1.4695 1.1747 0.9842	Vol (m³)
15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute winter 60 minute winter	1 4 4 5 2 2 3 3 6 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10 11 14 1.011: 15 20	50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9 30.4 77.4 112.3 71.1 82.7	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054 0.827 1.269 1.864 1.397 1.444	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.075 0.095 0.100 0.242 0.398 0.252 0.266	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759 1.3948 1.4695 1.1747 0.9842 1.6387	Vol (m³)
(Outflow) 15 minute summer 30 minute winter 60 minute winter 60 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15 20	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011 1.011 1.012	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10 11 14 1.011: 15 20 36	50% 50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9 30.4 77.4 112.3 71.1 82.7 97.9	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054 0.827 1.269 1.864 1.397 1.444 1.447	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.076 0.075 0.095 0.100 0.242 0.398 0.252 0.266 0.382	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759 1.3948 1.4695 1.1747 0.9842 1.6387 1.5654	Vol (m³)
15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute winter 60 minute winter	1 4 4 5 2 2 3 3 6 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.003: 5 6 1.001: 3 1.002: 4 1.005: 7 8 9 10 11 14 1.011: 15 20	50% 50% 50% 50%	0.0 10.4 11.9 11.8 2.8 3.2 6.2 7.1 15.2 18.1 19.8 22.2 26.9 30.4 77.4 112.3 71.1 82.7	0.000 0.839 0.803 0.771 0.560 0.440 0.622 0.645 1.020 0.970 0.921 0.958 1.054 0.827 1.269 1.864 1.397 1.444	0.000 0.031 0.036 0.050 0.008 0.009 0.022 0.026 0.040 0.048 0.075 0.095 0.100 0.242 0.398 0.252 0.266	0.0416 0.1295 0.1552 0.3949 0.0590 0.0863 0.1167 0.1308 0.1460 0.1831 0.5030 0.7804 1.1759 1.3948 1.4695 1.1747 0.9842 1.6387	Vol (m³)

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021

Page 16 Tylorstown Phase 4 **Existing Tip** Greenfield rate

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Even	t	US	Peak	Level	Depth	Inflow	Node	Flood	Status
20		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	01/
30 minute wir		37	22	259.122	0.180	160.5	0.5922	0.0000	OK
30 minute wir		1.015:50%	21	257.908	0.198	191.7	0.9608	0.0000	OK
30 minute wir		38	21	256.677	0.198	200.5	0.6867	0.0000	OK
30 minute wir		1.016:50%	21	254.780	0.208	220.8	3.3257	0.0000	OK
30 minute wir		38_OUT	21	252.872	0.208	220.0	0.0000	0.0000	OK
30 minute wir		30	20	285.887	0.022	8.3	0.0876	0.0000	OK
30 minute wir		6.000:50%	21	281.147	0.027	11.4	0.0000	0.0000	OK
30 minute wir		31	21	276.403	0.028	11.4	0.0000	0.0000	OK
30 minute wir		32	21	273.160	0.026	11.4	0.0000	0.0000	OK
30 minute wir	iter	33	20	271.334	0.061	36.8	0.0898	0.0000	OK
15 minute wir		29	12	275.299	0.045	23.7	0.0000	0.0000	OK
30 minute wir		17	20	284.319	0.022	6.8	0.0467	0.0000	OK
30 minute wir	nter	18	20	281.321	0.028	12.8	0.1287	0.0000	OK
30 minute wir	nter	16	20	286.285	0.019	4.1	0.0574	0.0000	ОК
30 minute wir	nter	19	21	274.640	0.030	15.4	0.0620	0.0000	OK
30 minute wir	nter	34	20	268.595	0.068	36.8	0.0000	0.0000	OK
30 minute wir	nter	35	20	266.287	0.048	36.8	0.0000	0.0000	OK
30 minute wir	nter	51	22	287.058	0.078	32.4	0.3021	0.0000	OK
30 minute wir		2.003:50%	22	286.258	0.078	35.2	0.0058	0.0000	OK
30 minute wir		2.003.30% 51_OUT	22	285.436	0.069	40.8	0.0038	0.0000	OK
		_							
30 minute wir	iter	2.004:50%	21	279.662	0.070	42.4	0.0000	0.0000	OK
Link Event	US	S Link	DS	Out	flow V	elocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US No		DS Nod			elocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
				le (I,		-	Flow/Cap 0.128		_
(Outflow)	No	de	Nod	l e (I, 50% 1	/s)	(m/s) [*]		Vol (m³)	_
(Outflow) 30 minute winter	No 0	de 1.015	Nod 1.015:	l e (I, 50% 1 1	/s) 60.6	(m/s) 1.743	0.128	Vol (m³) 1.0443	_
(Outflow) 30 minute winter 30 minute winter	No 37 37	1.015 1.015	Nod 1.015:: 38	le (1,50% 1 1 50% 2	/s) 60.6 91.5	(m/s) 1.743 1.946	0.128 0.153	Vol (m³) 1.0443 1.1136	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38	1.015 1.015 1.016 1.016	Nod 1.015:: 38 1.016:: 38_OU	le (I, 50% 1 1 50% 2 IT 2	/s) 60.6 91.5 00.4	(m/s) 1.743 1.946 1.962	0.128 0.153 0.154 0.169	Vol (m³) 1.0443 1.1136 1.6468	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 38	1.015 1.015 1.016 1.016 6.000	Nod 1.015:: 38 1.016:: 38_OU	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0	(m/s) 1.743 1.946 1.962 2.083	0.128 0.153 0.154 0.169	Vol (m³) 1.0443 1.1136 1.6468 1.7032	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Noc 37 37 38 38 38	1.015 1.015 1.016 1.016 6.000 6.000	Nod 1.015:: 38 1.016:: 38_OU 6.000::	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265	0.128 0.153 0.154 0.169 0.014 0.020	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	37 37 38 38 38 30 30 31	1.015 1.015 1.016 1.016 6.000 6.000 6.001	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294	0.128 0.153 0.154 0.169 0.014 0.020 0.021	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Noc 37 37 38 38 38	1.015 1.015 1.016 1.016 6.000 6.000	Nod 1.015:: 38 1.016:: 38_OU 6.000::	le (I, 50% 1 150% 2 IT 2	/s) 60.6 91.5 00.4 20.0 8.3 11.4	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265	0.128 0.153 0.154 0.169 0.014 0.020	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Noc 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33 34	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	37 37 38 38 30 30 31 32 33 29 17	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	37 37 38 38 30 30 31 32 33 29 17	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002	1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18	le (I, 50% 1 1 50% 2 2 1 2 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 23.7 6.8	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19	le (I, 50% 1 1 50% 2 1	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8 23.7 6.8 12.7	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342 0.624 0.446	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502 0.0734 0.8744	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34 33 18 19 17 20	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8 23.7 6.8 12.7 4.1 15.4	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342 0.624 0.446 1.770	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021 0.021	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502 0.0734 0.8744 0.2173	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8 23.7 6.8 12.7	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342 0.624 0.446	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502 0.0734 0.8744	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34 33 18 19 17 20	le (I, 50% 1 1 50% 2 1 2 50%	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8 23.7 6.8 12.7 4.1 15.4	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342 0.624 0.446 1.770	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021 0.021	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502 0.0734 0.8744 0.2173	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Noc 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34 33 18 19 17 20	Ne (I, 50% 1 1 50% 2 1	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8 23.7 6.8 12.7 4.1 15.4 36.8 36.8	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342 0.624 0.446 1.770 2.297	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021 0.011 0.025 0.086 0.051	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502 0.0734 0.8744 0.2173 0.1067	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35	1.015 1.015 1.016 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19 17 20 35 36	Se (I, 50% 1 1 50% 2 1 7 2 50% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8 23.7 6.8 12.7 4.1 15.4 36.8 36.8 32.4	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342 0.624 0.446 1.770 2.297	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021 0.011 0.025 0.086 0.051 0.119	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502 0.0734 0.8744 0.2173 0.1067 0.2815	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Not 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35 51 51	1.015 1.015 1.016 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003 2.003	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19 17 20 35 36 2.003::51_OU	50% (I) 50% 1 50% 2 50% 50% 17 2	/s) 60.6 91.5 00.4 20.0 8.3 11.4 11.4 11.4 36.8 23.7 6.8 12.7 4.1 15.4 36.8 36.8 32.4 35.2	(m/s) 1.743 1.946 1.962 2.083 1.057 1.265 1.294 0.783 1.562 1.283 0.825 1.342 0.624 0.446 1.770 2.297 1.051 1.220	0.128 0.153 0.154 0.169 0.014 0.020 0.021 0.019 0.080 0.047 0.015 0.021 0.011 0.025 0.086 0.051 0.119 0.130	Vol (m³) 1.0443 1.1136 1.6468 1.7032 0.0935 0.1075 0.0804 0.0658 0.2565 0.2417 0.0962 0.1502 0.0734 0.8744 0.2173 0.1067 0.2815 0.2632	Vol (m³)

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network Jacques Calitz 24/05/2021 Page 17 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Event		US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	. 12	<u>)</u>	21	285.521	0.039	20.3	0.0564	0.0000	ОК
30 minute winter	3.	004:50%	21	281.960	0.047	26.0	0.0351	0.0000	OK
30 minute winter	· 13	}	21	278.381	0.039	26.0	0.0000	0.0000	OK
30 minute winter	52	2	20	304.894	0.015	4.4	0.0517	0.0000	OK
30 minute winter	3.	000:50%	20	301.521	0.024	9.2	0.0545	0.0000	OK
30 minute winter	53	}	20	298.139	0.025	9.2	0.0000	0.0000	OK
30 minute winter	54	ļ	21	291.321	0.027	10.5	0.0272	0.0000	OK
30 minute winter	55	5	21	287.589	0.061	18.4	0.3747	0.0000	OK
15 minute summ	er 44	ļ	1	261.894	0.000	0.0	0.0000	0.0000	OK
60 minute summ	er 8.	000:50%	35	257.792	0.005	0.8	0.0005	0.0000	OK
30 minute winter	45	· •	19	253.684	0.005	0.8	0.0000	0.0000	OK
30 minute winter	46	5	21	245.420	0.005	0.8	0.0000	0.0000	OK
Link Event	US	Link	DS	Outfl		-	ow/Cap	Link	Discharge
Link Event (Outflow)	US Node		DS Node			ocity Fl n/s)		Link Vol (m³)	Discharge Vol (m³)
(Outflow)	Node		Node	(I/s	s) (n	n/s) ์		Vol (m³)	_
(Outflow) 30 minute winter	Node	3.004	Node 3.004:50	(I/s 0% 2	o.3 1	n/s) 1.366	0.038	Vol (m³) 0.1549	_
(Outflow) 30 minute winter 30 minute winter	Node 12 12	3.004 3.004	Node 3.004:50 13	(I/s 0% 20 20	0.3 1 6.0 1	n/s) 1.366 1.741	0.038 0.049	0.1549 0.1556	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	12 12 13	3.004 3.004 3.005	Node 3.004:50 13 14	(I/s 0% 24 24 24	0.3 1 6.0 1 6.0 0	n/s) 1.366 1.741 0.647	0.038 0.049 0.040	0.1549 0.1556 0.6545	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52	3.004 3.004 3.005 3.000	3.004:50 13 14 3.000:50	(I/s 0% 2 2 2 20%	0.3 1 6.0 1 6.0 0	n/s) 1.366 1.741 0.647 0.703	0.038 0.049 0.040 0.008	0.1549 0.1556 0.6545 0.0577	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52	3.004 3.004 3.005 3.000 3.000	3.004:50 13 14 3.000:50 53	(I/s 0% 2 2 2 20%	0.3 1 6.0 1 6.0 0 4.4 0 9.2 1	n/s) 1.366 1.741 0.647 0.703 1.146	0.038 0.049 0.040 0.008 0.017	0.1549 0.1556 0.6545 0.0577 0.0734	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53	3.004 3.004 3.005 3.000 3.000 3.001	3.004:50 13 14 3.000:50 53 54	(I/s 0% 2: 2: 2: 0% .	0.3 1 6.0 1 6.0 0 4.4 0 9.2 1	n/s) 1.366 1.741 0.647 0.703 1.146 1.075	0.038 0.049 0.040 0.008 0.017 0.018	0.1549 0.1556 0.6545 0.0577 0.0734 0.1889	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54	3.004 3.004 3.005 3.000 3.000 3.001 3.002	3.004:50 13 14 3.000:50 53 54 55	(I/s 0% 2- 2 20% -	0.3 1 6.0 1 6.0 0 4.4 0 9.2 1 9.2 1	1.366 1.741 0.647 0.703 1.146 1.075	0.038 0.049 0.040 0.008 0.017 0.018 0.020	0.1549 0.1556 0.6545 0.0577 0.0734 0.1889 0.1837	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53	3.004 3.004 3.005 3.000 3.000 3.001	3.004:50 13 14 3.000:50 53 54	(I/s 0% 2- 2 20% -	0.3 1 6.0 1 6.0 0 4.4 0 9.2 1 9.2 1	n/s) 1.366 1.741 0.647 0.703 1.146 1.075	0.038 0.049 0.040 0.008 0.017 0.018	0.1549 0.1556 0.6545 0.0577 0.0734 0.1889	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54	3.004 3.004 3.005 3.000 3.000 3.001 3.002	3.004:50 13 14 3.000:50 53 54 55	(I/s 0% 2 2 2 0% 4 1	0.3 1 6.0 1 6.0 0 4.4 0 9.2 1 9.2 1 0.5 0	1.366 1.741 0.647 0.703 1.146 1.075	0.038 0.049 0.040 0.008 0.017 0.018 0.020	0.1549 0.1556 0.6545 0.0577 0.0734 0.1889 0.1837	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12	(I/s 0% 20 20 20 0% 1 10 10	0.3 11 6.0 11 6.0 0 4.4 0 9.2 11 9.2 12 0.5 0 8.4 11	1.366 1.741 0.647 0.703 1.146 1.075 0.689 1.046	0.038 0.049 0.040 0.008 0.017 0.018 0.020 0.071	0.1549 0.1556 0.6545 0.0577 0.0734 0.1889 0.1837 0.4447	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50	(I/s 0% 2: 20 20 0% 1: 1: 0%	0.3 11 6.0 11 6.0 0 4.4 0 9.2 11 9.2 12 0.5 0 8.4 11	1.366 1.741 0.647 0.703 1.146 1.075 0.689 1.046	0.038 0.049 0.040 0.008 0.017 0.018 0.020 0.071	0.1549 0.1556 0.6545 0.0577 0.0734 0.1889 0.1837 0.4447	_

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network Jacques Calitz 24/05/2021 Page 18 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Event		JS	Peak	Level	Depth	Inflow	Node	Flood	Status
20 minuto wintor	Node 21		(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	OK
30 minute winter		2.500/	20	306.728	0.031	13.7	0.1329	0.0000	OK
30 minute winter		0:50%	20	304.827	0.040	20.9	0.0000	0.0000	PONDING
30 minute winter	22	1.500/	20	302.929	0.052	24.9	0.0835	0.0000	OK
15 minute winter		1:50%	11	300.832	0.066	36.7	0.0000	0.0000	OK
15 minute winter	23		11	298.717	0.062	36.6	0.0000	0.0000	OK
15 minute winter	24 25		11	296.743	0.065	36.6	0.0000	0.0000	OK
15 minute winter	25 26		11	292.551	0.065	42.3	0.1618	0.0000	OK
15 minute winter	26 27		11	287.948	0.061	42.2	0.0000	0.0000	OK
30 minute winter	27		20	282.521	0.059	42.1	0.0000	0.0000	OK
30 minute winter			20	277.433	0.057	42.2	0.0000	0.0000	OK
30 minute winter	49 2.001:50%		21	287.958	0.104	22.2	0.4141	0.0000	OK
30 minute winter	2.001:50%		21	287.682	0.146	40.9	0.5697	0.0000	OK
30 minute winter	48 2.000:50%		20	288.639	0.024	4.2	0.0405	0.0000	OK
30 minute winter	2.000	J:50%	22	288.266	0.031	6.6	0.2419	0.0000	OK
15 minute summer			1	262.457	0.000	0.0	0.0000	0.0000	OK
30 minute winter	50	2 500/	21	287.369	0.151	40.7	0.0000	0.0000	OK
60 minute winter		2:50%	46	287.226	0.127	40.6	11.5552	0.0000	PONDING
15 minute summer		1.500/	1	259.256	0.000	0.0	0.0000	0.0000	OK
30 minute winter		1:50%	20	257.183	0.018	5.4	0.0037	0.0000	OK
30 minute winter	41		20	255.095	0.022	5.4	0.0000	0.0000	OK
30 minute winter	42	2.500/	21	251.971	0.020	5.4	0.0000	0.0000	OK
30 minute winter		3:50%	21	248.914	0.032	11.1	0.0852	0.0000	OK
30 minute winter	43		21	245.842	0.029	11.1	0.0000	0.0000	OK
30 minute winter	47		21	240.271	0.033	12.7	0.0000	0.0000	OK
Link Event	US	Link	DS			-	Flow/Cap	Link	Discharge
(Outflow)	Node		Noc	de (l/s)	(m/s)	-	Vol (m³)	_
(Outflow) 30 minute winter	Node 21	5.000	Noc 5.000:	de (l /s) 13.7	(m/s) 1.147	0.026	Vol (m³) 0.0679	Vol (m³)
(Outflow) 30 minute winter 30 minute winter	Node 21 21	5.000 5.000	Noc 5.000: 22	de (50%	1 /s) 13.7 20.9	(m/s) 1.147 1.311	0.026 0.039	Vol (m³) 0.0679 0.0906	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22	5.000 5.000 5.001	Noc 5.000: 22 5.001:	de (50%	1/s) 13.7 20.9 24.8	(m/s) 1.147 1.311 1.199	0.026 0.039 0.060	Vol (m³) 0.0679 0.0906 0.2173	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter	Node 21 21 22 22	5.000 5.000 5.001 5.001	5.000: 22 5.001: 23	de (50%	1/s) 13.7 20.9 24.8 36.6	(m/s) 1.147 1.311 1.199 1.562	0.026 0.039 0.060 0.089	Vol (m³) 0.0679 0.0906 0.2173 0.2420	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 23	5.000 5.000 5.001 5.001 5.002	5.000: 22 5.001: 23 24	de (50%	1/s) 13.7 20.9 24.8 36.6 36.6	(m/s) 1.147 1.311 1.199 1.562 1.582	0.026 0.039 0.060 0.089 0.082	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 22 23 24	5.000 5.000 5.001 5.001 5.002 5.003	5.000: 22 5.001: 23 24 25	de (50%	1/s) 13.7 20.9 24.8 36.6 36.6 36.6	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537	0.026 0.039 0.060 0.089 0.082 0.087	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 21 21 22 22 23 24 25	5.000 5.000 5.001 5.001 5.002 5.003 5.004	5.000: 22 5.001: 23 24 25 26	de (50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838	0.026 0.039 0.060 0.089 0.082 0.087 0.086	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005	5.000: 22 5.001: 23 24 25 26 27	de (50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006	5.000: 22 5.001: 23 24 25 26 27 28	de (50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007	5.000: 22 5.001: 23 24 25 26 27 28 29	de (50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001:	de (50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 22.2	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	de (50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 42.2 42.2 40.7	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000:	de (50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	de (50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 42.2 42.2 40.7	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 23 24 25 26 27 28 49 49 48 48 39	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	de (50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48 39 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	de (50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 2.000 2.002 2.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51	50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5 0.0 40.6 28.7	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690 0.662	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642 0.3444	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 40 minute winter 50 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 50 50 40	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 2.000 2.000 2.002 2.002 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001:	50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5 0.0 40.6 28.7 0.0	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690 0.662 0.000	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025 0.000 0.361 0.255 0.000	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642 0.3444 0.0165	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 40	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5 0.0 40.6 28.7 0.0 5.4	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690 0.662 0.000 0.845	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025 0.000 0.361 0.255 0.000 0.010	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642 0.3444 0.0165 0.0415	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 15 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40 41	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42	50% 50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5 0.0 40.6 28.7 0.0 5.4 5.4	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690 0.662 0.000 0.845 0.801	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025 0.000 0.361 0.255 0.000 0.010 0.014	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642 0.3444 0.0165 0.0415 0.1117	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 45 minute summer 50 minute winter 50 minute winter 50 minute winter	Node 21 21 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 41 42	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.002 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	50% 50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5 0.0 40.6 28.7 0.0 5.4 5.4 5.4	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690 0.662 0.000 0.845 0.801 0.638	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025 0.000 0.361 0.255 0.000 0.010 0.014 0.012	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642 0.3444 0.0165 0.0415 0.1117 0.1110	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 41 42 42 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003: 43	50% 50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5 0.0 40.6 28.7 0.0 5.4 5.4 11.1	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690 0.662 0.000 0.845 0.801 0.638 1.107	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025 0.000 0.361 0.255 0.000 0.010 0.014 0.012 0.025	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642 0.3444 0.0165 0.0415 0.1117 0.1110 0.1323	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 45 minute summer 50 minute winter 50 minute winter 50 minute winter	Node 21 21 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 41 42	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.002 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	50% 50% 50% 50% 50%	1/s) 13.7 20.9 24.8 36.6 36.6 42.2 42.1 42.2 42.2 22.2 40.7 4.2 6.5 0.0 40.6 28.7 0.0 5.4 5.4 5.4	(m/s) 1.147 1.311 1.199 1.562 1.582 1.537 1.838 1.954 2.027 1.954 0.416 0.611 0.475 0.264 0.000 0.690 0.662 0.000 0.845 0.801 0.638	0.026 0.039 0.060 0.089 0.082 0.087 0.086 0.077 0.073 0.072 0.198 0.364 0.016 0.025 0.000 0.361 0.255 0.000 0.010 0.014 0.012	Vol (m³) 0.0679 0.0906 0.2173 0.2420 0.1912 0.4715 0.3680 0.3279 0.2634 0.1117 1.1358 1.4084 0.0429 0.1248 0.0001 0.4642 0.3444 0.0165 0.0415 0.1117 0.1110	Vol (m³)

File: GC3613-RED-05-RSC-CM-(Network: Storm Network

Jacques Calitz 24/05/2021 Page 19 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Event	U: No		Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	47_0		21	234.80			0.0000	0.0000	ОК
15 minute summer	1		1	304.75	0.000	0.0	0.0000	0.0000	ОК
30 minute winter	4		21	295.80	0.052	19.8	0.1279	0.0000	OK
30 minute winter	1.003	:50%	21	294.39	0.056	22.6	0.0000	0.0000	ОК
30 minute winter	5		21	293.00	0.070	22.6	0.0000	0.0000	OK
30 minute winter	2		20	301.77	3 0.022	5.4	0.0485	0.0000	ОК
30 minute winter	1.001:50%		20	299.88	7 0.024	6.2	0.0000	0.0000	OK
30 minute winter	3		21	298.01	.8 0.042	11.7	0.0954	0.0000	OK
30 minute winter	1.002:50%		21	296.90	9 0.046	13.6	0.0000	0.0000	OK
30 minute winter	6		21	291.25			0.1589	0.0000	ОК
30 minute winter	1.005	:50%	21	289.60	0.067		0.0105	0.0000	OK
30 minute winter	7		21	287.96			0.1190	0.0000	OK
30 minute winter	8		21	286.04			0.1666	0.0000	OK
30 minute winter	9		21	282.56			0.3658	0.0000	OK
30 minute winter	10		22	278.09			0.2904	0.0000	OK
30 minute winter	11		22	273.96			0.5940	0.0000	OK
30 minute winter	14	/	21	271.10			1.5947	0.0000	OK
60 minute winter	1.011	:50%	52	269.16			105.9019	0.0000	PONDING
60 minute winter	15		48	267.31			0.4701	0.0000	OK
30 minute winter	20		22	264.12			0.5348	0.0000	OK
30 minute winter	36	50 0/	21	262.07			0.4718	0.0000	OK
30 minute winter	1.014	:50%	21	260.62	1 0.215	228.2	0.5190	0.0000	OK
Link Event (Outflow)	US Node	Link	D No		Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
(Outflow)	Node		No		(I/s)	(m/s)		Vol (m³)	_
(Outflow) 15 minute summer	Node 1	1.000	No 2	de	(I/s) 0.0	(m/s)	0.000	Vol (m³)	_
(Outflow) 15 minute summer 30 minute winter	Node 1 4	1.000 1.003	No 2 1.003	de	0.0 19.7	0.000 1.038	0.000 0.059	0.0610 0.1996	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter	1 4 4	1.000 1.003 1.003	2 1.003 5	de	0.0 19.7 22.6	0.000 1.038 0.990	0.000 0.059 0.068	0.0610 0.1996 0.2409	_
(Outflow) 15 minute summer 30 minute winter	Node 1 4	1.000 1.003	No 2 1.003	de	0.0 19.7	0.000 1.038	0.000 0.059	0.0610 0.1996	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter	1 4 4 5	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6	de :50%	0.0 19.7 22.6 22.6	0.000 1.038 0.990 0.949	0.000 0.059 0.068 0.096	0.0610 0.1996 0.2409 0.6144 0.0894	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6 1.001 3	:50%	0.0 19.7 22.6 22.6 5.4 6.1	0.000 1.038 0.990 0.949 0.708 0.555	0.000 0.059 0.068 0.096 0.015 0.017	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 5 2 2 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003 5 6 1.001 3 1.002	:50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8	0.000 1.038 0.990 0.949 0.708 0.555 0.775	0.000 0.059 0.068 0.096 0.015 0.017 0.042	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6 1.001 3	:50%	0.0 19.7 22.6 22.6 5.4 6.1	0.000 1.038 0.990 0.949 0.708 0.555	0.000 0.059 0.068 0.096 0.015 0.017	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 5 2 2 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003 5 6 1.001 3 1.002	:50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8	0.000 1.038 0.990 0.949 0.708 0.555 0.775	0.000 0.059 0.068 0.096 0.015 0.017 0.042	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003 5 6 1.001 3 1.002	:50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	1.002 1.005	:50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005	1.005 1.005 7	:50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005	1.001 3 1.002 4 1.005 7	:50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.078 0.092 0.145	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8	1.000 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007	1.001 3 1.002 4 1.005 7 8 9	:50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9 42.5	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121 1.164	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.078 0.092 0.145 0.145	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889 1.2270	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9	1.000 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008	1.001 1.002 4 1.005 7 8 9	:50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9 42.5 51.3	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121 1.164 1.279	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.078 0.092 0.145 0.145 0.181	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889 1.2270 1.8500	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009	1.001 3 1.002 4 1.005 7 8 9 10	:50% :50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9 42.5 51.3 58.1	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121 1.164 1.279 1.072	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.078 0.092 0.145 0.145 0.181 0.191	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889 1.2270 1.8500 2.0533	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.003 5 6 1.001 3 1.002 4 1.005 7 8 9 10 11 14	:50% :50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9 42.5 51.3 58.1 125.3	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121 1.164 1.279 1.072 1.380	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.078 0.092 0.145 0.145 0.181 0.191 0.392	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889 1.2270 1.8500 2.0533 2.1940	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14	1.000 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.005 7 8 9 10 11 14 1.011	:50% :50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9 42.5 51.3 58.1 125.3 191.9	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121 1.164 1.279 1.072 1.380 2.367	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.078 0.092 0.145 0.145 0.181 0.191 0.392 0.679	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889 1.2270 1.8500 2.0533 2.1940 1.6180	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 15 20	1.000 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011 1.012 1.013	1.005 7 8 9 10 11 14 1.011 15	:50% :50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9 42.5 51.3 58.1 125.3 191.9 88.6	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121 1.164 1.279 1.072 1.380 2.367 1.498 1.527 1.558	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.078 0.092 0.145 0.145 0.181 0.191 0.392 0.679 0.314	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889 1.2270 1.8500 2.0533 2.1940 1.6180 1.1433 1.9417 1.9160	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.001 1.002 4 1.005 7 8 9 10 11 14 1.011 15 20	:50% :50% :50%	0.0 19.7 22.6 22.6 5.4 6.1 11.8 13.6 29.2 34.6 37.9 42.5 51.3 58.1 125.3 191.9 88.6 100.7	0.000 1.038 0.990 0.949 0.708 0.555 0.775 0.799 1.260 1.188 1.121 1.164 1.279 1.072 1.380 2.367 1.498 1.527	0.000 0.059 0.068 0.096 0.015 0.017 0.042 0.049 0.145 0.145 0.145 0.181 0.191 0.392 0.679 0.314 0.324	0.0610 0.1996 0.2409 0.6144 0.0894 0.1317 0.1790 0.2008 0.2268 0.2859 0.7889 1.2270 1.8500 2.0533 2.1940 1.6180 1.1433 1.9417	_

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

Jacques Calitz 24/05/2021 Page 20 Tylorstown Phase 4 Existing Tip Greenfield rate

Node Even	t	US Node	Peak	Level	Depth (m)	Inflow	Node Vol (m³)	Flood (m³)	Status
30 minute wir	ntor 2	Noue B7	(mins) 21	(m) 259.166	0.224	(I/s) 244.1	0.7381	0.0000	ОК
30 minute wir		L.015:50%	21	257.962	0.224	303.7	1.5511	0.0000	OK
30 minute wir		1.013.30% 88	21	256.731	0.251	320.6	0.8763	0.0000	OK
30 minute wir		L.016:50%	21	254.839	0.252	359.3	5.4976	0.0000	OK
30 minute wir		88_OUT	21	252.931	0.267	358.3	0.0000	0.0000	OK
30 minute wir		30_001 30	20	285.894	0.207	13.1	0.1151	0.0000	OK
30 minute wir		5.000:50%	21	281.156	0.023	19.1	0.0000	0.0000	OK
30 minute wir		3.000.30% 31	21	276.414	0.030	19.1	0.0000	0.0000	OK
30 minute wir		32	21	273.169	0.035	19.1	0.0000	0.0000	OK
30 minute wir		33	20	273.169	0.035	64.8	0.0000	0.0000	OK
30 minute wii	itei 3		20	271.336	0.085	04.6	0.1247	0.0000	OK
30 minute wir	nter 2	29	20	275.317	0.063	42.2	0.0000	0.0000	OK
30 minute wir	nter 1	L 7	20	284.330	0.033	12.9	0.0687	0.0000	OK
30 minute wir	nter 1	18	20	281.334	0.041	24.3	0.1891	0.0000	OK
30 minute wir	nter 1	16	20	286.293	0.027	7.7	0.0839	0.0000	ОК
30 minute wir		19	20	274.654	0.044	29.4	0.0033	0.0000	OK
		-							
30 minute wir	nter 3	34	20	268.621	0.094	64.8	0.0000	0.0000	OK
30 minute wir	nter 3	35	20	266.306	0.067	64.7	0.0000	0.0000	OK
30 minute wir	nter 5	51	22	287.070	0.090	41.5	0.3485	0.0000	ОК
30 minute wir	nter 2	2.003:50%	22	286.273	0.099	46.9	0.0080	0.0000	ОК
30 minute wir	nter 5	51_OUT	22	285.449	0.082	54.8	0.1702	0.0000	OK
30 minute wir	nter 2	2.004:50%	21	279.676	0.084	58.0	0.0000	0.0000	OK
Link Event	US		DS			-	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Nod		DS Nod			elocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
(Outflow) 30 minute winter	Nod 37	e 1.015	Nod 1.015:	e (l) 50% 2	/s) 44.0	(m/s) 1.913	0.195	Vol (m³) 1.4466	_
(Outflow) 30 minute winter 30 minute winter	Nod 37 37	e 1.015 1.015	Nod 1.015:	e (I, 50% 2 3	/s) 44.0 03.5	(m/s) 1.913 2.186	0.195 0.243	Vol (m³) 1.4466 1.5707	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38	e 1.015 1.015 1.016	Nod 1.015:5 38 1.016:5	e (I) 50% 2 3 50% 3	/s) 44.0 03.5 20.5	(m/s) 1.913 2.186 2.201	0.195 0.243 0.246	Vol (m³) 1.4466 1.5707 2.3492	Vol (m³)
(Outflow) 30 minute winter 30 minute winter	Nod 37 37	e 1.015 1.015	Nod 1.015:	e (I) 50% 2 3 50% 3	/s) 44.0 03.5	(m/s) 1.913 2.186	0.195 0.243	Vol (m³) 1.4466 1.5707	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38	e 1.015 1.015 1.016	Nod 1.015:5 38 1.016:5	e (1,50% 2 3 3 3 1 T 3	/s) 44.0 03.5 20.5 58.3	(m/s) 1.913 2.186 2.201 2.362	0.195 0.243 0.246 0.275	Vol (m³) 1.4466 1.5707 2.3492	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38	1.015 1.015 1.016 1.016	Nod 1.015:5 38 1.016:5 38_OU	e (1,50% 2 3 3 3 1 T 3	/s) 44.0 03.5 20.5 58.3	(m/s) 1.913 2.186 2.201 2.362	0.195 0.243 0.246 0.275	Vol (m³) 1.4466 1.5707 2.3492 2.4463	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 38	1.015 1.015 1.016 1.016	Nod 1.015:5 38 1.016:5 38_OU	e (I, 50% 2 3 50% 3 1T 3	/s) 44.0 03.5 20.5 58.3	(m/s) 1.913 2.186 2.201 2.362	0.195 0.243 0.246 0.275	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 38	1.015 1.015 1.016 1.016 6.000 6.000	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510	0.195 0.243 0.246 0.275 0.023 0.033	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31	1.015 1.015 1.016 1.016 6.000 6.000 6.001	Nod 1.015:1 38 1.016:1 38_OU 6.000:1 31 32	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546	0.195 0.243 0.246 0.275 0.023 0.033 0.035	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33	e (1,50% 2 3 3 50% 3 3 50%	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015::38 1.016::38 38_OU 6.000::31 32 33 34	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 64.8	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33	e 1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 64.8	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18	e 1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33 34	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 44.8 42.2 12.9 24.2	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33 34 33 18 19	e (1,50% 2 3 3 5 5 0 % 3 5 0 %	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 44.8 42.2 12.9 24.2	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 29.1 64.8 42.2 12.9 24.2 7.7 29.4	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778 0.669	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300 0.1109 1.1038	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19 17 20	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 29.1 64.8 42.2 12.9 24.2 7.7 29.4	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778 0.669 2.107	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041 0.020 0.047	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300 0.1109 1.1038 0.3215	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 29.1 64.8 42.2 12.9 24.2 7.7 29.4	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778 0.669	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300 0.1109 1.1038	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19 17 20	e (I) 50% 2 3 50% 3 IT 3	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 29.1 64.8 42.2 12.9 24.2 7.7 29.4	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778 0.669 2.107	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041 0.020 0.047	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300 0.1109 1.1038 0.3215	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33 34 33 18 19 17 20 35 36	e (1,650% 2 3 3 5 5 0 % 3 5 0 % 5 0 % 5 0 % 5 0 %	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 64.8 42.2 12.9 24.2 7.7 29.4 64.7	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778 0.669 2.107 2.751	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041 0.020 0.047	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300 0.1109 1.1038 0.3215 0.1566	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35 51	1.015 1.015 1.016 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19 17 20 35 36	e (1,650% 2 3 3 5 5 0 % 3 5 0 % 5 0	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 64.8 42.2 12.9 24.2 7.7 29.4 64.7 64.7 41.5	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778 0.669 2.107 2.751 1.117	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041 0.020 0.047 0.151 0.090	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300 0.1109 1.1038 0.3215 0.1566 0.3399	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Nod 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35 51 51	1.015 1.015 1.016 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003 UT 2.004	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19 17 20 35 36 2.003:15 51_OU	6 (I) 50% 2 3 50% 3 IT 3 50%	/s) 44.0 03.5 20.5 58.3 13.1 19.1 19.1 19.1 64.8 42.2 12.9 24.2 7.7 29.4 64.7 64.7 41.5 46.9	(m/s) 1.913 2.186 2.201 2.362 1.214 1.510 1.546 0.905 1.853 1.530 1.032 1.670 0.778 0.669 2.107 2.751 1.117 1.328	0.195 0.243 0.246 0.275 0.023 0.033 0.035 0.032 0.141 0.084 0.028 0.041 0.020 0.047 0.151 0.090 0.153 0.173	Vol (m³) 1.4466 1.5707 2.3492 2.4463 0.1285 0.1508 0.1127 0.0959 0.3804 0.3615 0.1465 0.2300 0.1109 1.1038 0.3215 0.1566 0.3399 0.3223	Vol (m³)

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network Jacques Calitz 24/05/2021 Page 21 Tylorstown Phase 4 Existing Tip Greenfield rate

Node Event	ı	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	12		21	285.539	0.057	38.6	0.0825	0.0000	OK
30 minute winter		04:50%	21	281.981	0.069	49.5	0.0749	0.0000	OK
30 minute winter	13		21	278.400	0.058	49.5	0.0000	0.0000	OK
30 minute winter	52		20	304.902	0.023	8.5	0.0767	0.0000	OK
30 minute winter	3.0	00:50%	20	301.532	0.035	17.6	0.1180	0.0000	OK
30 minute winter	53		20	298.151	0.037	17.5	0.0000	0.0000	OK
30 minute winter	54		21	291.334	0.040	20.0	0.0400	0.0000	OK
30 minute winter	55		21	287.617	0.089	35.1	0.5454	0.0000	OK
15 minute summ	er 44		1	261.894	0.000	0.0	0.0000	0.0000	ОК
30 minute winter	8.0	00:50%	21	257.794	0.008	1.6	0.0012	0.0000	OK
30 minute winter	45		20	253.687	0.007	1.6	0.0000	0.0000	OK
30 minute winter	46		21	245.423	0.008	1.6	0.0000	0.0000	OK
Link Event	US	Link	DS	Outfl	ow Vel	ocity Fl	ow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	DS Node			ocity Fl n/s)		Link Vol (m³)	Discharge Vol (m³)
		Link 3.004		(I/s) (n	•			_
(Outflow)	Node		Node	(I/s 0% 3) (n 8.6 1	n/s) ์		Vol (m³)	_
(Outflow) 30 minute winter	Node 12	3.004	Node 3.004:50	(I/s 0% 3. 4) (n 8.6 1 9.5 2	n/s) 1.681	0.072	Vol (m³) 0.2398	_
(Outflow) 30 minute winter 30 minute winter	Node 12 12	3.004 3.004	Node 3.004:50 13	(I/s 0% 3 4 4) (n 8.6 1 9.5 2 9.5 0	n/s) 1.681 2.141	0.072 0.093	0.2398 0.2411	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13	3.004 3.004 3.005	Node 3.004:50 13 14	(I/s 0% 3 4 4 0%	8.6 1 9.5 2 9.5 0 8.5 0	n/s) 1.681 2.141 0.807	0.072 0.093 0.077	0.2398 0.2411 1.0112	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52	3.004 3.004 3.005 3.000	3.004:50 13 14 3.000:50	(I/s 0% 3 4 4 0% 5) (n 8.6 1 9.5 2 9.5 0 8.5 0 7.5 1	n/s) 1.681 2.141 0.807 0.888	0.072 0.093 0.077 0.015	0.2398 0.2411 1.0112 0.0877	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52	3.004 3.004 3.005 3.000 3.000	3.004:50 13 14 3.000:50 53	(I/s 0% 3. 44 4 0% 1 1) (n 8.6 1 9.5 2 9.5 0 8.5 0 7.5 1	n/s) 1.681 2.141 0.807 0.888 1.435	0.072 0.093 0.077 0.015 0.032	0.2398 0.2411 1.0112 0.0877 0.1118	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53	3.004 3.004 3.005 3.000 3.000 3.001	3.004:50 13 14 3.000:50 53 54	(I/s 0% 3. 4. 4. 0% 1 1. 1.) (n 8.6 1 9.5 2 9.5 0 8.5 0 7.5 1 0.0 0	n/s) 1.681 2.141 0.807 0.888 1.435 1.343	0.072 0.093 0.077 0.015 0.032 0.035	0.2398 0.2411 1.0112 0.0877 0.1118 0.2883	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54	3.004 3.004 3.005 3.000 3.000 3.001 3.002	3.004:50 13 14 3.000:50 53 54 55	(I/s 0% 3.4 4.0 0% 1 1 1 20) (n 8.6 1 9.5 2 9.5 0 8.5 0 7.5 1 0.0 0 5.1 1	1.681 2.141 0.807 0.888 1.435 1.343 0.850	0.072 0.093 0.077 0.015 0.032 0.035 0.039	0.2398 0.2411 1.0112 0.0877 0.1118 0.2883 0.2860	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12	(I/s 0% 3. 44 0% 1 1 20 3.) (n 8.6 1 9.5 2 9.5 0 8.5 0 7.5 1 7.5 1 0.0 0	1.681 2.141 0.807 0.888 1.435 1.343 0.850 1.283	0.072 0.093 0.077 0.015 0.032 0.035 0.039 0.135	0.2398 0.2411 1.0112 0.0877 0.1118 0.2883 0.2860 0.6929	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50	(I/s 0% 3. 44 0% 1 1 20 3.) (n 8.6 1 9.5 2 9.5 0 8.5 0 7.5 1 7.5 1 0.0 0 5.1 1 0.0 0 1.6 0	1.681 2.141 0.807 0.888 1.435 1.343 0.850 1.283	0.072 0.093 0.077 0.015 0.032 0.035 0.039 0.135	0.2398 0.2411 1.0112 0.0877 0.1118 0.2883 0.2860 0.6929	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54 55 44 44	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003 8.000	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50 45	(I/s 0% 3. 4. 4. 0% 1. 1. 2. 3.) (n 8.6 1 9.5 2 9.5 0 8.5 0 7.5 1 0.0 0 1.6 0 1.6 0	n/s) 1.681 2.141 0.807 0.888 1.435 1.343 0.850 1.283 0.000 0.690	0.072 0.093 0.077 0.015 0.032 0.035 0.039 0.135	0.2398 0.2411 1.0112 0.0877 0.1118 0.2883 0.2860 0.6929 0.0080 0.0179	_

US

Peak

Node Event

File: GC3613-RED-05-RSC-CM-(

Node

Flood

Network: Storm Network Jacques Calitz 24/05/2021

Depth Inflow

Page 22 Tylorstown Phase 4 Existing Tip Greenfield rate

Status

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.98%

Level

Node Event	U	JS	Реак	Levei	Deptn	Inflow	Node	Flood	Status
	No	ode	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute winter	21		20	306.732	0.035	16.9	0.1507	0.0000	OK
30 minute winter	5.000	0:50%	20	304.833	0.046	26.2	0.0000	0.0000	PONDING
30 minute winter	22		20	302.937	0.060	31.4	0.0958	0.0000	OK
30 minute summer	5.001	1:50%	18	300.842	0.076	46.6	0.0000	0.0000	OK
30 minute summer	23		18	298.727	0.072	46.5	0.0000	0.0000	OK
30 minute summer	24		19	296.752	0.074	46.3	0.0000	0.0000	OK
30 minute winter	25		19	292.562	0.076		0.1869	0.0000	OK
30 minute winter	26		19	287.958	0.071		0.0000	0.0000	OK
30 minute summer			19	282.530	0.068		0.0000	0.0000	OK
30 minute summer			19	277.442	0.066		0.0000	0.0000	OK
30 minute winter	49		21	287.971	0.117		0.4643	0.0000	OK
30 minute winter		1:50%	21	287.702	0.166		0.7320	0.0000	OK
30 minute winter	48	1.50/0	20	288.643	0.028		0.7320	0.0000	OK
30 minute winter		0:50%	21	288.271	0.028			0.0000	OK
50 minute winter	2.000	J.3U%	21	200.271	0.057	0.0	0.3310	0.0000	UK
15 minute summer	39		1	262.457	0.000	0.0	0.0000	0.0000	OK
30 minute winter	50		21	287.388	0.170	51.3	0.0000	0.0000	OK
60 minute winter	2.002	2:50%	47	287.235	0.136	51.5	19.9332	0.0000	PONDING
15 minute summer	40		1	259.256	0.000	0.0	0.0000	0.0000	OK
30 minute winter	7.001	1:50%	20	257.186	0.021	7.0	0.0050	0.0000	OK
30 minute winter	41		20	255.099	0.026	7.0	0.0000	0.0000	OK
30 minute winter	42		20	251.974	0.023	7.0	0.0000	0.0000	OK
30 minute winter	7.003	3:50%	20	248.919	0.037	14.4	0.1164	0.0000	OK
30 minute winter	43		21	245.847	0.034		0.0000	0.0000	OK
30 minute winter	47		21	240.277	0.039	16.5	0.0000	0.0000	OK
Link Event	US	Link	DS			/elocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	DS Nod		tflow \ l/s)	/elocity (m/s)	Flow/Cap	Link Vol (m³)	_
		Link 5.000		le (-	Flow/Cap 0.032		Vol (m³)
(Outflow)	Node		Noc	le (I/s)	(m/s)	•	Vol (m³)	Vol (m³)
(Outflow) 30 minute winter	Node 21	5.000	Nod 5.000:	le 50%	I/s) 16.9	(m/s) 1.223	0.032	Vol (m³) 0.0786	Vol (m³)
(Outflow) 30 minute winter 30 minute winter	Node 21 21	5.000 5.000	Nod 5.000: 22	le 50%	l/s) 16.9 26.2	(m/s) 1.223 1.408	0.032 0.050	Vol (m³) 0.0786 0.1059	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22	5.000 5.000 5.001	Nod 5.000: 22 5.001:	le 50%	1/s) 16.9 26.2 31.3	(m/s) 1.223 1.408 1.289	0.032 0.050 0.076	Vol (m³) 0.0786 0.1059 0.2570	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer	Node 21 21 22 22	5.000 5.000 5.001 5.001	Nod 5.000: 22 5.001: 23	le 50%	1/s) 16.9 26.2 31.3 46.5	(m/s) 1.223 1.408 1.289 1.681	0.032 0.050 0.076 0.113	Vol (m³) 0.0786 0.1059 0.2570 0.2852	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 21 21 22 22 22 23	5.000 5.000 5.001 5.001 5.002	Nod 5.000: 22 5.001: 23 24	le 50%	1/s) 16.9 26.2 31.3 46.5 46.3	(m/s) 1.223 1.408 1.289 1.681 1.703	0.032 0.050 0.076 0.113 0.104	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 21 21 22 22 22 23 24	5.000 5.000 5.001 5.001 5.002 5.003	5.000: 22 5.001: 23 24 25	le 50%	1/s) 16.9 26.2 31.3 46.5 46.3	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651	0.032 0.050 0.076 0.113 0.104 0.110	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 21 21 22 22 22 23 24 25	5.000 5.000 5.001 5.001 5.002 5.003 5.004	5.000: 22 5.001: 23 24 25 26	le 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984	0.032 0.050 0.076 0.113 0.104 0.110 0.111	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 21 21 22 22 23 24 25 26	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005	5.000: 22 5.001: 23 24 25 26 27	le 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 21 21 22 22 23 24 25 26 27 28	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007	5.000: 22 5.001: 23 24 25 26 27 28 29	le (50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 21 21 22 22 23 24 25 26 27 28 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001:	le (50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 27.2	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.093 0.243	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	le (50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 27.2 51.3	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.093 0.243 0.458	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 21 21 22 22 23 24 25 26 27 28 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001:	le (50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 27.2	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.093 0.243	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 55.5 8.5	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.093 0.243 0.458 0.021 0.033	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 27.2 51.3 5.5 8.5	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.093 0.243 0.458 0.021 0.033	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 57.2 51.3 5.5 8.5	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51	So% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 57.2 51.3 5.5 8.5 0.0 51.2 32.6	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 50 50 40	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 7.000 2.002 2.002 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001:	So% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 57.2 51.3 5.5 8.5 0.0 51.2 32.6 0.0	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696 0.000	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744 0.0194	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 40 minute summer 50 minute summer 60 minute winter 15 minute summer 60 minute summer	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	So% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 27.2 51.3 5.5 8.5 0.0 51.2 32.6 0.0 7.0	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696 0.000 0.927	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033 0.400 0.455 0.290 0.000	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744 0.0194 0.0491	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 49 48 48 39 50 50 40 40 41	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001	Nod 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	50% 50% 50% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 27.2 51.3 5.5 8.5 0.0 51.2 32.6 0.0 7.0 7.0	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696 0.000 0.927 0.879	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033 0.400 0.455 0.290 0.000 0.014 0.018	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744 0.0194 0.0491 0.1321	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 40 minute winter 50 minute winter 15 minute summer 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 49 48 48 39 50 50 40 40 41 42	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.002 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	50% 50% 50% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 57.0 51.2 32.6 0.0 7.0 7.0 6.9	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696 0.000 0.927 0.879 0.699	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033 0.000 0.455 0.290 0.000 0.014 0.018 0.016	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744 0.0194 0.0491 0.1321 0.1316	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40 41 42 42 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003: 43	50% 50% 50% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 57.2 51.3 5.5 8.5 0.0 51.2 32.6 0.0 7.0 6.9 14.4	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696 0.000 0.927 0.879 0.699 1.210	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033 0.455 0.290 0.000 0.455 0.290 0.0014 0.018 0.016 0.033	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744 0.0194 0.0491 0.1321 0.1316 0.1569	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40 41 42 42 43	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.003 7.003 7.003 7.004	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003: 43 47	50% 50% 50% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 57.2 51.3 5.5 8.5 0.0 51.2 32.6 0.0 7.0 7.0 6.9 14.4 14.4	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696 0.000 0.927 0.879 0.699 1.210 1.176	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033 0.455 0.290 0.000 0.455 0.290 0.0014 0.018 0.016 0.033 0.030	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744 0.0194 0.0491 0.1321 0.1316 0.1569 0.2451	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40 41 42 42 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003: 43	50% 50% 50% 50% 50%	1/s) 16.9 26.2 31.3 46.5 46.3 46.3 54.0 54.0 54.0 54.0 57.2 51.3 5.5 8.5 0.0 51.2 32.6 0.0 7.0 6.9 14.4	(m/s) 1.223 1.408 1.289 1.681 1.703 1.651 1.984 2.112 2.191 2.111 0.435 0.652 0.518 0.296 0.000 0.775 0.696 0.000 0.927 0.879 0.699 1.210	0.032 0.050 0.076 0.113 0.104 0.110 0.111 0.099 0.093 0.243 0.458 0.021 0.033 0.455 0.290 0.000 0.455 0.290 0.0014 0.018 0.016 0.033	Vol (m³) 0.0786 0.1059 0.2570 0.2852 0.2249 0.5566 0.4368 0.3889 0.3121 0.1324 1.3317 1.6606 0.0510 0.1452 0.0001 0.5232 0.3744 0.0194 0.0491 0.1321 0.1316 0.1569	Vol (m³)

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network Jacques Calitz 24/05/2021 Page 23 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Event	U: No:		Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	47_0		21	234.80			0.0000	0.0000	OK
15 minute summer	1		1	304.75	0.000	0.0	0.0000	0.0000	ОК
30 minute winter	4		20	295.81	.0 0.060	25.8	0.1495	0.0000	ОК
30 minute winter	1.003	:50%	21	294.40			0.0000	0.0000	ОК
30 minute winter	5		21	293.01			0.0000	0.0000	OK
30 minute winter	2		20	301.77	6 0.026	7.0	0.0567	0.0000	ОК
30 minute winter	1.001	:50%	20	299.89	0.029		0.0000	0.0000	OK
30 minute winter	3		20	298.02	6 0.049		0.1119	0.0000	OK
30 minute winter	1.002	:50%	21	296.91	.7 0.054	17.8	0.0000	0.0000	OK
30 minute winter	6		21	291.26	9 0.071	37.9	0.1854	0.0000	ОК
30 minute winter	1.005	:50%	21	289.61	.4 0.078		0.0143	0.0000	OK
30 minute winter	7		21	287.97			0.1387	0.0000	OK
30 minute winter	8		21	286.06			0.1940	0.0000	OK
30 minute winter	9		21	282.58			0.4256	0.0000	OK
30 minute winter	10		22	278.11			0.3373	0.0000	OK
30 minute winter	11		21	273.98			0.6674	0.0000	OK
30 minute winter	14		21	271.13			1.8028	0.3945	FLOOD
120 minute winter	1.011	:50%	90	269.17			163.0816	0.0000	PONDING
120 minute winter	15		86	267.31			0.4973	0.0000	OK
30 minute winter	20		22	264.13			0.5748	0.0000	OK
30 minute winter	36		21	262.09			0.5180	0.0000	OK
30 minute winter	1.014	:50%	21	260.64	3 0.237	275.3	0.6309	0.0000	OK
Link Event (Outflow)	US Node	Link	D No		Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
			No			-	Flow/Cap		_
		1.000			(I/s) 0.0	-	Flow/Cap 0.000	Vol (m³)	_
(Outflow) 15 minute summer 30 minute winter	Node 1 4	1.000 1.003	No 2 1.003	de	0.0 25.7	0.000 1.129	0.000 0.077	0.0720 0.2391	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter	1 4 4	1.000 1.003 1.003	2 1.003 5	de	0.0 25.7 29.4	0.000 1.129 1.075	0.000 0.077 0.088	0.0720 0.2391 0.2892	_
(Outflow) 15 minute summer 30 minute winter	Node 1 4	1.000 1.003	No 2 1.003	de	0.0 25.7	0.000 1.129	0.000 0.077	0.0720 0.2391	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter	1 4 4 5	1.000 1.003 1.003 1.004	2 1.003 5 6	de :50%	0.0 25.7 29.4 29.5	0.000 1.129 1.075 1.029	0.000 0.077 0.088 0.125	0.0720 0.2391 0.2892 0.7380 0.1061	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6 1.001 3	:50%	0.0 25.7 29.4 29.5 7.0 8.0	0.000 1.129 1.075 1.029 0.774 0.609	0.000 0.077 0.088 0.125 0.019 0.022	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003 5 6 1.001 3 1.002	:50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4	0.000 1.129 1.075 1.029 0.774 0.609 0.847	0.000 0.077 0.088 0.125 0.019 0.022 0.055	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6 1.001 3	:50%	0.0 25.7 29.4 29.5 7.0 8.0	0.000 1.129 1.075 1.029 0.774 0.609	0.000 0.077 0.088 0.125 0.019 0.022	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003 5 6 1.001 3 1.002	:50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4	0.000 1.129 1.075 1.029 0.774 0.609 0.847	0.000 0.077 0.088 0.125 0.019 0.022 0.055	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003 5 6 1.001 3 1.002	:50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 3 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	1.002 1.005	:50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	1.005 1.005 7	:50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7	1.000 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005	1.001 3 1.002 4 1.005 7	:50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007	1.001 3 1.002 4 1.005 7 8 9	:50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5 55.5	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213 1.257	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190 0.189	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532 1.4837	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008	1.001 1.002 4 1.005 7 8 9	:50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5 55.5 67.1	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213 1.257 1.380	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190 0.189 0.236	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532 1.4837 2.2397	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009	1.001 3 1.002 4 1.005 7 8 9 10	:50% :50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5 55.5 67.1 75.8	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213 1.257 1.380 1.179	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190 0.189 0.236 0.249	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532 1.4837 2.2397 2.4326	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.002 1.003 5 6 1.001 3 1.002 4 1.005 7 8 9 10 11 14	:50% :50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5 55.5 67.1 75.8 155.3	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213 1.257 1.380 1.179 1.446	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190 0.189 0.236 0.249 0.486	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532 1.4837 2.2397 2.4326 2.5998	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14	1.000 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.005 7 8 9 10 11 14 1.011	:50% :50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5 55.5 67.1 75.8 155.3 239.2	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213 1.257 1.380 1.179 1.446 2.600	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190 0.189 0.236 0.249 0.486 0.847	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532 1.4837 2.2397 2.4326 2.5998 1.8597	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14	1.000 1.003 1.004 1.001 1.001 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.005 7 8 9 10 11 14 1.011 15	:50% :50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5 55.5 67.1 75.8 155.3 239.2 98.9	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213 1.257 1.380 1.179 1.446 2.600 1.548	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190 0.189 0.236 0.249 0.486 0.847 0.350	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532 1.4837 2.2397 2.4326 2.5998 1.8597 1.2348	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.001 1.002 4 1.005 7 8 9 10 11 14 1.011 15 20	:50% :50% :50%	0.0 25.7 29.4 29.5 7.0 8.0 15.4 17.7 38.0 45.1 49.5 55.5 67.1 75.8 155.3 239.2 98.9 111.6	0.000 1.129 1.075 1.029 0.774 0.609 0.847 0.871 1.366 1.286 1.213 1.257 1.380 1.179 1.446 2.600 1.548 1.562	0.000 0.077 0.088 0.125 0.019 0.022 0.055 0.063 0.101 0.120 0.190 0.189 0.236 0.249 0.486 0.847 0.350 0.359	0.0720 0.2391 0.2892 0.7380 0.1061 0.1575 0.2143 0.2405 0.2724 0.3449 0.9532 1.4837 2.2397 2.4326 2.5998 1.8597 1.2348 2.0558	_

Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

US

Peak

Node Event

File: GC3613-RED-05-RSC-CM-(

Node

Flood

Network: Storm Network Jacques Calitz 24/05/2021

Depth Inflow

Page 24 Tylorstown Phase 4 Existing Tip Greenfield rate

Status

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.98%

Level

	L	03	Peak	Levei	Deptil	IIIIIOW	Noue	rioou	Status
		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute wir	nter 37		21	259.190	0.248	296.3	0.8156	0.0000	OK
30 minute wir	nter 1.0)15:50%	21	257.989	0.279	374.0	1.9167	0.0000	ОК
30 minute wir			21	256.760	0.281	396.1	0.9755	0.0000	ОК
30 minute wir)16:50%	21	254.870	0.299	446.6	6.8455	0.0000	ОК
30 minute wir		OUT	21	252.962	0.298	445.8	0.0000	0.0000	OK
30 minute wir	-		20	285.897	0.032	16.1	0.1303	0.0000	OK
30 minute wir		000:50%	21	281.162	0.042	24.0	0.0000	0.0000	OK
30 minute wir		00.50%	21	276.419	0.042	24.0	0.0000	0.0000	OK
30 minute wir			21	273.174	0.040	24.0	0.0000	0.0000	OK
30 minute wir	nter 33		20	271.371	0.098	82.6	0.1433	0.0000	OK
30 minute wir			20	275.326	0.072	54.0	0.0000	0.0000	OK
30 minute wir			20	284.335	0.038	16.9	0.0806	0.0000	OK
30 minute wir	nter 18		20	281.341	0.048	31.7	0.2216	0.0000	OK
30 minute wir	nter 16		20	286.298	0.032	10.1	0.0986	0.0000	OK
30 minute wir			20	274.661	0.051	38.4	0.1068	0.0000	OK
30 miliate wii	101 15		20	27 1.001	0.031	30	0.1000	0.0000	O.K
30 minute wir	nter 34		20	268.635	0.108	82.6	0.0000	0.0000	OK
30 minute wir	nter 35		20	266.317	0.077	82.6	0.0000	0.0000	OK
30 minute wir			22	287.076	0.096	46.9	0.3735	0.0000	OK
30 minute wir		003:50%	22	286.281	0.107	53.9	0.0093	0.0000	OK
30 minute wir	nter 51 _.	_OUT	22	285.456	0.089	63.4	0.1847	0.0000	OK
30 minute wir	nter 2.0	004:50%	21	279.684	0.092	67.6	0.0000	0.0000	OK
Link Evont	110	Link	DC	Out	flow V	olocity	Elow/Can	Link	Discharge
Link Event	US	Link	DS			-	Flow/Cap	Link	Discharge
(Outflow)	Node		Nod	le (I,	/s)	(m/s)	•	Vol (m³)	Discharge Vol (m³)
(Outflow) 30 minute winter	Node 37	1.015	Nod 1.015:	l e (I , 50% 2	/s) 96.1	(m/s) 1.999	0.237	Vol (m³) 1.6803	_
(Outflow) 30 minute winter 30 minute winter	Node 37 37	1.015 1.015	Nod 1.015:: 38	l e (I , 50% 2 3	/s) 96.1 73.8	(m/s) 1.999 2.303	0.237 0.299	Vol (m³) 1.6803 1.8363	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38	1.015 1.015 1.016	Nod 1.015:: 38 1.016::	le (I, 50% 2 3 50% 3	/s) 96.1 73.8 96.0	(m/s) 1.999 2.303 2.317	0.237 0.299 0.304	Vol (m³) 1.6803 1.8363 2.7578	Vol (m³)
(Outflow) 30 minute winter 30 minute winter	Node 37 37	1.015 1.015	Nod 1.015:: 38	le (I, 50% 2 3 50% 3	/s) 96.1 73.8	(m/s) 1.999 2.303	0.237 0.299	Vol (m³) 1.6803 1.8363	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38	1.015 1.015 1.016	Nod 1.015:: 38 1.016::	le (I, 50% 2 3 50% 3 IT 4	/s) 96.1 73.8 96.0	(m/s) 1.999 2.303 2.317	0.237 0.299 0.304	Vol (m³) 1.6803 1.8363 2.7578	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38	1.015 1.015 1.016 1.016	Nod 1.015:: 38 1.016:: 38_OU	le (I, 50% 2 3 50% 3 IT 4	/s) 96.1 73.8 96.0 45.8	(m/s) 1.999 2.303 2.317 2.497	0.237 0.299 0.304 0.342	Vol (m³) 1.6803 1.8363 2.7578 2.8790	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 38	1.015 1.015 1.016 1.016	Nod 1.015:: 38 1.016:: 38_OU	le (I, 50% 2 3 50% 3 IT 4	/s) 96.1 73.8 96.0 45.8	(m/s) 1.999 2.303 2.317 2.497	0.237 0.299 0.304 0.342	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30	1.015 1.015 1.016 1.016 6.000 6.000	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31	le (I, 50% 2 3 50% 3 IT 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630	0.237 0.299 0.304 0.342 0.028 0.042	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31	1.015 1.015 1.016 1.016 6.000 6.000 6.001	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32	le (I, 50% 2 3 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669	0.237 0.299 0.304 0.342 0.028 0.042 0.044	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33 34	le (I, 50% 2 3 50% 3 IT 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34	le (I, 50% 2 3 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18	le (I, 50% 2 3 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34	le (I, 50% 2 3 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18	le (I, 50% 2 3 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32 33 34 33 18	le (I, 50% 2 3 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19	le (I, 50% 2 3 3 50% 3 1T 4 4 50%	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6 10.1 38.4	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824 0.854 0.778	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751 0.1324 1.2334	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34 33 18 19 17 20	le (I, 50% 2 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6 10.1 38.4	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824 0.854 0.778	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053 0.026 0.061	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751 0.1324 1.2334 0.3817	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19	le (I, 50% 2 3 50% 3 1T 4	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6 10.1 38.4	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824 0.854 0.778	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751 0.1324 1.2334	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34 33 18 19 17 20	le (I, 50% 2 3 3 50% 3 4 4 50%	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6 10.1 38.4	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824 0.854 0.778	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053 0.026 0.061	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751 0.1324 1.2334 0.3817	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35	1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 5.010 5.010	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34 33 18 19 17 20	le (I, 50% 2 3 3 50% 3 4 4 50%	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6 10.1 38.4 82.6 82.6	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824 0.854 0.778 2.265 2.965	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053 0.026 0.061 0.193 0.115	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751 0.1324 1.2334 0.3817 0.1855	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35 51	1.015 1.016 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19 17 20 35 36	Solve (I) 50% 2 3 50% 3 T 4 50%	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6 10.1 38.4 82.6 82.6 46.9	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824 0.854 0.778 2.265 2.965	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053 0.026 0.061 0.193 0.115	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751 0.1324 1.2334 0.3817 0.1855 0.3727	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35 51 51	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003 T 2.004	Nod 1.015::38 1.016::38_OU 6.000::31 32 33 34 33 18 19 17 20 35 36 2.003::51_OU	50% (I, 50%) 50% (IT 50%) 50%	/s) 96.1 73.8 96.0 45.8 16.1 24.0 24.0 24.0 82.6 54.1 16.8 31.6 10.1 38.4 82.6 82.6 46.9 53.8	(m/s) 1.999 2.303 2.317 2.497 1.294 1.630 1.669 0.967 1.989 1.654 1.129 1.824 0.854 0.778 2.265 2.965 1.150 1.382	0.237 0.299 0.304 0.342 0.028 0.042 0.044 0.040 0.180 0.107 0.036 0.053 0.026 0.061 0.193 0.115	Vol (m³) 1.6803 1.8363 2.7578 2.8790 0.1483 0.1755 0.1311 0.1132 0.4519 0.4289 0.1751 0.2751 0.1324 1.2334 0.3817 0.1855 0.3727 0.3557	Vol (m³)

Jacques Calitz 24/05/2021 Page 25 Tylorstown Phase 4 Existing Tip Greenfield rate

Node Event	ı	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
			, -,	, ,	` ,	(,,-,	,	` ,	
30 minute winter	12		21	285.549	0.067	50.3	0.0964	0.0000	OK
30 minute winter	3.0	04:50%	21	281.993	0.081	64.6	0.1020	0.0000	OK
30 minute winter			21	278.410	0.068	64.6	0.0000	0.0000	OK
30 minute winter			20	304.905	0.026	11.0	0.0896	0.0000	OK
30 minute winter		00:50%	20	301.538	0.041	22.9	0.1618	0.0000	OK
30 minute winter			20	298.158	0.044	22.8	0.0000	0.0000	OK
30 minute winter	54		20	291.341	0.046	26.1	0.0468	0.0000	OK
30 minute winter	55		21	287.632	0.104	45.9	0.6347	0.0000	OK
15 minute summ	er 44		1	261.894	0.000	0.0	0.0000	0.0000	ОК
30 minute winter		00:50%	20	257.795	0.000	2.1	0.0000	0.0000	OK
30 minute winter		00.30%	20	253.688	0.009	2.1	0.0010	0.0000	OK
30 minute winter			21	245.424	0.009	2.1	0.0000	0.0000	OK
30 minute winter	40		21	243.424	0.009	2.1	0.0000	0.0000	OK
Link Event	US	Link	DS	Outfl	ow Vel	ocity Fl	ow/Cap	Link	Discharge
							0 11 / Cup		Discharge
(Outflow)	Node		Node			n/s)		Vol (m³)	Vol (m³)
(Outflow)						-			_
(Outflow) 30 minute winter		3.004		(I/s) (n	-			_
	Node		Node	(I/s 0% 5) (n 0.4 <u>í</u>	n/s) ์		Vol (m³)	_
30 minute winter	Node 12	3.004	Node 3.004:50	(I/s 0% 56	0.4 2 4.6 2	n/s) 1.826	0.094	Vol (m³) 0.2884	_
30 minute winter 30 minute winter	Node 12 12	3.004 3.004	Node 3.004:50 13	(I/s 0% 56 6	0.4 2 4.6 2 4.6 0	n/s) 1.826 2.324	0.094 0.121	0.2884 0.2899	_
30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52	3.004 3.004 3.005	Node 3.004:50 13 14	(I/s 0% 56 66 0% 1) (n 0.4	n/s) 1.826 2.324 0.887	0.094 0.121 0.100 0.020 0.041	0.2884 0.2899 1.2076	_
30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52	3.004 3.004 3.005 3.000	3.004:50 13 14 3.000:50	(I/s 0% 56 66 0% 1) (n 0.4	n/s) 1.826 2.324 0.887 0.970	0.094 0.121 0.100 0.020	0.2884 0.2899 1.2076 0.1043	_
30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52	3.004 3.004 3.005 3.000 3.000	3.004:50 13 14 3.000:50 53 54 55	(I/s (I/s 5) 6 6 6 0% 1 2 2) (n 0.4	1.826 2.324 0.887 0.970 1.568	0.094 0.121 0.100 0.020 0.041	0.2884 0.2899 1.2076 0.1043 0.1333	_
30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53	3.004 3.004 3.005 3.000 3.000 3.001	3.004:50 13 14 3.000:50 53 54	(I/s (I/s 5) 6 6 6 7 2 2 2 2	0.4	1.826 2.324 0.887 0.970 1.568 1.467	0.094 0.121 0.100 0.020 0.041 0.045	0.2884 0.2899 1.2076 0.1043 0.1333 0.3444	_
30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12	(II/s 0% 5 6 6 0% 1 2 2 4	0.4	1.826 2.324 0.887 0.970 1.568 1.467 0.923 1.390	0.094 0.121 0.100 0.020 0.041 0.045 0.051 0.176	0.2884 0.2899 1.2076 0.1043 0.1333 0.3444 0.3441 0.8348	_
30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50	(II/s 0% 56 66 0% 1 2 2 4	0.4	1.826 2.324 0.887 0.970 1.568 1.467 0.923 1.390	0.094 0.121 0.100 0.020 0.041 0.045 0.051 0.176	0.2884 0.2899 1.2076 0.1043 0.1333 0.3444 0.3441 0.8348	_
30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54 55 44 44	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003 8.000	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50 45	(II/s) 0% 56 66 0% 1 2 2 4	0.4	1.826 2.324 0.887 0.970 1.568 1.467 0.923 1.390 0.000	0.094 0.121 0.100 0.020 0.041 0.045 0.051 0.176 0.000 0.003	0.2884 0.2899 1.2076 0.1043 0.1333 0.3444 0.3441 0.8348 0.0094 0.0211	_
30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50	(II/s) 0% 56 66 0% 1 2. 2. 2. 4.	0.4	1.826 2.324 0.887 0.970 1.568 1.467 0.923 1.390	0.094 0.121 0.100 0.020 0.041 0.045 0.051 0.176	0.2884 0.2899 1.2076 0.1043 0.1333 0.3444 0.3441 0.8348	_

Jacques Calitz 24/05/2021 Page 26 Tylorstown Phase 4 Existing Tip Greenfield rate

Node Event		JS	Peak	Level	Depth	Inflow	Node	Flood	Status
30 minute winter		ode	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	OK
	21	3.F00/	20	306.739	0.042	22.5	0.1788	0.0000	OK
30 minute winter 30 minute winter	22	0:50%	20 20	304.842 302.949	0.055 0.072	35.6 42.8	0.0000 0.1150	0.0000	PONDING OK
30 minute summer		1:50%	18	300.858	0.072	64.1	0.0000	0.0000	OK
30 minute summer		1.50%	18	298.741	0.092	63.9	0.0000	0.0000	OK
30 minute summer			18	296.741	0.089	63.7	0.0000	0.0000	OK
			19						OK
30 minute winter 30 minute winter	25 26		19	292.577 287.972	0.091 0.085	74.7 74.6	0.2250 0.0000	0.0000	OK
30 minute winter	20 27		20	282.544	0.083	74.6 74.5	0.0000	0.0000	OK
30 minute winter	28		20	277.456	0.082	74.5 74.5	0.0000	0.0000	OK
30 minute winter	49		21	287.990	0.080	35.7	0.5399	0.0000	OK
30 minute winter		1:50%	21	287.731	0.130	69.7	1.0150	0.0000	OK
30 minute winter	48	1.30%	20	288.649	0.193	7.7	0.0582	0.0000	OK
30 minute winter		D.E.O.0/	21	288.279	0.034	12.0			OK
50 minute winter	2.000	0:50%	21	200.279	0.045	12.0	0.4918	0.0000	UK
15 minute summer			1	262.457	0.000	0.0	0.0000	0.0000	OK
30 minute winter	50	D. F.OO/	21	287.413	0.195	69.6	0.0000	0.0000	OK
60 minute winter		2:50%	48	287.247	0.148	69.7	35.6143	0.0000	PONDING
15 minute summer		1.500/	1	259.256	0.000	0.0	0.0000	0.0000	OK
30 minute winter		1:50%	20	257.190	0.026	9.8	0.0075 0.0000	0.0000	OK
30 minute winter	41		20	255.104	0.031	9.8		0.0000	OK
30 minute winter	42	2.500/	20	251.980	0.029	9.8	0.0000	0.0000	OK OK
30 minute winter		3:50%	21 21	248.927	0.045	20.2	0.1737	0.0000	OK
30 minute winter	43 47			245.855	0.042	20.2	0.0000	0.0000	
30 minute winter	47		21	240.285	0.047	23.0	0.0000	0.0000	OK
Link Event	US	Link	DS			-	Flow/Cap	Link	Discharge
(Outflow)	Node		Noc	le (l/s)	(m/s)	_	Vol (m³)	Vol (m³)
(Outflow) 30 minute winter	Node 21	5.000	Noc 5.000:	le (I/s) 22.5	(m/s) 1.335	0.043	Vol (m³) 0.0960	Vol (m³)
(Outflow) 30 minute winter 30 minute winter	Node 21 21	5.000 5.000	Noc 5.000: 22	le (50%	l/s) 22.5 35.5	(m/s) 1.335 1.549	0.043 0.067	Vol (m³) 0.0960 0.1309	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22	5.000 5.000 5.001	Noc 5.000: 22 5.001:	le (50%	1/s) 22.5 35.5 42.8	(m/s) 1.335 1.549 1.413	0.043 0.067 0.104	Vol (m³) 0.0960 0.1309 0.3199	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer	Node 21 21 22 22	5.000 5.000 5.001 5.001	Noc 5.000: 22 5.001: 23	le (50%	1/s) 22.5 35.5 42.8 63.9	(m/s) 1.335 1.549 1.413 1.850	0.043 0.067 0.104 0.155	Vol (m³) 0.0960 0.1309 0.3199 0.3565	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 21 21 22 22 23	5.000 5.000 5.001 5.001 5.002	Noc 5.000: 22 5.001: 23 24	le (50%	1/s) 22.5 35.5 42.8 63.9 63.7	(m/s) 1.335 1.549 1.413 1.850 1.874	0.043 0.067 0.104 0.155 0.143	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 21 21 22 22 22 23 24	5.000 5.000 5.001 5.001 5.002 5.003	5.000: 22 5.001: 23 24 25	le (50%	22.5 35.5 42.8 63.9 63.7 63.6	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815	0.043 0.067 0.104 0.155 0.143 0.152	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 21 21 22 22 22 23 24 25	5.000 5.000 5.001 5.001 5.002 5.003 5.004	5.000: 22 5.001: 23 24 25 26	le (50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185	0.043 0.067 0.104 0.155 0.143 0.152 0.153	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005	5.000: 22 5.001: 23 24 25 26 27	le (50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006	5.000: 22 5.001: 23 24 25 26 27 28	le (50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007	5.000: 22 5.001: 23 24 25 26 27 28 29	le (50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001:	le (50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 35.7	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	le (50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 35.7 69.6	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000:	le (50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 74.5 76.6 77.7	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	le (50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 35.7 69.6	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 35.7 69.6 7.7 11.9	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48 39 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 35.7 69.6 7.7 11.9	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48 50 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 2.000 2.000 2.002 2.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51	So% 50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 74.5 11.9 0.0 69.3 38.8	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912 0.742	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068 0.4186	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 50 50 40	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 7.000 2.002 2.002 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001:	So% 50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 35.7 69.6 7.7 11.9 0.0 69.3 38.8 0.0	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912 0.742 0.000	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046 0.000 0.616 0.345 0.000	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068 0.4186 0.0241	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute winter 15 minute summer 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 40	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	So% 50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 35.7 69.6 7.7 11.9 0.0 69.3 38.8 0.0 9.8	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912 0.742 0.000 1.044	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046 0.000 0.616 0.345 0.000 0.019	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068 0.4186 0.0241 0.0610	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 45 minute summer 50 minute winter 50 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40 41	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	50% 50% 50% 50% 50%	1/s) 22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 35.7 69.6 7.7 11.9 0.0 69.3 38.8 0.0 9.8 9.8	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912 0.742 0.000 1.044 0.989	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046 0.000 0.616 0.345 0.000 0.019 0.025	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068 0.4186 0.0241 0.0610 0.1642	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 40 minute winter 50 minute winter 50 minute winter 30 minute winter	Node 21 21 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 41 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	50% 50% 50% 50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 35.7 69.6 7.7 11.9 0.0 69.3 38.8 0.0 9.8 9.8 9.7	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912 0.742 0.000 1.044 0.989 0.784	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046 0.000 0.616 0.345 0.000 0.019 0.025 0.022	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068 0.4186 0.0241 0.0610 0.1642 0.1642	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 45 minute summer 46 minute winter 50 minute winter 50 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 41 42 42 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.002 7.003 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003: 43	50% 50% 50% 50% 50%	1/s) 22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 74.5 35.7 69.6 7.7 11.9 0.0 69.3 38.8 0.0 9.8 9.7 20.2	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912 0.742 0.000 1.044 0.989 0.784 1.354	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046 0.000 0.616 0.345 0.000 0.019 0.025 0.022 0.046	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068 0.4186 0.0241 0.0610 0.1642 0.1642 0.1963	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 40 minute winter 50 minute winter 50 minute winter 30 minute winter	Node 21 21 22 23 24 25 26 27 28 49 49 48 48 48 39 50 50 40 41 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003	5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	50% 50% 50% 50% 50%	22.5 35.5 42.8 63.9 63.7 63.6 74.6 74.5 74.5 35.7 69.6 7.7 11.9 0.0 69.3 38.8 0.0 9.8 9.8 9.7	(m/s) 1.335 1.549 1.413 1.850 1.874 1.815 2.185 2.329 2.416 2.327 0.462 0.719 0.583 0.340 0.000 0.912 0.742 0.000 1.044 0.989 0.784	0.043 0.067 0.104 0.155 0.143 0.152 0.153 0.137 0.129 0.128 0.319 0.622 0.030 0.046 0.000 0.616 0.345 0.000 0.019 0.025 0.022	Vol (m³) 0.0960 0.1309 0.3199 0.3565 0.2810 0.6959 0.5473 0.4866 0.3902 0.1656 1.6488 2.0414 0.0637 0.1776 0.0001 0.6068 0.4186 0.0241 0.0610 0.1642 0.1642	Vol (m³)

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network
Jacques Calitz
24/05/2021

Page 27 Tylorstown Phase 4 Existing Tip Greenfield rate

Node Event	US Nod		Peak mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	47_OL		21	234.815			0.0000	0.0000	ОК
30 minute winter	47_00	, ,	21	254.01	0.047	23.1	0.0000	0.0000	OK
15 minute summer	1		1	304.750	0.000	0.0	0.0000	0.0000	ОК
30 minute winter	4		20	295.823			0.1820	0.0000	ОК
30 minute winter	1.003:	50%	20	294.422			0.0000	0.0000	OK
30 minute winter	5		21	293.033			0.0000	0.0000	ОК
30 minute winter	2		20	301.782			0.0694	0.0000	OK
30 minute winter	1.001:	50%	20	299.898			0.0000	0.0000	OK
30 minute winter	3		20	298.036			0.1363	0.0000	OK
30 minute winter	1.002:	50%	20	296.929	9 0.066	24.9	0.0000	0.0000	OK
30 minute winter	6		21	291.284	4 0.086	53.1	0.2253	0.0000	OK
30 minute winter	1.005:	50%	21	289.632	1 0.095	63.0	0.0210	0.0000	OK
30 minute winter	7		21	287.997	7 0.123	69.2	0.1674	0.0000	OK
30 minute winter	8		21	286.084			0.2346	0.0000	OK
30 minute winter	9		21	282.608	8 0.139	94.4	0.5139	0.0000	OK
30 minute winter	10		21	278.140			0.4073	0.0000	OK
30 minute winter	11		21	274.015			0.7778	0.0000	OK
30 minute winter	14		17	271.132			1.8028	34.8950	FLOOD
120 minute winter	1.011:	50%	94	269.184			274.2649	0.0000	PONDING
120 minute winter	15		88	267.332			0.5380	0.0000	OK
30 minute winter	20		22	264.152			0.6295	0.0000	OK
30 minute winter	36		21	262.123			0.5852	0.0000	OK
30 minute winter	1.014:	50%	21	260.675	5 0.269	353.2	0.8139	0.0000	OK
Link Event	US	Link			Outflow	Velocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link		os (Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
		Link				-	Flow/Cap		_
(Outflow)	Node				(I/s)	(m/s)	·	Vol (m³)	_
	Node 1	1.000	N c		(I/s) 0.0	(m/s)	0.000	Vol (m³) 0.0897	_
(Outflow) 15 minute summer 30 minute winter	Node 1 4	1.000 1.003	2 1.003	ode	0.0 36.0	0.000 1.252	0.000 0.108	Vol (m³)	_
(Outflow) 15 minute summer	Node 1	1.000	N c	ode	(I/s) 0.0	(m/s)	0.000	0.0897 0.3018	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter	1 4 4 5	1.000 1.003 1.003 1.004	2 1.003 5 6	ode 3:50%	0.0 36.0 41.2 41.3	0.000 1.252 1.189 1.137	0.000 0.108 0.123 0.174	0.0897 0.3018 0.3657 0.9341	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter	1 4 4 5	1.000 1.003 1.003 1.004	2 1.003 5 6	ode	0.0 36.0 41.2 41.3	0.000 1.252 1.189 1.137	0.000 0.108 0.123 0.174	0.0897 0.3018 0.3657 0.9341 0.1322	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6 1.001 3	3:50% 1:50%	0.0 36.0 41.2 41.3 9.8 11.3	0.000 1.252 1.189 1.137 0.872 0.680	0.000 0.108 0.123 0.174 0.027 0.031	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003 5 6 1.003 3 1.002	ode 3:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5	0.000 1.252 1.189 1.137 0.872 0.680 0.941	0.000 0.108 0.123 0.174 0.027 0.031 0.077	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6 1.001 3	3:50% 1:50%	0.0 36.0 41.2 41.3 9.8 11.3	0.000 1.252 1.189 1.137 0.872 0.680	0.000 0.108 0.123 0.174 0.027 0.031	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003 5 6 1.003 3 1.002	3:50% 1:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5	0.000 1.252 1.189 1.137 0.872 0.680 0.941	0.000 0.108 0.123 0.174 0.027 0.031 0.077	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003 5 6 1.003 3 1.002	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 3 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003 5 6 1.003 3 1.002 4	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005	1.003 5 6 1.003 4 1.003 7	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 63.1	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006	1.003 1.003 4 1.003 7	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 63.1 69.3	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007	1.003 5 6 1.003 4 1.003 7 8 9 10	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 63.1 69.3 77.8	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334 1.382	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265 0.265	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127 1.8922	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008	1.003 5 6 1.003 4 1.005 7 8 9	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 69.3 77.8 94.2	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334 1.382 1.516	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265 0.265 0.332	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127 1.8922 2.8630	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 6 7 8 9 10	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 63.1 69.3 77.8 94.2 106.5	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334 1.382 1.516 1.322	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265 0.265 0.332 0.350	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127 1.8922 2.8630 3.0454	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9 10 11	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 63.1 69.3 77.8 94.2 106.5 207.1	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334 1.382 1.516 1.322 1.758	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265 0.265 0.332 0.350 0.648	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127 1.8922 2.8630 3.0454 2.8258	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.003 5 6 1.003 1.003 4 1.005 7 8 9 10 11 14 1.011 15 20	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 69.3 77.8 94.2 106.5 207.1 245.5 115.5 128.9	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334 1.382 1.516 1.322 1.758 2.584 1.622 1.620	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265 0.265 0.332 0.350 0.648 0.869 0.409 0.415	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127 1.8922 2.8630 3.0454 2.8258 1.9522 1.3773 2.3112	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15 20	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011 1.012 1.013	1.003 5 6 1.003 1.002 4 1.003 7 8 9 10 11 14 1.011 15 20 36	3:50% 1:50% 2:50% 1:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 63.1 69.3 77.8 94.2 106.5 207.1 245.5 115.5 128.9 175.5	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334 1.382 1.516 1.322 1.758 2.584 1.622 1.620 1.690	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265 0.332 0.350 0.648 0.869 0.409 0.415 0.685	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127 1.8922 2.8630 3.0454 2.8258 1.9522 1.3773	_
15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 400 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.003 5 6 1.003 1.002 4 1.003 7 8 9 10 11 14 1.011 15 20 36	3:50% 1:50% 2:50%	0.0 36.0 41.2 41.3 9.8 11.3 21.5 24.8 53.1 69.3 77.8 94.2 106.5 207.1 245.5 115.5 128.9	0.000 1.252 1.189 1.137 0.872 0.680 0.941 0.967 1.511 1.418 1.334 1.382 1.516 1.322 1.758 2.584 1.622 1.620	0.000 0.108 0.123 0.174 0.027 0.031 0.077 0.089 0.142 0.168 0.265 0.265 0.332 0.350 0.648 0.869 0.409 0.415	0.0897 0.3018 0.3657 0.9341 0.1322 0.1971 0.2695 0.3031 0.3447 0.4376 1.2127 1.8922 2.8630 3.0454 2.8258 1.9522 1.3773 2.3112	_

Jacques Calitz 24/05/2021 Page 28 Tylorstown Phase 4 Existing Tip Greenfield rate

Node Even	t	US	Peak	Level	Depth	Inflow	Node	Flood	Status
20		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	01/
30 minute wir			21	259.224	0.282	382.8	0.9289	0.0000	OK
30 minute wir		.015:50%	21	258.030	0.320	491.8	2.5205	0.0000	OK
30 minute wir			21	256.802	0.323	523.0	1.1204	0.0000	OK
30 minute wir		.016:50%	21	254.916	0.344	593.8	9.0765	0.0000	OK
30 minute wir		8_OUT	21	253.007	0.343	593.3	0.0000	0.0000	OK
30 minute wir			20	285.903	0.038	21.4	0.1544	0.0000	OK
30 minute wir		.000:50%	21	281.170	0.050	32.4	0.0000	0.0000	OK
30 minute wir 30 minute wir			21	276.428	0.053	32.4		0.0000	OK
			21 20	273.182 271.390	0.048 0.117	32.4 113.4	0.0000 0.1714	0.0000	OK OK
30 minute wir	itei 5	0	20	271.390	0.117	115.4	0.1714	0.0000	UK
30 minute wir			20	275.341	0.087	74.5	0.0000	0.0000	OK
30 minute wir			20	284.344	0.047	23.6	0.0984	0.0000	OK
30 minute wir	nter 1	8	20	281.352	0.059	44.4	0.2704	0.0000	OK
30 minute wir	nter 10	5	20	286.305	0.039	14.1	0.1204	0.0000	ОК
30 minute wir	nter 19	9	20	274.672	0.062	53.9	0.1303	0.0000	OK
30 minute wir	nter 34	4	20	268.656	0.129	113.4	0.0000	0.0000	OK
30 minute wir		5	20	266.332	0.093	113.4	0.0000	0.0000	ОК
30 minute wir	nter 5:	1	วว	287.086	0.106	55.5	0.4112	0.0000	ОК
30 minute wir		.003:50%	22 22	286.293	0.100	65.3	0.4112	0.0000	OK
30 minute wir		1_OUT	21	285.467	0.119	77.5	0.2071	0.0000	OK
30 minute wir		.004:50%	21	279.695	0.104	83.6	0.0000	0.0000	OK
30 minute wii	itei 2.	.004.3070	21	273.033	0.104	83.0	0.0000	0.0000	OK
Link Event	US	Link	DS			-	Flow/Cap	Link	Discharge
(Outflow)	Node	•	Nod	le (I,	/s)	(m/s)	-	Vol (m³)	Discharge Vol (m³)
(Outflow) 30 minute winter	Node 37	1.015	Nod 1.015:	le (I, 50% 3	/s) 82.7	(m/s) 2.117	0.306	Vol (m³) 2.0490	_
(Outflow) 30 minute winter 30 minute winter	Node 37 37	1.015 1.015	Nod 1.015: 38	le (I, 50% 3 4	/s) 82.7 91.8	(m/s) 2.117 2.465	0.306 0.393	Vol (m³) 2.0490 2.2568	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38	1.015 1.015 1.016	Nod 1.015:5 38 1.016:5	le (1,50% 3 450% 5	/s) 82.7 91.8 23.0	(m/s) 2.117 2.465 2.478	0.306 0.393 0.401	Vol (m³) 2.0490 2.2568 3.4057	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter	Node 37 37	1.015 1.015	Nod 1.015: 38	le (1,50% 3 450% 5	/s) 82.7 91.8	(m/s) 2.117 2.465	0.306 0.393	Vol (m³) 2.0490 2.2568	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 38	1.015 1.015 1.016 1.016 6.000	Nod 1.015:! 38 1.016:! 38_OU	le (I, 50% 3 4 50% 5 50%	/s) 82.7 91.8 23.0 93.3	(m/s) 2.117 2.465 2.478 2.683	0.306 0.393 0.401 0.455	Vol (m³) 2.0490 2.2568 3.4057 3.5657	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 38	1.015 1.015 1.016 1.016	Nod 1.015:: 38 1.016:: 38_OU	le (I, 50% 3 4 50% 5 50%	/s) 82.7 91.8 23.0 93.3	(m/s) 2.117 2.465 2.478 2.683	0.306 0.393 0.401 0.455	Vol (m³) 2.0490 2.2568 3.4057 3.5657	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31	1.015 1.015 1.016 1.016 6.000 6.000 6.001	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32	le (I, 50% 3 4 50% 5 5 50%	/s) 82.7 91.8 23.0 93.3 21.4 32.4	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842	0.306 0.393 0.401 0.455	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002	Nod 1.015:5 38 1.016:5 38_OU 6.000:5 31 32 33	le (I, 50% 3 4 50% 5 50% 5 50%	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31	1.015 1.015 1.016 1.016 6.000 6.000 6.001	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32	le (I, 50% 3 4 50% 5 50% 5 50%	/s) 82.7 91.8 23.0 93.3 21.4 32.4	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842	0.306 0.393 0.401 0.455 0.037 0.056 0.060	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002	Nod 1.015:5 38 1.016:5 38_OU 6.000:5 31 32 33	le (I, 50% 3 4 50% 5 50% 5 50%	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34	le (I, 50% 3 4 50% 5 50% 5 50%	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34	le (I, 50% 3 4 50% 5 50% 5 1	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002	Nod 1.015:5 38 1.016:5 38_OU 6.000:5 31 32 33 34 33 18	le (I, 50% 3 4 50% 5 50% 5 1 1 1	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5 44.4	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259 2.032	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051 0.075	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34	le (I, 50% 3 4 50% 5 50% 5 1 5 1	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197 0.3461	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19	le (I, 50% 3 4 50% 5 50% 5 1	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5 44.4 14.1 53.8	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259 2.032 0.956 0.933	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051 0.075 0.037 0.086	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197 0.3461 0.1654 1.4303	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19 17 20	le (I, 50% 3 4 50% 5 50% 5 1 1	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5 44.4 14.1 53.8	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259 2.032 0.956 0.933 2.483	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051 0.075 0.037 0.086	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197 0.3461 0.1654 1.4303 0.4783	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19	le (I, 50% 3 4 50% 5 50% 5 1 1	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5 44.4 14.1 53.8	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259 2.032 0.956 0.933	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051 0.075 0.037 0.086	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197 0.3461 0.1654 1.4303	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19 17 20 35 36	le (I, 50% 3 4 50% 5 50% 1 1 1 1 1 50%	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5 44.4 14.1 53.8 13.4 13.3	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259 2.032 0.956 0.933 2.483	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051 0.075 0.037 0.086	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197 0.3461 0.1654 1.4303 0.4783 0.2316 0.4241	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19 17 20 35 36	le (I, 50% 3 4 50% 5 50% 1 1 1 1 1 50% 1 1	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5 44.4 14.1 53.8 13.4 13.3	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259 2.032 0.956 0.933 2.483 3.260	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051 0.075 0.037 0.086 0.265 0.158 0.205 0.241	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197 0.3461 0.1654 1.4303 0.4783 0.2316 0.4241 0.4085	Vol (m ³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003 2.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19 17 20 35 36	le (I, 50% 3 4 50% 5 50% 5 1 1 1 1 1 50% 1 1 1 50%	/s) 82.7 91.8 23.0 93.3 21.4 32.4 32.4 32.4 13.4 74.6 23.5 44.4 14.1 53.8 13.4 13.3	(m/s) 2.117 2.465 2.478 2.683 1.414 1.798 1.842 1.055 2.176 1.822 1.259 2.032 0.956 0.933 2.483 3.260 1.197	0.306 0.393 0.401 0.455 0.037 0.056 0.060 0.054 0.248 0.148 0.051 0.075 0.037 0.086 0.265 0.158	Vol (m³) 2.0490 2.2568 3.4057 3.5657 0.1803 0.2148 0.1604 0.1411 0.5670 0.5375 0.2197 0.3461 0.1654 1.4303 0.4783 0.2316 0.4241	Vol (m ³)

Jacques Calitz 24/05/2021 Page 29 Tylorstown Phase 4 Existing Tip Greenfield rate

Node Event	١	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	12		21	285.563	0.081	70.5	0.1173	0.0000	ОК
30 minute winter	3.0	04:50%	21	282.010	0.098	90.5	0.1504	0.0000	OK
30 minute winter	13		21	278.424	0.082	90.5	0.0000	0.0000	OK
30 minute winter	52		20	304.911	0.032	15.5	0.1100	0.0000	OK
30 minute winter	3.0	000:50%	20	301.547	0.051	32.2	0.2419	0.0000	OK
30 minute winter	53		20	298.167	0.053	32.0	0.0000	0.0000	OK
30 minute winter	54		20	291.351	0.057	36.6	0.0571	0.0000	OK
30 minute winter	55		21	287.654	0.126	64.3	0.7669	0.0000	OK
15 minute summ			1	261.894	0.000	0.0	0.0000	0.0000	OK
30 minute winter		000:50%	20	257.797	0.011	2.9	0.0024	0.0000	OK
30 minute winter	_		20	253.690	0.011	2.9	0.0000	0.0000	OK
30 minute winter	46		20	245.426	0.011	2.9	0.0000	0.0000	OK
Link Event	US	Link	DS	Outfle	ow Vel	ocitv Fl	ow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	DS Node	Outfl (I/s		•	ow/Cap	Link Vol (m³)	Discharge Vol (m³)
Link Event (Outflow)	US Node	Link	DS Node			ocity Fl n/s)	•	Link Vol (m³)	Discharge Vol (m³)
		Link 3.004		(I/s) (n	-	•		_
(Outflow)	Node		Node	(I/s 0% 7) (n 0.6 2	n/s)	•	Vol (m³)	_
(Outflow) 30 minute winter	Node 12	3.004	Node 3.004:50	(I/s 0% 79	0.6 2 0.5 2	n/s) 2.021	0.132	Vol (m³) 0.3655	_
(Outflow) 30 minute winter 30 minute winter	Node 12 12	3.004 3.004	Node 3.004:50 13	(I/s 0% 79 90	0.6 2 0.5 2 0.5 3	n/s) 2.021 2.571	0.132 0.170	0.3655 0.3674	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13	3.004 3.004 3.005	Node 3.004:50 13 14	(I/s 0% 7/ 9/ 9/ 0% 1.	0.6 2 0.5 2 0.5 3 5.5 3	n/s) 2.021 2.571 1.169	0.132 0.170 0.140	0.3655 0.3674 1.2565	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52	3.004 3.004 3.005 3.000	3.004:50 13 14 3.000:50	(I/s 0% 7 9 9 90% 1.) (n 0.6 2 0.5 2 0.5 5 5.5 2	2.021 2.571 1.169 1.091	0.132 0.170 0.140 0.028	0.3655 0.3674 1.2565 0.1307	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52	3.004 3.004 3.005 3.000 3.000	3.004:50 13 14 3.000:50 53	(I/s 0% 7/ 9/ 90% 1. 33	0.6 2.0 (n	2.021 2.571 1.169 1.091	0.132 0.170 0.140 0.028 0.058	0.3655 0.3674 1.2565 0.1307 0.1675	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53	3.004 3.004 3.005 3.000 3.000 3.001	3.004:50 13 14 3.000:50 53 54	(I/s 0% 76 99 0% 1 33 33	0.6 2.0 2.0 6.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.021 2.571 1.169 1.091 1.753 1.638	0.132 0.170 0.140 0.028 0.058 0.063	0.3655 0.3674 1.2565 0.1307 0.1675 0.4328	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12	(I/s 0% 7 9 9 0% 1. 3 3 3	0.6 2 0.5 2 0.5 5 5.5 2 2.0 2 6.5 4	2.021 2.571 1.169 1.091 1.753 1.638 1.024	0.132 0.170 0.140 0.028 0.058 0.063 0.071 0.246	0.3655 0.3674 1.2565 0.1307 0.1675 0.4328 0.4365 1.0602	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50	(I/s 0% 7(90 0% 1. 3. 3. 3. 6.	0.6 2.0 5.5 2.0 2.0 6.5 4.0 0.0 0.0	2.021 2.571 1.169 1.091 1.753 1.638 1.024 1.535	0.132 0.170 0.140 0.028 0.058 0.063 0.071 0.246	0.3655 0.3674 1.2565 0.1307 0.1675 0.4328 0.4365 1.0602	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54 55 44 44 44	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003 8.000	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50 45	(I/s 0% 76 99 0% 1. 3. 3. 3. 6.	0.6 2.0 2.0 6.5 4.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.021 2.571 1.169 1.091 1.753 1.638 1.024 1.535	0.132 0.170 0.140 0.028 0.058 0.063 0.071 0.246 0.000 0.004	0.3655 0.3674 1.2565 0.1307 0.1675 0.4328 0.4365 1.0602 0.0117 0.0258	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50	(I/s 0% 7(9) 90% 1. 3. 3. 3. 6.	0.6 2.9 (n	2.021 2.571 1.169 1.091 1.753 1.638 1.024 1.535	0.132 0.170 0.140 0.028 0.058 0.063 0.071 0.246	0.3655 0.3674 1.2565 0.1307 0.1675 0.4328 0.4365 1.0602	_

File: GC3613-RED-05-RSC-CM-(Network: Storm Network Jacques Calitz Page 30 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 200 year Critical Storm Duration. Lowest mass balance: 99.98%

24/05/2021

Node Event		JS ode	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	21	Jue	20	306.735	0.038	19.2	0.1627	0.0000	ОК
30 minute winter		0:50%	20	304.837	0.050	30.1	0.0000	0.0000	PONDING
30 minute winter	22	J.JU/0	20	304.837	0.065	36.2	0.1042	0.0000	OK
30 minute summer		1:50%	18	300.849	0.083	53.9	0.0000	0.0000	OK
30 minute summer	23	1.50%	18	298.733	0.033	53.7	0.0000	0.0000	OK
30 minute summer	24		19	296.759	0.075	53.6	0.0000	0.0000	OK
30 minute winter	25		19	292.568	0.081	62.6	0.2032	0.0000	OK
30 minute summer			19	287.964	0.032	62.4	0.0000	0.0000	OK
30 minute summer			19	282.536	0.077	62.4	0.0000	0.0000	OK
30 minute winter	28		20	277.448	0.074	62.5	0.0000	0.0000	OK
30 minute winter	49		21	287.979	0.125	30.7	0.4965	0.0000	OK
30 minute winter		1:50%	21	287.715	0.123	59.0	0.4903	0.0000	OK
30 minute winter	48	1.50%	20	288.646	0.179	6.4	0.0521	0.0000	OK
30 minute winter		0:50%	22	288.275	0.031	10.0	0.0321	0.0000	OK
30 miliate winter	2.000	J.3U/0	22	200.273	0.040	10.0	0.3907	0.0000	OK
15 minute summer 30 minute winter	39 50		1 21	262.457 287.399	0.000 0.181	0.0 58.8	0.0000	0.0000	OK OK
		0.500/							
60 minute winter		2:50%	48 1	287.241	0.142 0.000	59.2	26.4437 0.0000	0.0000	PONDING
15 minute summer	_	1.500/		259.256		0.0		0.0000	OK
30 minute winter 30 minute winter		1:50%	20	257.188	0.023	8.1	0.0060	0.0000	OK
	41		20	255.101	0.028	8.1	0.0000	0.0000	OK
30 minute winter	42	D.F.O0/	20	251.977	0.026	8.1	0.0000	0.0000	OK
30 minute winter		3:50%	20	248.922	0.040	16.9	0.1396	0.0000	OK
30 minute winter	43		21	245.850	0.037	16.8	0.0000	0.0000	OK
30 minute winter	47		21	240.281	0.042	19.2	0.0000	0.0000	OK
Link Event	US	Link	DS	. Ou	tflow \	/elocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	DS Noc		tflow \ l/s)	/elocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
		Link 5.000		le (-	Flow/Cap 0.036		_
(Outflow)	Node		Noc	le (l/s)	(m/s)		Vol (m³)	_
(Outflow) 30 minute winter	Node 21	5.000	Noc 5.000:	le (50%	l /s) 19.2	(m/s) 1.271	0.036	Vol (m³) 0.0860	_
(Outflow) 30 minute winter 30 minute winter	Node 21 21	5.000 5.000	Noc 5.000: 22	le (50%	1/s) 19.2 30.1	(m/s) 1.271 1.470	0.036 0.057	Vol (m³) 0.0860 0.1166	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22	5.000 5.000 5.001	Noc 5.000: 22 5.001:	le (50%	1 /s) 19.2 30.1 36.1	(m/s) 1.271 1.470 1.343	0.036 0.057 0.088	Vol (m³) 0.0860 0.1166 0.2835	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 21 21 22 22 23 24	5.000 5.000 5.001 5.001 5.002 5.003	Noc 5.000: 22 5.001: 23 24 25	le (50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724	0.036 0.057 0.088 0.130 0.120 0.128	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 21 21 22 22 23	5.000 5.000 5.001 5.001 5.002	Noc 5.000: 22 5.001: 23 24	le (50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073	0.036 0.057 0.088 0.130 0.120 0.128 0.128	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 21 21 22 22 23 24	5.000 5.000 5.001 5.001 5.002 5.003	Noc 5.000: 22 5.001: 23 24 25	le (50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724	0.036 0.057 0.088 0.130 0.120 0.128	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 21 21 22 22 23 24 25 26 27	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006	Noc 5.000: 22 5.001: 23 24 25 26 27 28	le (50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007	Noc 5.000: 22 5.001: 23 24 25 26 27	le (50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.5 62.5	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108 0.107	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001:	le (50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108 0.107	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	le (50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.5 62.5	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108 0.107 0.274 0.525	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000:	le (50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50	le (50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108 0.107 0.274 0.525	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000:	le (50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 49 48 48 39	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49	le (50% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 49 48 48 39 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.000	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002:	So% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9 0.0 58.6	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315 0.000 0.832	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588 0.0001 0.5600	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.000 2.002 2.002	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51	So% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9 0.0 58.6 35.3	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315 0.000 0.832 0.717	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588 0.0001 0.5600 0.3939	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 50 minute summer 50 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 50 50 40	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 7.000 2.002 2.002 7.001	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001:	So% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9 0.0 58.6 35.3 0.0	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315 0.000 0.832 0.717 0.000	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588 0.0001 0.5600 0.3939 0.0213	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute winter 50 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 40	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41	So% 50% 50% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9 0.0 58.6 35.3 0.0 8.1	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315 0.000 0.832 0.717 0.000 0.976	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038 0.000 0.521 0.314 0.000 0.016	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588 0.0001 0.5600 0.3939 0.0213 0.0540	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 45 minute summer 50 minute winter 50 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 49 50 50 40 40 41	5.000 5.000 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42	So% 50% 50% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9 0.0 58.6 35.3 0.0 8.1 8.1	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315 0.000 0.832 0.717 0.000 0.976 0.926	0.036 0.057 0.088 0.130 0.120 0.128 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038 0.000 0.521 0.314 0.000 0.016 0.020	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588 0.0001 0.5600 0.3939 0.0213 0.0540 0.1453	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 45 minute summer 50 minute winter 60 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 49 48 48 48 39 50 50 40 41 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003:	So% 50% 50% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9 0.0 58.6 35.3 0.0 8.1 8.1 8.1	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315 0.000 0.832 0.717 0.000 0.976 0.926 0.735	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038 0.000 0.521 0.314 0.000 0.016 0.020 0.018	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588 0.0001 0.5600 0.3939 0.0213 0.0540 0.1453 0.1453	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter 30 minute winter	Node 21 21 22 22 23 24 25 26 27 28 49 49 48 48 39 50 50 40 41 42 42 42	5.000 5.000 5.001 5.001 5.002 5.003 5.004 5.005 5.006 5.007 2.001 2.000 2.000 7.000 2.002 2.002 7.001 7.001 7.001 7.002 7.003 7.003	Noc 5.000: 22 5.001: 23 24 25 26 27 28 29 2.001: 50 2.000: 49 40 2.002: 51 7.001: 41 42 7.003: 43	Sow (50%) 50% 50% 50% 50%	1/s) 19.2 30.1 36.1 53.7 53.6 53.5 62.5 62.4 62.5 62.4 62.5 62.5 30.7 58.8 6.4 9.9 0.0 58.6 35.3 0.0 8.1 8.1 16.8	(m/s) 1.271 1.470 1.343 1.757 1.779 1.724 2.073 2.207 2.290 2.207 0.447 0.680 0.547 0.315 0.000 0.832 0.717 0.000 0.976 0.926 0.735 1.274	0.036 0.057 0.088 0.130 0.120 0.128 0.115 0.108 0.107 0.274 0.525 0.025 0.038 0.000 0.521 0.314 0.000 0.016 0.020 0.018 0.038	Vol (m³) 0.0860 0.1166 0.2835 0.3155 0.2488 0.6158 0.4833 0.4302 0.3452 0.1465 1.4640 1.8241 0.0563 0.1588 0.0001 0.5600 0.3939 0.0213 0.0540 0.1453 0.1453 0.1453 0.1734	Vol (m³)

Capita

File: GC3613-RED-05-RSC-CM-(

Network: Storm Network Jacques Calitz

24/05/2021

Page 31 Tylorstown Phase 4 Existing Tip Greenfield rate

Results for 200 year Critical Storm Duration. Lowest mass balance: 99.98%

Node Event	US Nod		Peak mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	47_OL	-	21	234.810			0.0000	0.0000	ОК
15 minute summer	1		1	304.750	0.000	0.0	0.0000	0.0000	ОК
30 minute winter	4		21	295.816	0.066	30.1	0.1638	0.0000	OK
30 minute winter	1.003:	50%	21	294.414	1 0.072	34.4	0.0000	0.0000	OK
30 minute winter	5		21	293.024	1 0.090	34.5	0.0000	0.0000	OK
30 minute winter	2		20	301.779			0.0624	0.0000	ОК
30 minute winter	1.001:	50%	20	299.89			0.0000	0.0000	OK
30 minute winter	3		20	298.030			0.1226	0.0000	OK
30 minute winter	1.002:	50%	21	296.922	0.059	20.7	0.0000	0.0000	OK
30 minute winter	6		21	291.27	0.077	44.3	0.2029	0.0000	OK
30 minute winter	1.005:	50%	21	289.622			0.0170	0.0000	OK
30 minute winter	7		21	287.985			0.1513	0.0000	OK
30 minute winter	8		21	286.072			0.2117	0.0000	OK
30 minute winter	9		21	282.595			0.4643	0.0000	OK
30 minute winter	10		21	278.126			0.3679	0.0000	OK
30 minute winter	11		21	273.999			0.7156	0.0000	OK
30 minute winter	14		18	271.132			1.8028	11.1019	FLOOD
120 minute winter	1.011:	50%	92	269.177			208.6641	0.0000	PONDING
120 minute winter	15		88	267.324			0.5152	0.0000	OK
30 minute winter	20		22	264.142			0.5988	0.0000	OK
30 minute winter	36		21	262.104			0.5473	0.0000	OK
30 minute winter	1.014:	50%	21	260.657	7 0.251	308.0	0.7078	0.0000	OK
Link Event (Outflow)	US Node	Link		os (Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
		Link				-	Flow/Cap		_
(Outflow)	Node		No		(I/s)	(m/s)		Vol (m³)	_
(Outflow) 15 minute summer	Node 1	1.000	N c	ode	(I/s) 0.0	(m/s)	0.000	Vol (m³)	_
(Outflow) 15 minute summer 30 minute winter	Node 1 4	1.000 1.003	N c		0.0 30.0	0.000 1.184	0.000 0.090	0.0792 0.2664	_
(Outflow) 15 minute summer	Node 1	1.000	2 1.003	ode	(I/s) 0.0	(m/s)	0.000	Vol (m³)	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter	1 4 4	1.000 1.003 1.003	2 1.003 5 6	ode	0.0 30.0 34.5	0.000 1.184 1.125	0.000 0.090 0.103	0.0792 0.2664 0.3227	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter	1 4 4 5	1.000 1.003 1.003 1.004	2 1.003 5 6	ode 3:50%	0.0 30.0 34.5 34.5	0.000 1.184 1.125 1.079	0.000 0.090 0.103 0.146	0.0792 0.2664 0.3227 0.8229	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter	1 4 4 5	1.000 1.003 1.003 1.004	2 1.003 5 6 1.003	ode 3:50%	0.0 30.0 34.5 34.5	0.000 1.184 1.125 1.079	0.000 0.090 0.103 0.146	0.0792 0.2664 0.3227 0.8229	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2	1.000 1.003 1.003 1.004 1.001	2 1.003 5 6 1.003	3:50% 1:50%	0.0 30.0 34.5 34.5 8.2 9.4	0.000 1.184 1.125 1.079 0.819 0.642	0.000 0.090 0.103 0.146 0.022 0.026	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002	2 1.003 5 6 1.003 4	3:50% 1:50%	0.0 30.0 34.5 34.5 34.5 8.2 9.4 17.9	0.000 1.184 1.125 1.079 0.819 0.642 0.890	0.000 0.090 0.103 0.146 0.022 0.026 0.064	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 3	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003 5 6 1.003 4	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2 3 3 3 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002	2 1.003 5 6 1.003 1.002 4	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005	2 1.003 5 6 1.003 3 1.003 4	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 5 2 2 3 3 3 6 6 7 7	1.000 1.003 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.005 1.006	2 1.003 5 6 1.003 3 1.003 4 1.003 7	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 6 7 8 9 10	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009	1.003 5 6 1.003 4 1.003 7 8 9 10 11	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7 64.8 78.4 88.6	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267 1.313 1.441 1.244	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221 0.220 0.276 0.291	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641 1.6584 2.5066 2.6940	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9 10 11	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7 64.8 78.4 88.6 176.9	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267 1.313 1.441 1.244	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221 0.220 0.276 0.291 0.553	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641 1.6584 2.5066 2.6940 2.6962	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14 1.013	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7 64.8 78.4 88.6 176.9 242.4	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267 1.313 1.441 1.244 1.581 2.564	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221 0.220 0.276 0.291 0.553 0.858	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641 1.6584 2.5066 2.6940 2.6962 1.9061	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14	1.000 1.003 1.004 1.001 1.001 1.002 1.002 1.005 1.006 1.007 1.008 1.009 1.010 1.011	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14 1.013	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7 64.8 78.4 88.6 176.9 242.4 106.1	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267 1.313 1.441 1.581 2.564 1.582	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221 0.220 0.276 0.291 0.553 0.858 0.376	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641 1.6584 2.5066 2.6940 2.6962 1.9061 1.2972	_
15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 400 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14 1.013 15 20	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7 64.8 78.4 88.6 176.9 242.4 106.1 119.0	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267 1.313 1.441 1.244 1.581 2.564 1.582 1.588	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221 0.220 0.276 0.291 0.553 0.858 0.376 0.383	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641 1.6584 2.5066 2.6940 2.6962 1.9061 1.2972 2.1668	_
(Outflow) 15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 40 minute winter 120 minute winter 120 minute winter 30 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15 20	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011 1.012	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14 1.013 15 20 36	1:50% 2:50% 1:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7 64.8 78.4 88.6 176.9 242.4 106.1 119.0 159.6	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267 1.313 1.441 1.581 2.564 1.582 1.588 1.648	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221 0.220 0.276 0.291 0.553 0.858 0.376 0.383 0.623	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641 1.6584 2.5066 2.6940 2.6962 1.9061 1.2972 2.1668 2.2397	_
15 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 400 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 1 4 4 5 2 2 3 3 6 6 7 8 9 10 11 14 14 15	1.000 1.003 1.003 1.004 1.001 1.002 1.002 1.005 1.005 1.006 1.007 1.008 1.009 1.010 1.011 1.011	1.003 5 6 1.003 4 1.003 7 8 9 10 11 14 1.013 15 20 36	3:50% 1:50% 2:50%	0.0 30.0 34.5 34.5 8.2 9.4 17.9 20.7 44.3 52.6 57.7 64.8 78.4 88.6 176.9 242.4 106.1 119.0	0.000 1.184 1.125 1.079 0.819 0.642 0.890 0.913 1.431 1.346 1.267 1.313 1.441 1.244 1.581 2.564 1.582 1.588	0.000 0.090 0.103 0.146 0.022 0.026 0.064 0.074 0.118 0.140 0.221 0.220 0.276 0.291 0.553 0.858 0.376 0.383	0.0792 0.2664 0.3227 0.8229 0.1177 0.1748 0.2380 0.2674 0.3035 0.3846 1.0641 1.6584 2.5066 2.6940 2.6962 1.9061 1.2972 2.1668	_

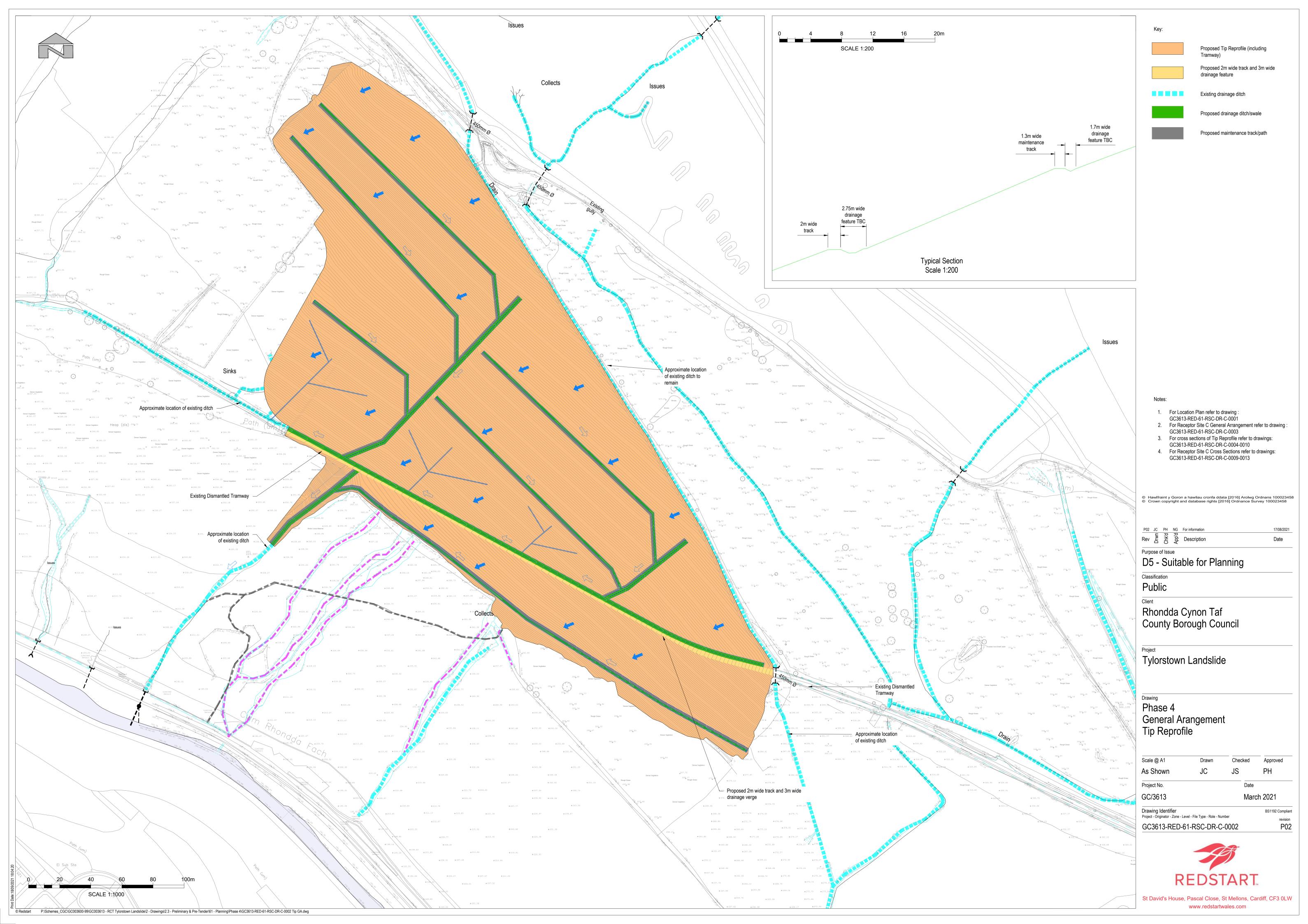
Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd

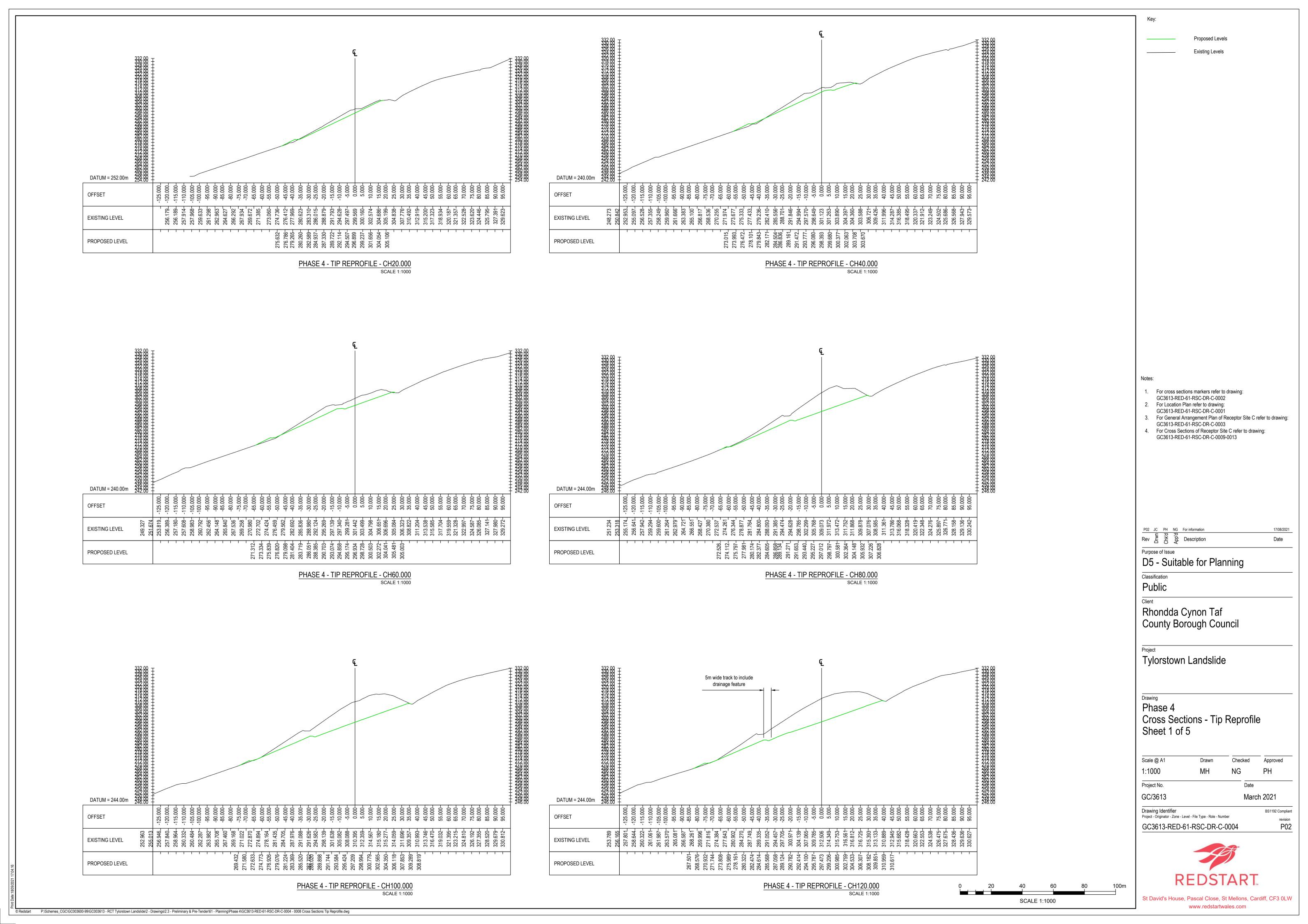
Jacques Calitz 24/05/2021 Page 32 Tylorstown Phase 4 Existing Tip Greenfield rate

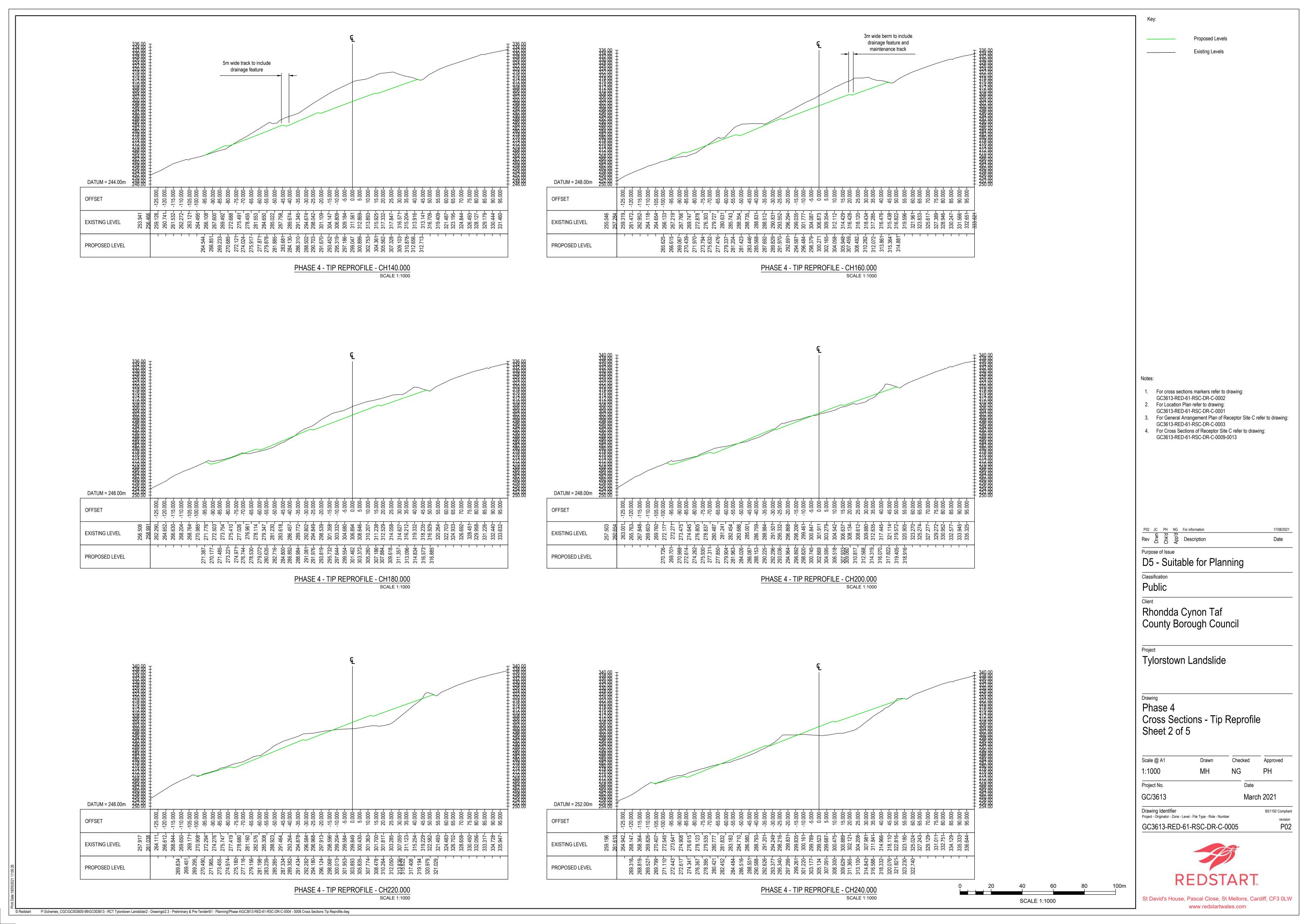
Node Even	t	US	Peak	Level	Depth	Inflow	Node	Flood	Status
20 minuto wir	.+or 2	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	OK
30 minute wir			21	259.205	0.263	332.4	0.8650	0.0000	OK
30 minute wir 30 minute wir		.015:50%	21	258.007	0.297	423.1	2.1699	0.0000	OK OK
		016,500/	21	256.778	0.299	448.9	1.0386	0.0000	OK
30 minute wir 30 minute wir		.016:50%	21 21	254.890	0.318 0.318	507.7 507.1	7.7788	0.0000	OK
30 minute wir		8_OUT .0	20	252.982	0.035	18.3	0.0000 0.1406	0.0000	OK
30 minute wir		_		285.900 281.165					OK
30 minute wir		.000:50%	21 21		0.045 0.048	27.5 27.5	0.0000	0.0000	OK
30 minute wir		2	21	276.423 273.177	0.048	27.5	0.0000	0.0000	OK
30 minute wir			20	273.177	0.043	95.3	0.0000	0.0000	OK
30 minute wii	itei 3	3	20	2/1.3/9	0.100	93.3	0.1334	0.0000	OK
30 minute wir	nter 2	9	20	275.333	0.079	62.5	0.0000	0.0000	OK
30 minute wir	nter 1	.7	20	284.339	0.042	19.6	0.0882	0.0000	OK
30 minute wir	nter 1	.8	20	281.346	0.053	37.0	0.2426	0.0000	OK
30 minute wir	nter 1	6	20	286.301	0.035	11.7	0.1078	0.0000	ОК
30 minute wir			20	274.666	0.055	44.8	0.1078	0.0000	OK
50 minute wii	itei 1	.9	20	274.000	0.056	44.0	0.1109	0.0000	UK
30 minute wir	nter 3	4	20	268.644	0.117	95.3	0.0000	0.0000	ОК
30 minute wir	nter 3	5	20	266.323	0.084	95.3	0.0000	0.0000	OK
30 minute wir	nter 5	1	22	287.081	0.101	50.5	0.3896	0.0000	ОК
30 minute wir		.003:50%	22	286.286	0.112	58.6	0.0103	0.0000	OK
30 minute wir		1_OUT	21	285.460	0.093	69.3	0.1943	0.0000	OK
30 minute wir		.004:50%	21	279.689	0.097	74.2	0.0000	0.0000	OK
30 miliate wii	itter 2			273.003	0.037	7 7.2	0.0000	0.0000	OK
Link Event	US Node	Link	DS Nod			_	Flow/Cap	Link Vol (m³)	Discharge
(Outflow)	Node	e	Nod	e (I,	/s)	(m/s) [•]	-	Vol (m³)	Discharge Vol (m³)
(Outflow) 30 minute winter	Node 37	e 1.015	Nod 1.015:	e (I, 50% 3	's) 32.3	(m/s) 2.050	0.266	Vol (m³) 1.8371	_
(Outflow) 30 minute winter 30 minute winter	Node 37 37	1.015 1.015	Nod 1.015:! 38	e (I, 50% 3 4	's) 32.3 23.0	(m/s) 2.050 2.375	0.266 0.338	Vol (m³) 1.8371 2.0148	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38	1.015 1.015 1.016	Nod 1.015:! 38 1.016:!	e (I,50% 3 450% 4	's) 32.3 23.0 48.9	(m/s) 2.050 2.375 2.388	0.266 0.338 0.344	Vol (m³) 1.8371 2.0148 3.0325	Vol (m³)
(Outflow) 30 minute winter 30 minute winter	Node 37 37	1.015 1.015	Nod 1.015:! 38	e (I,50% 3 450% 4	's) 32.3 23.0	(m/s) 2.050 2.375	0.266 0.338	Vol (m³) 1.8371 2.0148	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 38	1.015 1.015 1.016 1.016 6.000	Nod 1.015:5 38 1.016:5 38_OU	e (1,50% 3 4 50% 4 T 5	/s) 32.3 23.0 48.9 07.1	(m/s) 2.050 2.375 2.388 2.579	0.266 0.338 0.344 0.389	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38	1.015 1.015 1.016 1.016 6.000 6.000	Nod 1.015:: 38 1.016:: 38_OU	e (1,50% 3 4 50% 4 T 5	/s) 32.3 23.0 48.9 07.1	(m/s) 2.050 2.375 2.388 2.579	0.266 0.338 0.344 0.389 0.032 0.048	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 38	1.015 1.015 1.016 1.016 6.000 6.000 6.001	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32	e (I) 50% 3 4 50% 4 IT 5	/s) 32.3 23.0 48.9 07.1 18.3 27.5	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745	0.266 0.338 0.344 0.389 0.032 0.048 0.051	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 38 30	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33	e (I) 50% 3 4 50% 4 IT 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006	0.266 0.338 0.344 0.389 0.032 0.048	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31	1.015 1.015 1.016 1.016 6.000 6.000 6.001	Nod 1.015:: 38 1.016:: 38_OU 6.000:: 31 32	e (I) 50% 3 4 50% 4 IT 5	/s) 32.3 23.0 48.9 07.1 18.3 27.5	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745	0.266 0.338 0.344 0.389 0.032 0.048 0.051	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33	e (1,50% 3 4,50% 4)T 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34	e (1,650% 3 4 50% 4 50% 50%	/s) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 295.3	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009	Nod 1.015:138 1.016:138_OU 6.000:131 32 33 34	e (I) 50% 3 4 50% 4 IT 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002	Nod 1.015:138 1.016:138 38_OU 6.000:13 31 32 33 34 33 18	e (1,650% 3 4,50% 4)T 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002	Nod 1.015:138 1.016:138 38_OU 6.000:13 31 32 33 34 33 18 19	e (1,650% 3 4,50% 4)T 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19	e (I) 50% 3 4 50% 4 IT 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9 11.7 44.7	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916 0.898 0.845	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062 0.031 0.071	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462 1.3177	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19 17 20	e (I) 50% 3 4 50% 4 IT 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9 11.7 44.7	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916 0.898 0.845 2.362	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062 0.031 0.071	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462 1.3177 0.4224	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19	e (I) 50% 3 4 50% 4 IT 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9 11.7 44.7	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916 0.898 0.845	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062 0.031 0.071	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462 1.3177	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19 17 20	e (I) 50% 3 4 50% 4 IT 5	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9 11.7 44.7	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916 0.898 0.845 2.362	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062 0.031 0.071	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462 1.3177 0.4224	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19 17 20	e (I) 50% 3 4 50% 4 IT 5 50%	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9 11.7 44.7 95.3 95.2	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916 0.898 0.845 2.362 3.096	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062 0.031 0.071 0.223 0.133	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462 1.3177 0.4224 0.2049	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35	1.015 1.015 1.016 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003	Nod 1.015:! 38 1.016:! 38_OU 6.000:! 31 32 33 34 33 18 19 17 20 35 36	e (I) 50% 3 4 50% 4 IT 5 50%	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9 11.7 44.7 95.3 95.2	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916 0.898 0.845 2.362 3.096 1.171	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062 0.031 0.071 0.223 0.133 0.186	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462 1.3177 0.4224 0.2049 0.3943	Vol (m³)
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 37 37 38 38 30 30 31 32 33 29 17 18 16 19 34 35	1.015 1.015 1.016 1.016 6.000 6.000 6.001 6.002 5.009 5.008 4.001 4.002 4.000 4.003 5.010 5.011 2.003 2.003 2.003	Nod 1.015:138 1.016:138 38_OU 6.000:131 32 33 34 33 18 19 17 20 35 36 2.003:15 51_OU	6 (I) 50% 3 4 50% 4 IT 5 50%	's) 32.3 23.0 48.9 07.1 18.3 27.5 27.5 27.5 95.3 62.6 19.6 36.9 11.7 44.7 95.3 95.2 50.5 58.6	(m/s) 2.050 2.375 2.388 2.579 1.348 1.705 1.745 1.006 2.072 1.728 1.185 1.916 0.898 0.845 2.362 3.096 1.171 1.415	0.266 0.338 0.344 0.389 0.032 0.048 0.051 0.046 0.208 0.124 0.042 0.062 0.031 0.071 0.223 0.133 0.186 0.216	Vol (m³) 1.8371 2.0148 3.0325 3.1700 0.1620 0.1923 0.1436 0.1250 0.5004 0.4748 0.1939 0.3052 0.1462 1.3177 0.4224 0.2049 0.3943 0.3779	Vol (m³)

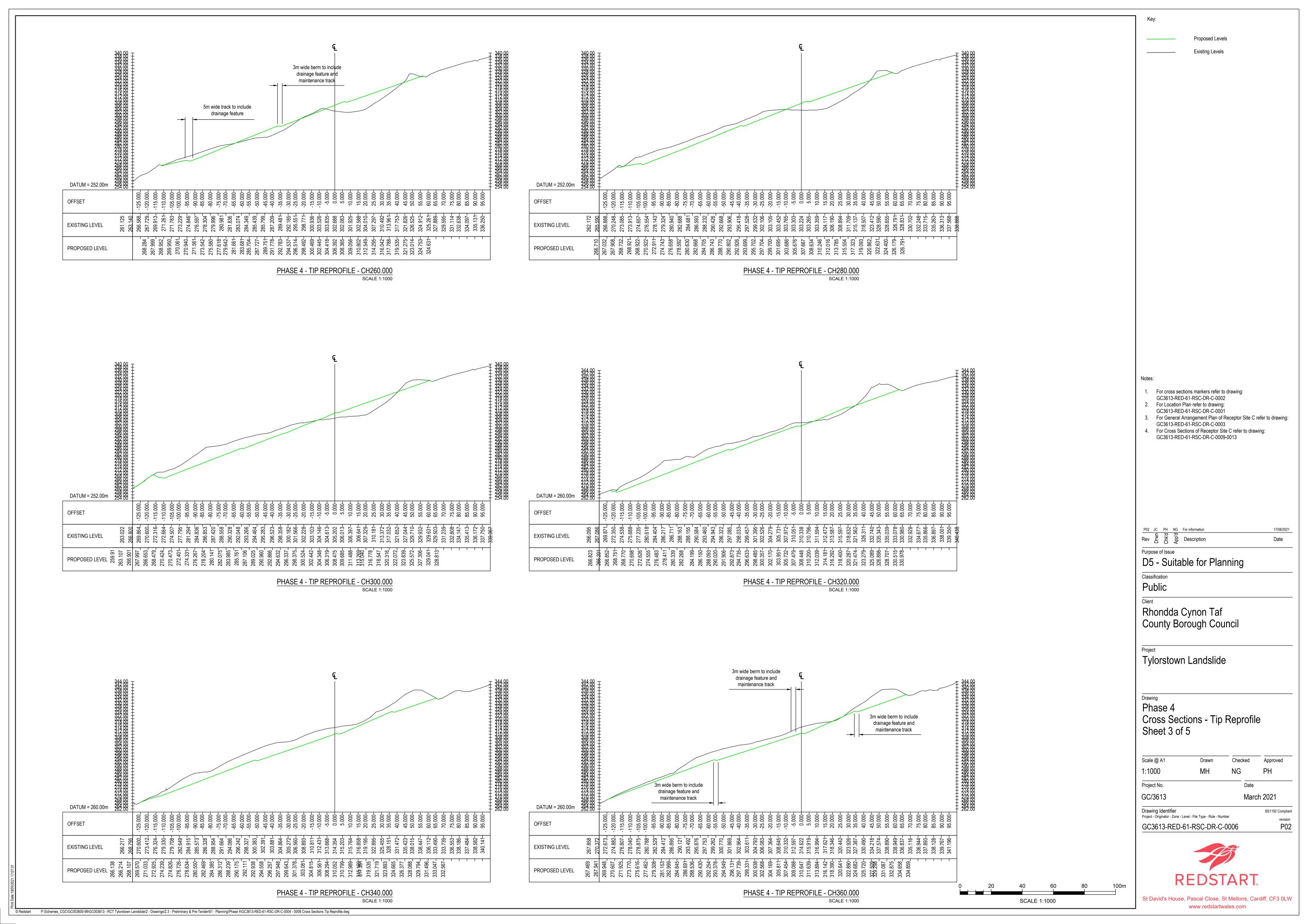
File: GC3613-RED-05-RSC-CM-(

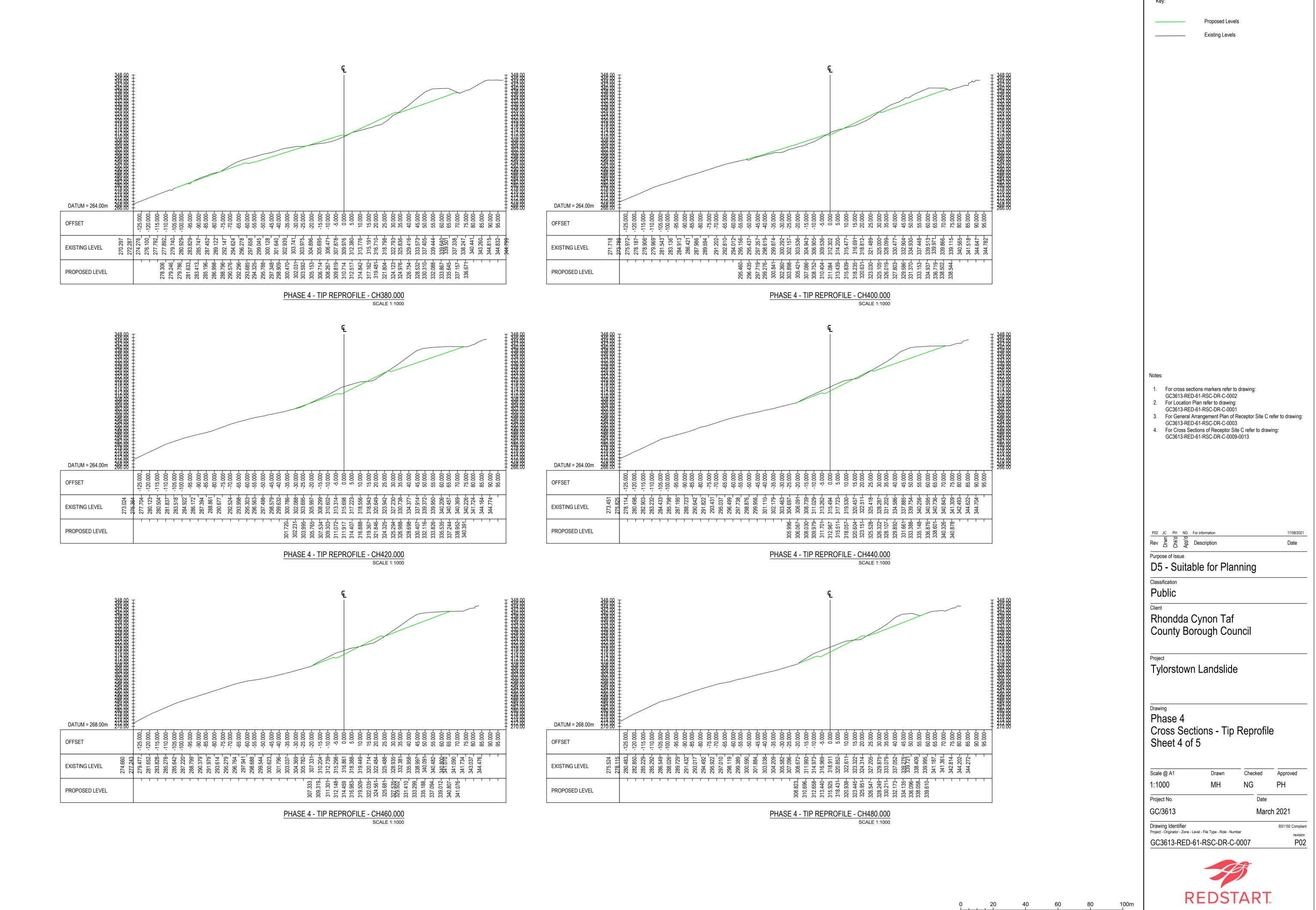
Network: Storm Network Jacques Calitz 24/05/2021 Page 33 Tylorstown Phase 4 Existing Tip Greenfield rate

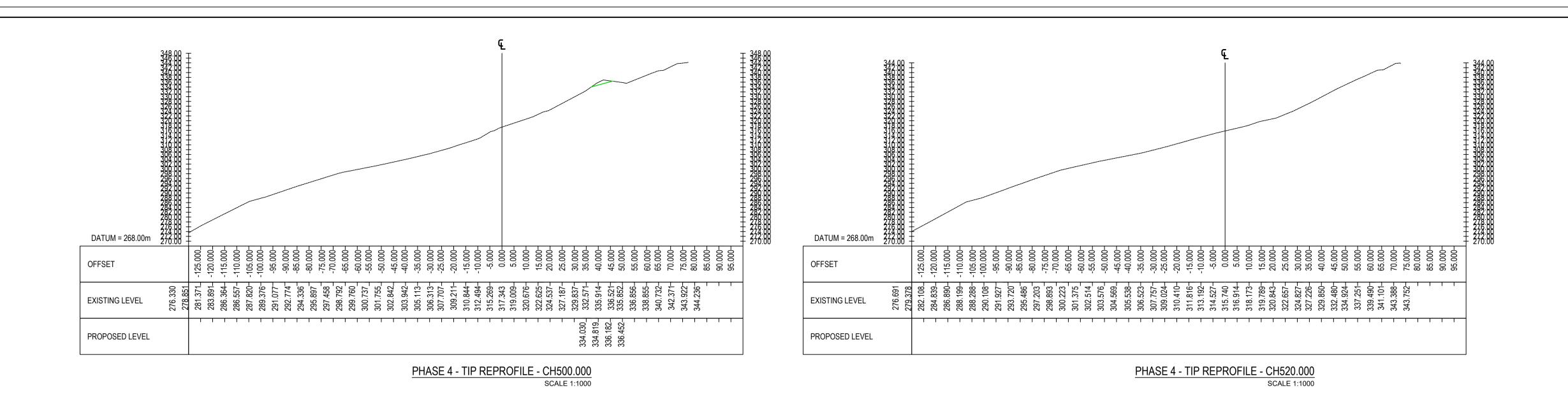

Node Event	ı	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	12		21	285.555	0.073	58.8	0.1055	0.0000	ОК
30 minute winter		04:50%	21	282.001	0.089	75.4	0.1221	0.0000	OK
30 minute winter	13		21	278.416	0.074	75.4	0.0000	0.0000	OK
30 minute winter	52		20	304.908	0.029	12.9	0.0985	0.0000	OK
30 minute winter	3.0	00:50%	20	301.542	0.045	26.8	0.1948	0.0000	OK
30 minute winter	53		20	298.162	0.048	26.7	0.0000	0.0000	OK
30 minute winter	54		21	291.345	0.051	30.4	0.0513	0.0000	OK
30 minute winter	55		21	287.641	0.113	53.6	0.6926	0.0000	OK
15 minute summ	er 44		1	261.894	0.000	0.0	0.0000	0.0000	ОК
30 minute winter	8.0	00:50%	21	257.796	0.010	2.4	0.0019	0.0000	OK
30 minute winter	45		20	253.689	0.010	2.4	0.0000	0.0000	OK
30 minute winter	46		21	245.425	0.010	2.4	0.0000	0.0000	OK
Link Event	US	Link	DS	Outfl	ow Vel	ocity Fl	ow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	DS Node			ocity Fl n/s)		Link Vol (m³)	Discharge Vol (m³)
		Link 3.004		(I/s) (n	-			_
(Outflow)	Node		Node	(I/s 0% 5) (n 8.8 1	n/s) ์		Vol (m³)	_
(Outflow) 30 minute winter	Node 12	3.004	Node 3.004:50	(I/s 0% 5: 7:) (n 8.8 1 5.4 2	n/s) 1.914	0.110	Vol (m³) 0.3215	_
(Outflow) 30 minute winter 30 minute winter	Node 12 12	3.004 3.004	Node 3.004:50 13	(I/s 0% 5/ 7/) (n 8.8 1 5.4 2 5.4 1	n/s) 1.914 2.435	0.110 0.141	Vol (m³) 0.3215 0.3232	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13	3.004 3.004 3.005	Node 3.004:50 13 14	(I/s 0% 5. 7. 7. 0% 1.	8.8 1 5.4 2 5.4 1 2.9 1	n/s) 1.914 2.435 1.008	0.110 0.141 0.117	0.3215 0.3232 1.2286	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52	3.004 3.004 3.005 3.000	3.004:50 13 14 3.000:50	(I/s 0% 5. 7. 7. 0% 1.) (n 8.8 1 5.4 2 5.4 1 2.9 1 6.7 1	n/s) 1.914 2.435 1.008 1.025	0.110 0.141 0.117 0.023	0.3215 0.3232 1.2286 0.1157	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52	3.004 3.004 3.005 3.000 3.000	3.004:50 13 14 3.000:50 53	(I/s 0% 5. 7. 7. 0% 1. 2.) (n 8.8 1 5.4 2 5.4 1 2.9 1 6.7 1	n/s) 1.914 2.435 1.008 1.025 1.651	0.110 0.141 0.117 0.023 0.048	0.3215 0.3232 1.2286 0.1157 0.1481	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53	3.004 3.004 3.005 3.000 3.000 3.001	3.004:50 13 14 3.000:50 53 54	(I/s 0% 5. 7. 7. 0% 1 2. 2.) (n 8.8 1 5.4 2 5.4 1 2.9 1 6.7 1 6.6 1	n/s) 1.914 2.435 1.008 1.025 1.651 1.544	0.110 0.141 0.117 0.023 0.048 0.053	0.3215 0.3232 1.2286 0.1157 0.1481 0.3824	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54	3.004 3.004 3.005 3.000 3.000 3.001 3.002	3.004:50 13 14 3.000:50 53 54 55	(II/s 0% 5. 7. 7. 0% 1. 2. 2. 3.) (n 8.8 1 5.4 2 5.4 1 2.9 1 6.7 1 6.6 1 0.4 0 3.4 1	n/s) 1.914 2.435 1.008 1.025 1.651 1.544 0.969	0.110 0.141 0.117 0.023 0.048 0.053 0.059	0.3215 0.3232 1.2286 0.1157 0.1481 0.3824 0.3839	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12	(II/s 0% 5. 7. 7. 0% 1. 2. 2. 3. 5.) (n 8.8 1 5.4 2 5.4 1 2.9 1 6.7 1 6.6 1 0.4 0 3.4 1	1.914 2.435 1.008 1.025 1.651 1.544 0.969 1.455	0.110 0.141 0.117 0.023 0.048 0.053 0.059 0.205	0.3215 0.3232 1.2286 0.1157 0.1481 0.3824 0.3839 0.9314	_
(Outflow) 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 12 12 13 52 52 53 54 55	3.004 3.004 3.005 3.000 3.000 3.001 3.002 3.003	3.004:50 13 14 3.000:50 53 54 55 12 8.000:50	(II/s 0% 5. 7. 7. 0% 1. 2. 2. 3. 5.) (n 8.8 1 5.4 2 5.4 1 2.9 1 6.7 1 6.6 1 0.4 0 3.4 1	1.914 2.435 1.008 1.025 1.651 1.544 0.969 1.455	0.110 0.141 0.117 0.023 0.048 0.053 0.059 0.205	0.3215 0.3232 1.2286 0.1157 0.1481 0.3824 0.3839 0.9314	_




Appendix D


Drawings


- D.1 Proposed tip reprofile and receptor site C general arrangements
- D.2 Proposed cross sections of both the tip reprofile and receptor site C



P:\Schemes_CGC\GC003600-99\GC003613 - RCT Tylorstown Landslide\2 - Drawings\2.3 - Preliminary & Pre-Tender\61 - Planning\Phase 4\GC3613-RED-61-RSC-DR-C-0004 - 0008 Cross Sections Tip Reprofile.dwg

St David's House, Pascal Close, St Mellons, Cardiff, CF3 0LW www.redstartwales.com

SCALE 1:1000

Proposed Levels Existing Levels For cross sections markers refer to drawing: GC3613-RED-61-RSC-DR-C-0002 2. For Location Plan refer to drawing: GC3613-RED-61-RSC-DR-C-0001 For General Arrangement Plan of Receptor Site C refer to drawing: GC3613-RED-61-RSC-DR-C-0003 For Cross Sections of Receptor Site C refer to drawing: GC3613-RED-61-RSC-DR-C-0009-0013 Rev AG PH NG For information

P02 JC PH NG For information

Description Purpose of Issue D5 - Suitable for Planning Classification **Public** Rhondda Cynon Taf County Borough Council Tylorstown Landslide Phase 4 Cross Sections - Tip Reprofile Sheet 5 of 5 Scale @ A1 1:1000 Project No. GC/3613 Drawing Identifier
Project - Originator - Zone - Level - File Type - Role - Number

Date

SCALE 1:1000

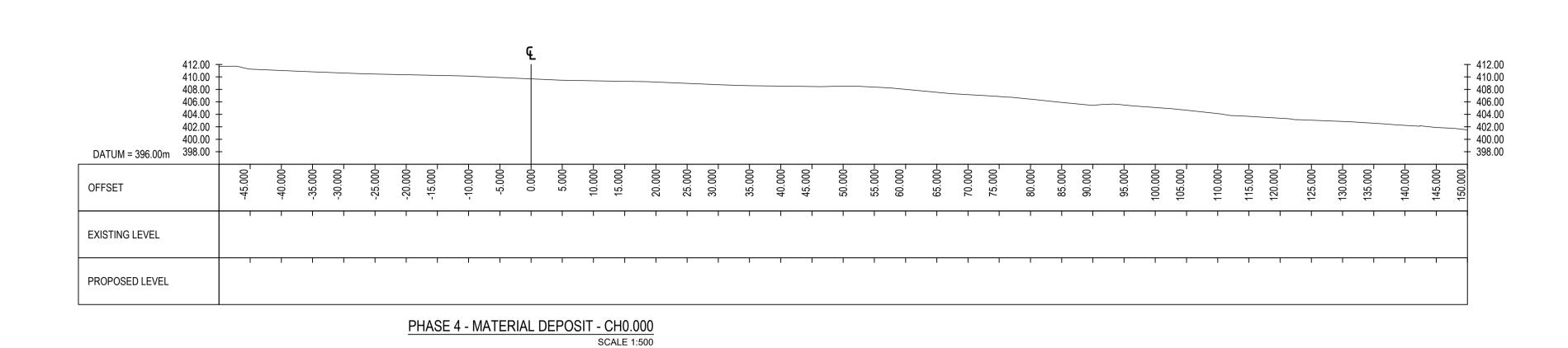
St David's House, Pascal Close, St Mellons, Cardiff, CF3 0LW www.redstartwales.com

REDSTART.

GC3613-RED-61-RSC-DR-C-0008

Checked

Date


PH

BS1192 Compliant

March 2021

NG

416.00 — 414.00 — 412.00 — 410.00 — 408.00 — 406.00 — 402.00 — 400.00 — 400.00 — 398.00 — 400 T 416.00 + 414.00 + 412.00 + 410.00 - 408.00 406.00 404.00 402.00 400.00 - 398.00 OFFSET EXISTING LEVEL PROPOSED LEVEL PHASE 4 - MATERIAL DEPOSIT - CH40.000 SCALE 1:500

5m wide to include drainage feature and track 5m wide to include drainage feature and track 416.00 — 414.00 — 412.00 — 410.00 — 408.00 — 406.00 — 404.00 — 404.00 — 402.00 — 416.00 414.00 412.00 410.00 408.00 406.00 404.00 - 402.00 OFFSET EXISTING LEVEL PROPOSED LEVEL

PHASE 4 - MATERIAL DEPOSIT - CH80.000

For cross section markers refer to the Receptor Site C General Arrangement drawing: GC3613-RED-61-RSC-DR-C-0003

Proposed Levels

Existing Levels

- For Location Plan refer to drawing: GC3613-RED-61-RSC-DR-C-0001
- For Tip Reprofile General Arrangement refer to drawing :
 GC3613-RED-61-RSC-DR-C-0002
- For cross sections of Tip Reprofile refer to drawings: GC3613-RED-61-RSC-DR-C-0004-0008

Rev AG PH NG For information

| PO2 JC PH NG For information | PO3 PH NG Date Purpose of Issue

D5 - Suitable for Planning

Classification **Public**

Rhondda Cynon Taf County Borough Council

Tylorstown Landslide

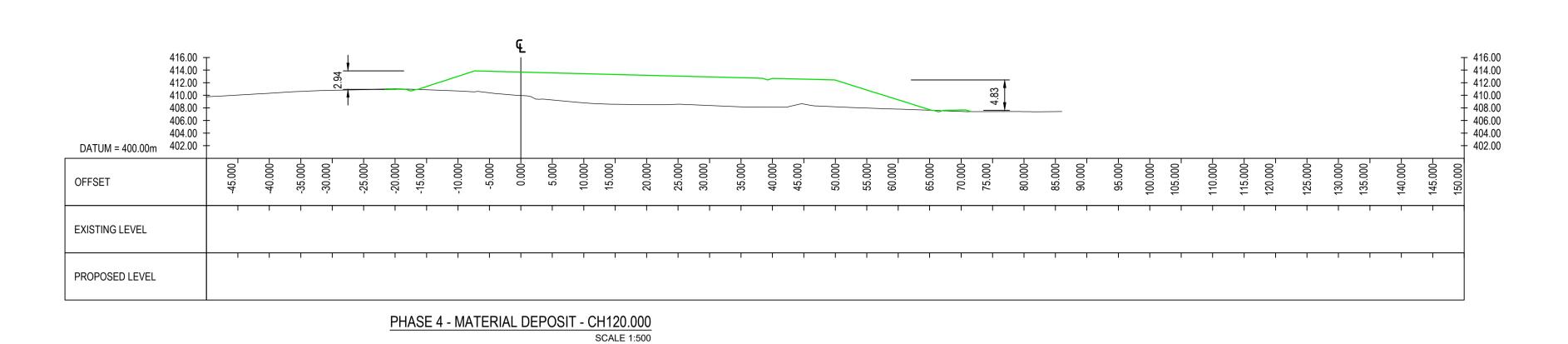
Phase 4

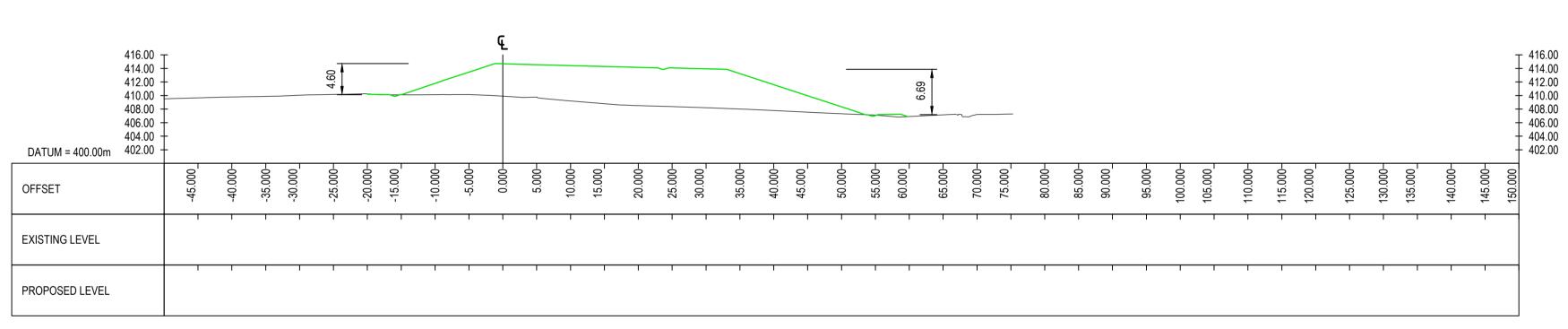
Receptor Site C - Cross Sections Sheet 1 of 5

Scale @ A1 Checked 1:500 NG Project No. Date GC/3613 March 2021

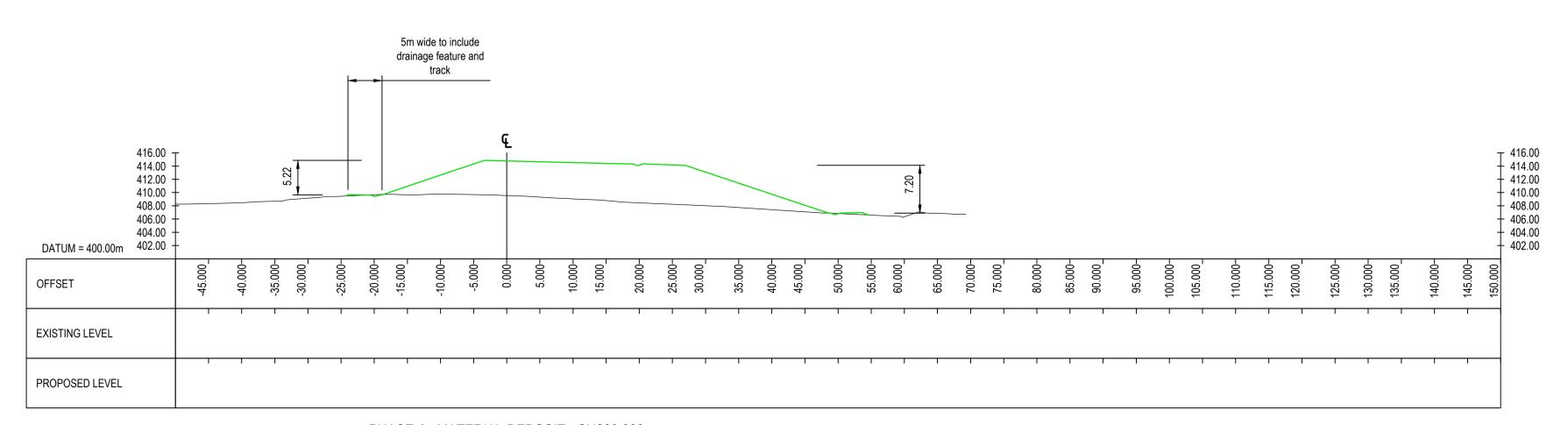
Drawing Identifier
Project - Originator - Zone - Level - File Type - Role - Number

GC3613-RED-61-RSC-DR-C-0009


www.redstartwales.com


Approved

BS1192 Compliant


PH

SCALE 1:1000

PHASE 4 - MATERIAL DEPOSIT - CH160.000

PHASE 4 - MATERIAL DEPOSIT - CH200.000

SCALE 1:1000

For cross section markers refer to the Receptor Site C General Arrangement drawing: GC3613-RED-61-RSC-DR-C-0003
 For Location Plan refer to drawing: GC3613-RED-61-RSC-DR-C-0001

Proposed Levels

Existing Levels

- For Tip Reprofile General Arrangement refer to drawing :
 GC3613-RED-61-RSC-DR-C-0002

For cross sections of Tip Reprofile refer to drawings: GC3613-RED-61-RSC-DR-C-0004-0008

Rev AG PH NG For information

| PO2 JC PH NG For information | PO3 PH NG Date Purpose of Issue

D5 - Suitable for Planning

Classification **Public**

Rhondda Cynon Taf County Borough Council

Tylorstown Landslide

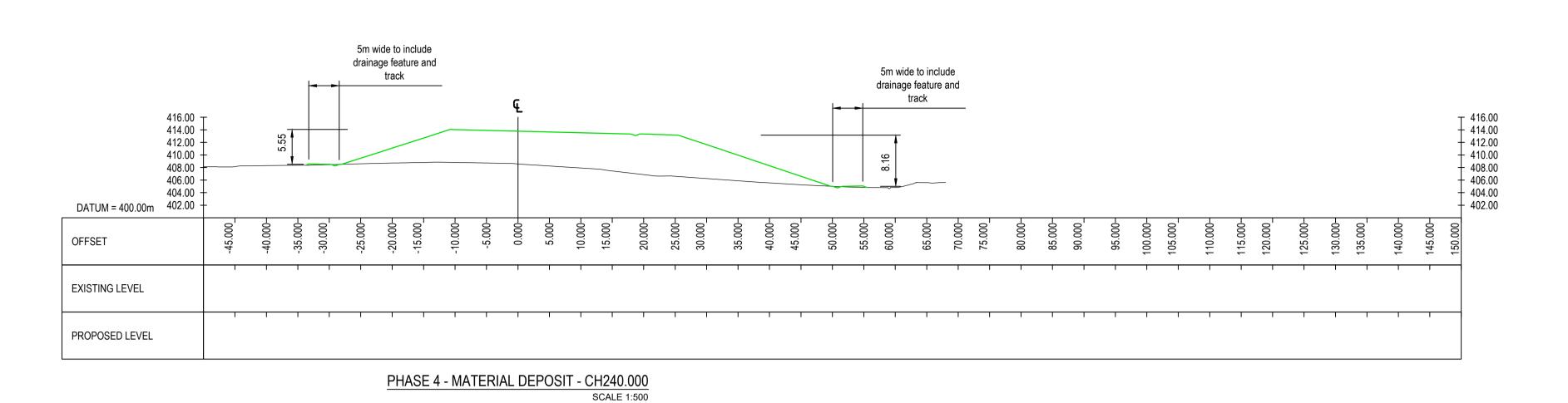
Drawing Phase 4

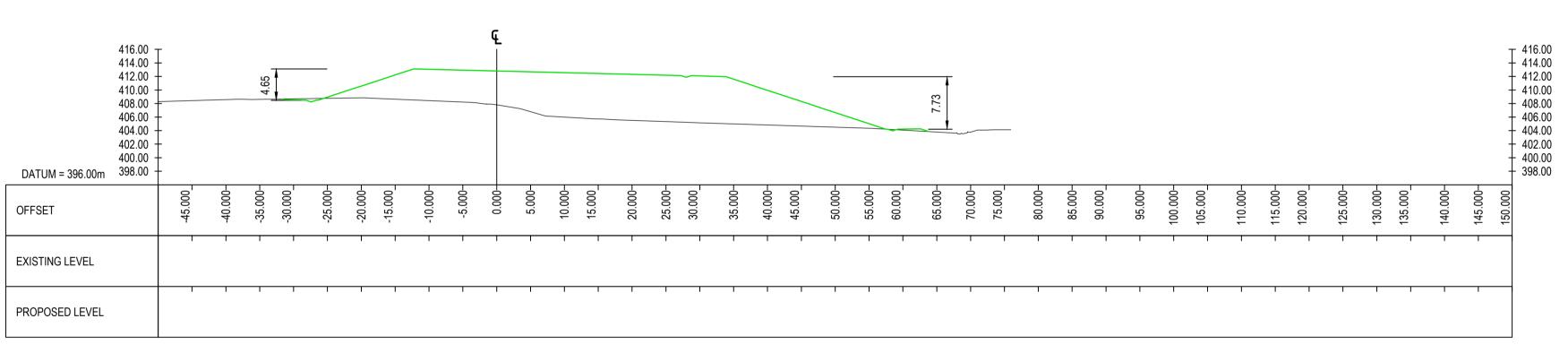
Receptor Site C - Cross Sections Sheet 2 of 5

Scale @ A1 Checked Approved 1:500 NG PH Project No. Date March 2021

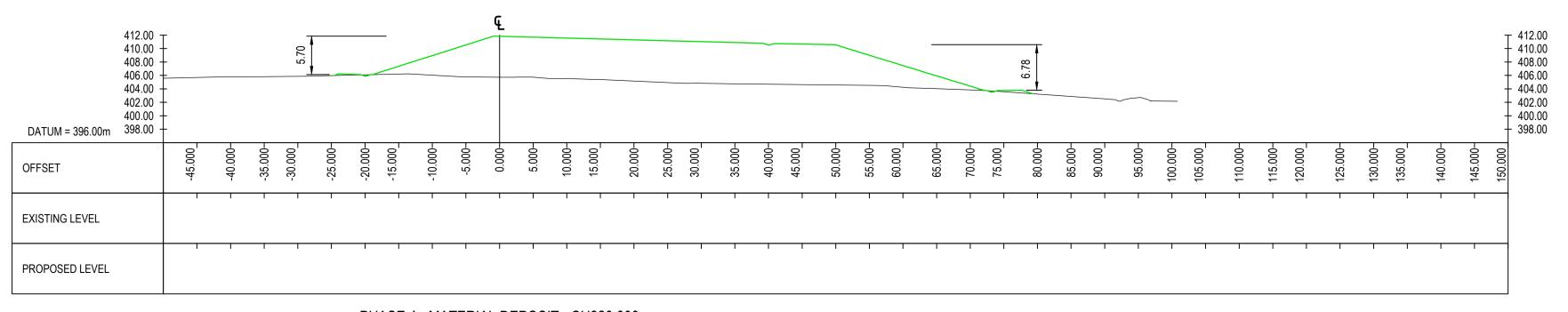
GC/3613

Drawing Identifier
Project - Originator - Zone - Level - File Type - Role - Number GC3613-RED-61-RSC-DR-C-0010




BS1192 Compliant

revision P02


St David's House, Pascal Close, St Mellons, Cardiff, CF3 0LW www.redstartwales.com

© Redstart P:\Schemes_CGC\GC003600-99\GC003613 - RCT Tylorstown Landslide\2 - Drawings\2.3 - Preliminary & Pre-Tender\61 - Planning\Phase 4\GC3613-RED-61-RSC-DR-C-0009 - 0013 Receptor Site C Cross Sections.dwg

PHASE 4 - MATERIAL DEPOSIT - CH280.000

PHASE 4 - MATERIAL DEPOSIT - CH320.000 SCALE 1:500 SCALE 1:1000

1. For cross section markers refer to the Receptor Site C General Arrangement drawing: GC3613-RED-61-RSC-DR-C-0003

2. For Location Plan refer to drawing:
GC3613-RED-61-RSC-DR-C-0001

Proposed Levels

Existing Levels

- For Tip Reprofile General Arrangement refer to drawing :
 GC3613-RED-61-RSC-DR-C-0002
- For cross sections of Tip Reprofile refer to drawings: GC3613-RED-61-RSC-DR-C-0004-0008

Rev AG PH NG For information

| PO2 JC PH NG For information | PO3 PH NG Date Purpose of Issue

D5 - Suitable for Planning

Classification Public

Rhondda Cynon Taf County Borough Council

Tylorstown Landslide

Drawing Phase 4

Receptor Site C - Cross Sections Sheet 3 of 5

Scale @ A1 1:500 NG Project No.

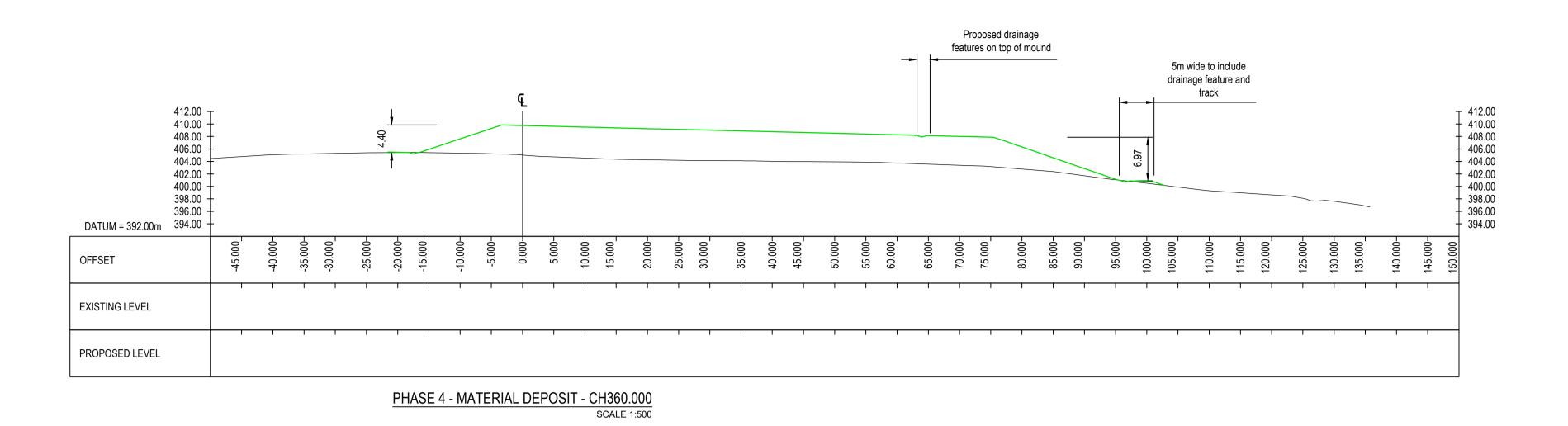
GC/3613

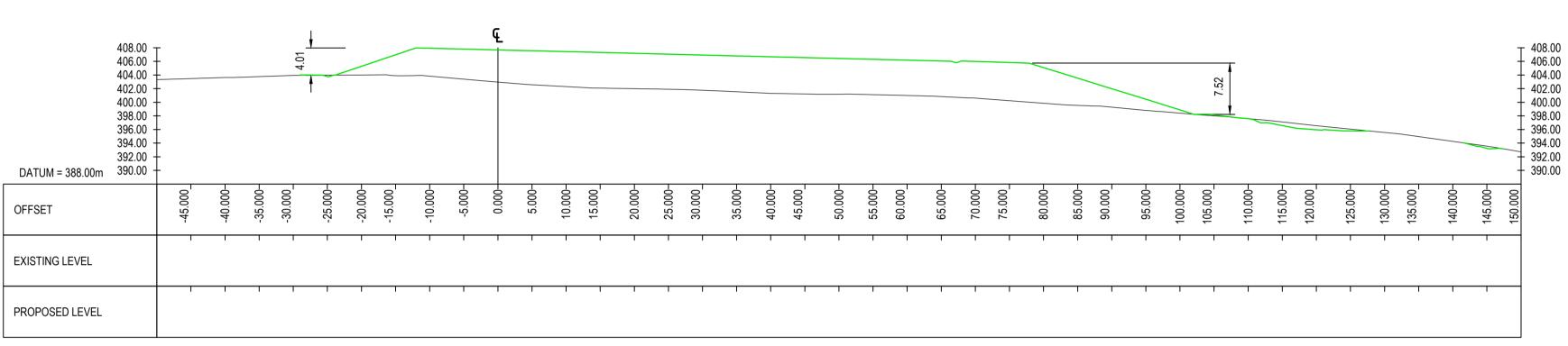
Drawing Identifier
Project - Originator - Zone - Level - File Type - Role - Number

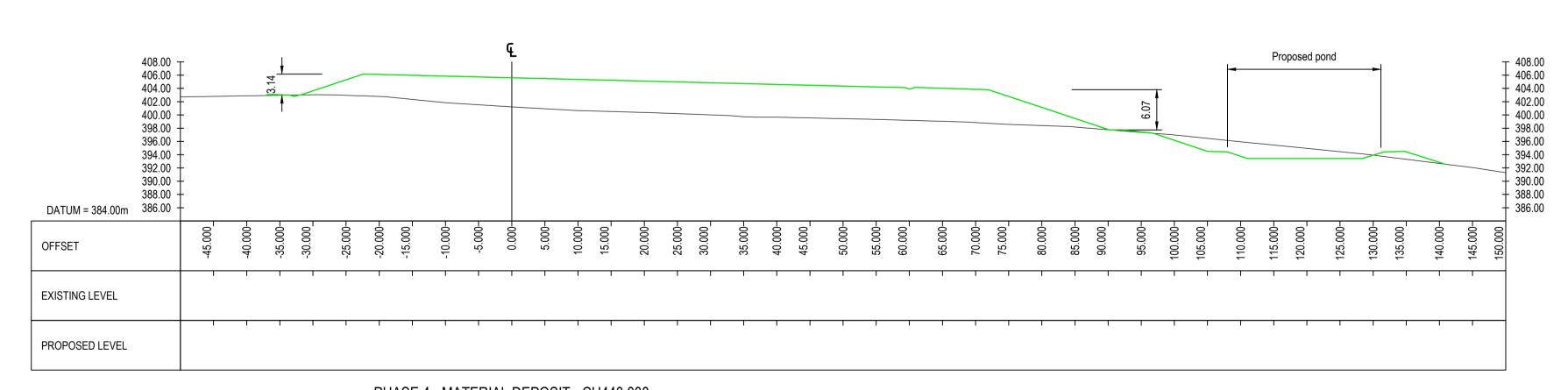
GC3613-RED-61-RSC-DR-C-0011

Checked

Date


March 2021


BS1192 Compliant


St David's House, Pascal Close, St Mellons, Cardiff, CF3 0LW www.redstartwales.com

© Redstart P:\Schemes_CGC\GC003600-99\GC003613 - RCT Tylorstown Landslide\2 - Drawings\2.3 - Preliminary & Pre-Tender\61 - Planning\Phase 4\GC3613-RED-61-RSC-DR-C-0009 - 0013 Receptor Site C Cross Sections.dwg

PHASE 4 - MATERIAL DEPOSIT - CH400.000 SCALE 1:500

PHASE 4 - MATERIAL DEPOSIT - CH440.000 SCALE 1:500

1. For cross section markers refer to the Receptor Site C General Arrangement drawing: GC3613-RED-61-RSC-DR-C-0003

2. For Location Plan refer to drawing:
GC3613-RED-61-RSC-DR-C-0001 For Tip Reprofile General Arrangement refer to drawing : GC3613-RED-61-RSC-DR-C-0002 For cross sections of Tip Reprofile refer to drawings: GC3613-RED-61-RSC-DR-C-0004-0008 Rev AG PH NG For information

| PO2 JC PH NG For information | PO3 PH NG Purpose of Issue D5 - Suitable for Planning Classification Public Rhondda Cynon Taf County Borough Council Tylorstown Landslide Drawing Phase 4 Receptor Site C - Cross Sections Sheet 4 of 5 Scale @ A1 1:500

Project No.

GC/3613

Drawing Identifier
Project - Originator - Zone - Level - File Type - Role - Number

GC3613-RED-61-RSC-DR-C-0012

REDSTART.

St David's House, Pascal Close, St Mellons, Cardiff, CF3 0LW

www.redstartwales.com

Date

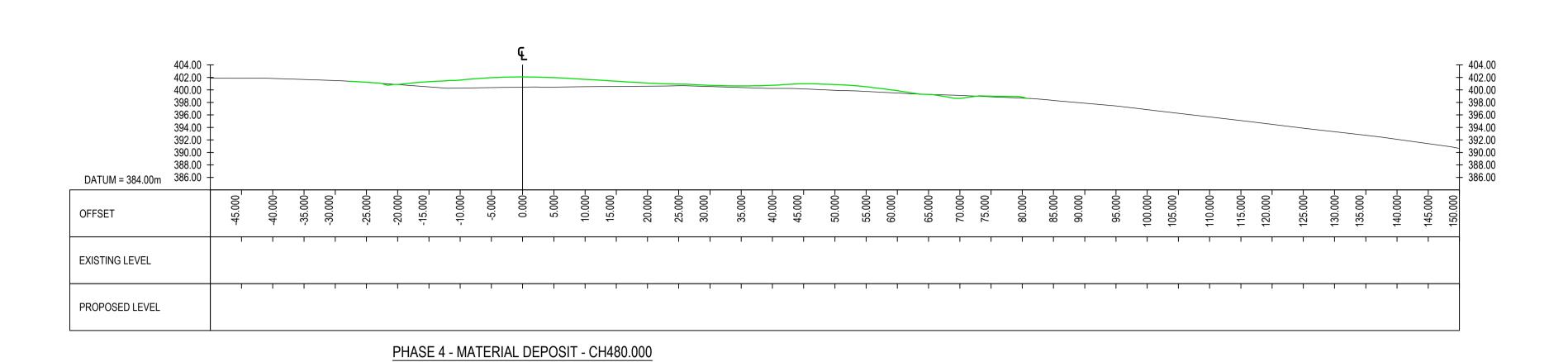
Checked

Date

PH

BS1192 Compliant

revision P02


March 2021

NG

Proposed Levels

Existing Levels

SCALE 1:1000

404.00 -402.00 -T 404.00 402.00 400.00 400.00 398.00 -396.00 -394.00 -392.00 -390.00 -388.00 -- 398.00 - 396.00 - 394.00 - 392.00 - 390.00 - 388.00 DATUM = 384.00m 386.00 - 386.00 OFFSET EXISTING LEVEL PROPOSED LEVEL

PHASE 4 - MATERIAL DEPOSIT - CH500.000 SCALE 1:500

1. For cross section markers refer to the Receptor Site C General Arrangement drawing: GC3613-RED-61-RSC-DR-C-0003

Proposed Levels

Existing Levels

For Location Plan refer to drawing: GC3613-RED-61-RSC-DR-C-0001

For Tip Reprofile General Arrangement refer to drawing : GC3613-RED-61-RSC-DR-C-0002

For cross sections of Tip Reprofile refer to drawings: GC3613-RED-61-RSC-DR-C-0004-0008

Rev AG PH NG For information

P02 JC PH NG For information

Description Date Purpose of Issue

D5 - Suitable for Planning

Classification Public

Rhondda Cynon Taf County Borough Council

Tylorstown Landslide

Drawing Phase 4

Receptor Site C - Cross Sections
Sheet 5 of 5

Scale @ A1 Checked 1:500 NG Project No. Date GC/3613 March 2021

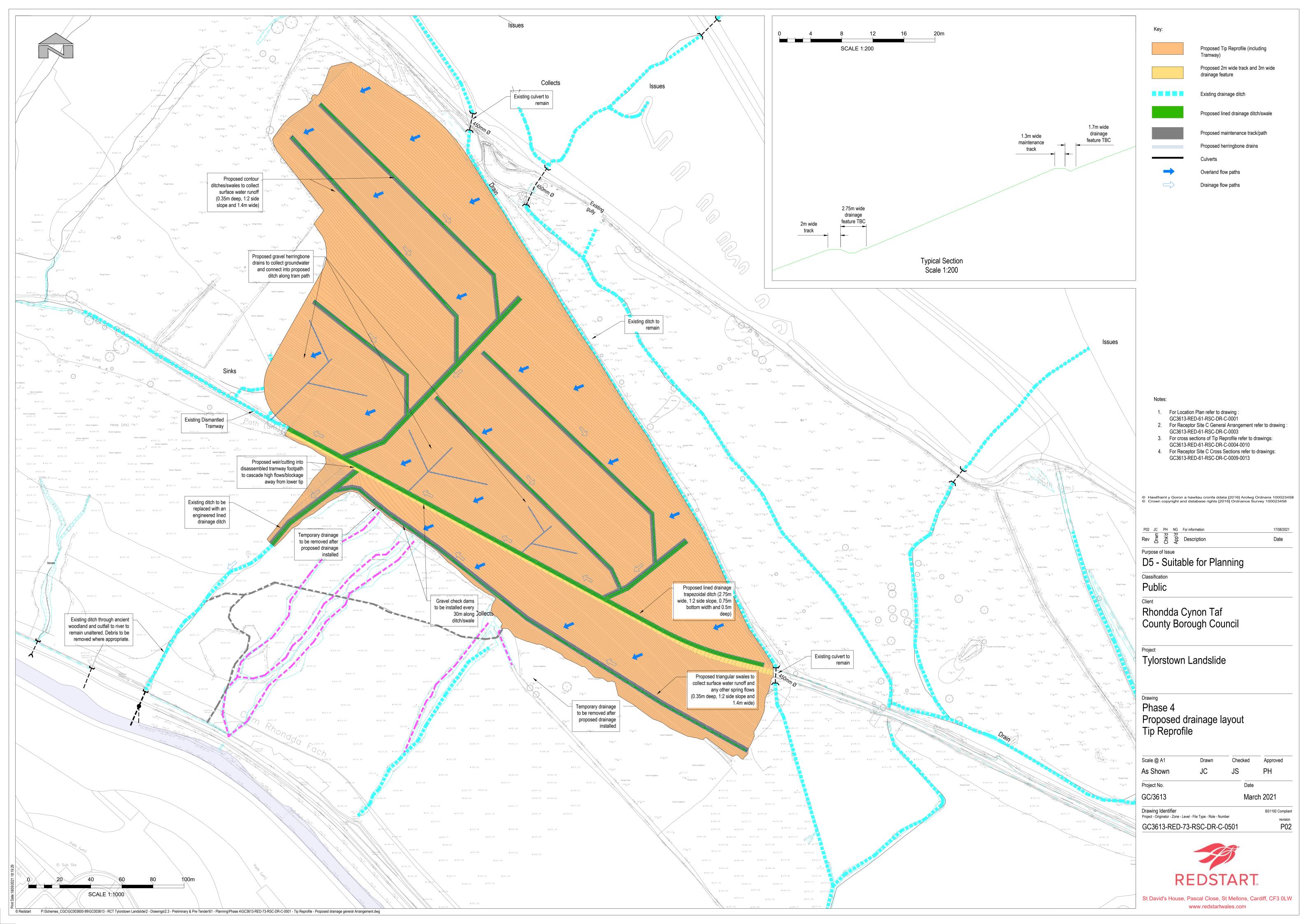
Drawing Identifier
Project - Originator - Zone - Level - File Type - Role - Number

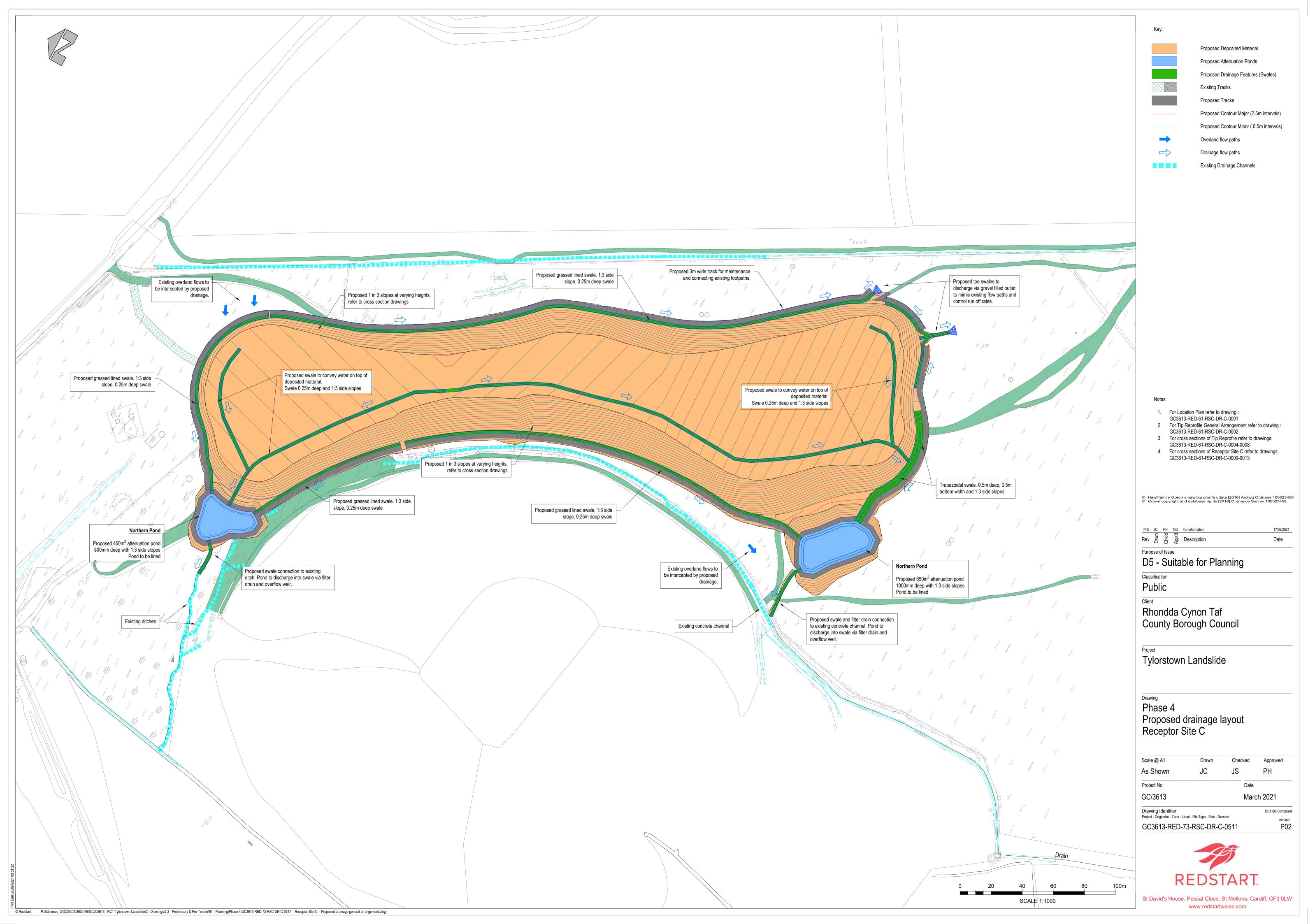
GC3613-RED-61-RSC-DR-C-0013

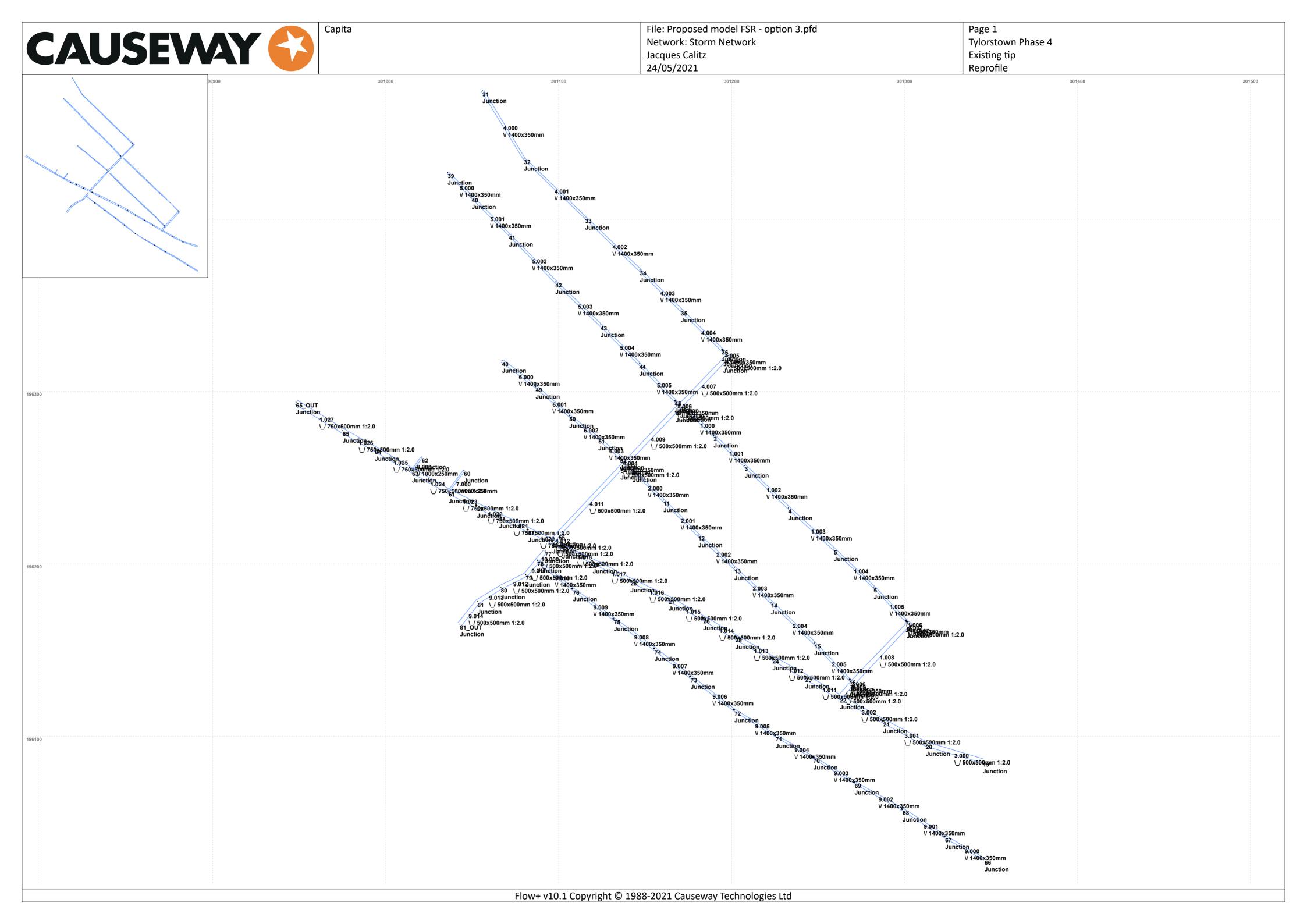
www.redstartwales.com

BS1192 Compliant

SCALE 1:1000


Appendix E


Drawings


E.1 Proposed surface water drainage layouts (receptor site C and reprofiled tip)

Calculations

- E.2 Proposed surface water drainage strategy calculations Flow output
- E.3 Schedule of maintenance

Capita

File: Proposed model FSR - opt Network: Storm Network

Jacques Calitz 24/05/2021

Page 1 Tylorstown Phase 4 Existing tip Reprofile

Design Settings

Rainfall Methodology FSR Return Period (years) 100 Additional Flow (%) 0

FSR Region England and Wales

M5-60 (mm) 20.000 Ratio-R 0.200 CV 0.750

Time of Entry (mins) 5.00

Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200
Preferred Cover Depth (m) 1.200
Include Intermediate Ground ✓
Enforce best practice design rules x

. .

Nodes

Name	Area	T of E	Add	Cover	Easting	Northing	Depth
	(ha)	(mins)	Inflow	Level	(m)	(m)	(m)
			(I/s)	(m)			
31	0.067	5.00		326.104	301055.947	196474.370	0.350
32	0.076	5.00		325.400	301079.974	196435.042	0.350
37				323.745	301197.914	196321.002	0.500
48	0.025	5.00		293.455	301067.270	196317.940	0.350
53				292.530	301138.995	196258.979	0.500
46				308.730	301170.237	196291.867	0.500
39	0.057	5.00		310.646	301035.850	196426.929	0.350
56	0.036	5.00		268.003	301096.312	196213.138	0.500
1	0.023	5.00		308.686	301174.036	196289.567	0.350
8				306.897	301302.967	196165.496	0.500
17				290.683	301270.067	196131.275	0.500
22	0.014	5.00		286.500	301262.636	196122.897	0.500
10	0.024	5.00		292.469	301142.813	196254.689	0.350
19	0.033	5.00		301.269	301345.263	196085.730	0.500
20	0.028	5.00		294.671	301312.300	196095.760	0.500
26	0.028	5.00	6.0	278.587	301183.626	196168.705	0.500
33	0.061	5.00		324.914	301115.327	196400.931	0.350
21	0.030	5.00		289.845	301287.682	196109.016	0.500
79				259.595	301080.978	196193.883	0.500
35	0.046	5.00		324.124	301170.656	196347.331	0.350
78				266.614	301087.610	196201.918	0.500
66	0.044	10.00		282.566	301346.293	196028.882	0.350
72	0.036	7.50		270.074	301201.655	196115.312	0.350
76	0.013	5.00		267.342	301108.271	196185.495	0.350
41	0.053	5.00		310.086	301071.236	196391.133	0.350
43	0.044	5.00		309.386	301124.260	196338.685	0.350
50	0.021	5.00		292.951	301106.166	196285.949	0.350
3	0.029	5.00		308.220	301207.543	196257.132	0.350
5	0.034	5.00		307.740	301259.126	196208.718	0.350
12	0.024	5.00		291.933	301180.742	196216.787	0.350
14	0.032	5.00		291.360	301222.816	196177.884	0.350
68	0.042	10.00		278.615	301298.894	196057.715	0.350
70	0.031	7.50		272.743	301247.311	196087.973	0.350
74	0.027	5.00		269.631	301155.512	196150.795	0.350
24	0.024	5.00	6.0	282.550	301223.663	196145.414	0.500
28	0.027	5.00	6.0	273.692	301141.532	196190.712	0.500
80				251.120	301066.595	196186.624	0.500
81				244.007	301053.072	196178.233	0.500
81_OUT				236.893	301042.922	196165.140	0.500
58	0.020	5.00		266.422	301065.580	196227.882	0.500
61	0.023	5.00		263.892	301036.396	196242.239	0.500

Capita

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 2 Tylorstown Phase 4 Existing tip Reprofile

Nodes

Name	Area (ha)	T of E (mins)	Add Inflow (I/s)	Cover Level (m)	Easting (m)	Northing (m)	Depth (m)
23	0.018	5.00		284.526	301242.578	196134.767	0.500
63	0.092	5.00		261.375	301015.256	196254.329	0.500
64	0.053	5.00		258.612	300993.688	196266.918	0.500
38				322.679	301195.173	196317.869	0.500
47				307.521	301167.700	196289.284	0.500
62	0.021	5.00		267.131	301020.833	196262.040	0.250
54				291.338	301135.833	196255.964	0.500
9				306.640	301301.236	196164.158	0.500
18				290.024	301268.576	196129.672	0.500
65	0.086	5.00		256.471	300975.116	196277.348	0.500
65_OUT				253.051	300948.150	196293.853	0.500
30				268.687	301101.956	196210.213	0.919
55				270.194	301099.954	196217.358	0.500
77		5.00		267.400	301092.140	196207.556	0.500
34	0.051	5.00		324.530	301146.992	196370.522	0.350
60	0.034	5.00	6.0	270.390	301045.240	196254.239	0.250
40	0.056	5.00		310.429	301049.747	196412.857	0.350
42	0.054	5.00		309.597	301098.098	196363.610	0.350
44	0.059	5.00		309.068	301146.628	196316.155	0.350
2	0.026	5.00		308.470	301189.690	196274.591	0.350
4	0.029	5.00		307.868	301232.789	196232.543	0.350
6	0.024	5.00		307.508	301282.195	196186.741	0.350
11	0.026	5.00		292.219	301160.600	196237.137	0.350
13	0.028	5.00		291.651	301201.603	196197.801	0.350
15	0.031	5.00		291.039	301247.828	196154.242	0.350
25	0.028	5.00		280.358	301202.157	196157.709	0.500
27	0.062	5.00		276.511	301163.608	196180.027	0.500
29	0.031	5.00		270.995	301119.745	196201.548	0.500
57	0.024	5.00		267.358	301082.401	196219.858	0.500
59				265.581	301052.733	196233.848	0.500
45				308.773	301167.105	196294.867	0.350
36				323.814	301194.282	196324.579	0.350
52				292.572	301135.517	196261.880	0.350
7				306.929	301300.593	196167.599	0.350
16				290.725	301268.038	196133.300	0.350
49	0.079	5.00		293.403	301086.711	196302.800	0.350
51	0.064	5.00		292.931	301122.992	196272.987	0.350
67	0.040	10.00		280.410	301323.475	196041.816	0.350
69	0.038	10.00		275.290	301271.143	196073.324	0.350
71	0.031	7.50		270.590	301225.519	196100.462	0.350
73	0.027	5.00		269.685	301176.356	196134.680	0.350
75	0.020	5.00		268.300	301131.934	196168.135	0.350

File: Proposed model FSR - opt Network: Storm Network

Jacques Calitz 24/05/2021 Page 3 Tylorstown Phase 4 Existing tip Reprofile

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.027	65	65_OUT	31.616	0.040	255.971	252.551	3.420	9.2	750	16.37	50.0
1.026	64	65	21.300	0.040	258.112	255.971	2.141	9.9	750	16.22	50.0
1.025	63	64	24.973	0.040	260.875	258.112	2.763	9.0	750	16.12	50.0
1.024	61	63	24.353	0.040	263.392	260.875	2.517	9.7	750	16.01	50.0
8.000	62	63	9.516	0.040	266.881	261.125	5.756	1.7	1000	5.04	50.0
1.023	59	61	18.366	0.040	265.081	263.392	1.689	10.9	750	15.89	50.0
7.000	60	61	14.907	0.040	270.140	263.642	6.498	2.3	1000	10.03	50.0
1.022	58	59	14.165	0.040	265.922	265.081	0.841	16.8	750	15.80	50.0
1.021	57	58	18.637	0.040	266.858	265.922	0.936	19.9	750	15.71	50.0
1.020	56	57	15.449	0.040	267.503	266.858	0.645	24.0	750	15.59	50.0
4.012	55	56	5.574	0.040	269.694	267.503	2.191	2.5	500	13.18	50.0
1.019	30	56	6.357	0.040	267.768	267.503	0.265	24.0	500	15.47	50.0
1.018	29	30	19.787	0.040	270.495	268.187	2.308	8.6	500	15.42	50.0
1.017	28	29	24.333	0.040	273.192	270.495	2.697	9.0	500	15.33	50.0
1.016	27	28	24.526	0.040	276.011	273.192	2.819	8.7	500	15.22	50.0
1.015	26	27	22.998	0.040	278.087	276.011	2.076	11.1	500	15.10	50.0
1.014	25	26	21.548	0.040	279.858	278.087	1.771	12.2	500	14.98	50.0
1.013	24	25	24.772	0.040	282.050	279.858	2.192	11.3	500	14.86	50.0
1.012	23	24	21.706	0.040	284.026	282.050	1.976	11.0	500	14.73	50.0
1.011	22	23	23.307	0.040	286.000	284.026	1.974	11.8	500	14.62	50.0
3.002	21	22	28.635	0.040	289.345	286.000	3.345	8.6	500	10.30	50.0
1.010	18	22	9.010	0.040	289.524	286.000	3.524	2.6	500	14.49	50.0
1.009	17	18	2.189	0.040	290.183	289.524	0.659	3.3	500	14.47	50.0
2.006	16	17	2.867	0.040	290.375	290.333	0.042	68.3	1400	13.78	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.027	3.627	3174.0	403.5	0.000	0.000	2.800	24.0	176	2.070
1.026	3.497	3059.6	381.7	0.000	0.000	2.639	24.0	174	1.984
1.025	3.669	3210.0	352.3	0.000	0.000	2.422	24.0	163	2.005
1.024	3.546	3102.6	317.8	0.000	0.000	2.168	24.0	157	1.899
8.000	4.512	564.0	2.9	0.000	0.000	0.021	0.0	35	1.209
1.023	3.345	2926.6	298.6	0.000	0.000	2.070	18.0	157	1.792
7.000	3.831	478.8	16.2	0.000	0.000	0.075	6.0	70	1.637
1.022	2.687	2351.5	295.7	0.000	0.000	2.049	18.0	175	1.529
1.021	2.472	2162.7	290.4	0.000	0.000	2.010	18.0	182	1.436
1.020	2.254	1971.9	284.3	0.000	0.000	1.965	18.0	189	1.335
4.012	6.614	4960.4	122.3	0.000	0.000	0.902	0.0	78	2.403
1.019	2.153	1615.0	154.9	0.419	0.000	1.010	18.0	162	1.163
1.018	3.603	2702.2	154.9	0.000	0.000	1.010	18.0	124	1.685
1.017	3.512	2634.1	147.4	0.000	0.000	0.955	18.0	122	1.629
1.016	3.577	2682.4	135.3	0.000	0.000	0.910	12.0	115	1.608
1.015	3.170	2377.2	125.0	0.000	0.000	0.834	12.0	118	1.444
1.014	3.024	2268.3	115.2	0.000	0.000	0.806	6.0	116	1.366
1.013	3.138	2353.6	111.5	0.000	0.000	0.778	6.0	111	1.385
1.012	3.183	2387.2	102.2	0.000	0.000	0.754	0.0	105	1.364
1.011	3.070	2302.6	99.8	0.000	0.000	0.736	0.0	106	1.322
3.002	3.606	2704.2	20.1	0.000	0.000	0.149	0.0	40	0.894
1.010	6.598	4948.1	77.8	0.000	0.000	0.574	0.0	60	2.078
1.009	5.788	4341.0	77.8	0.000	0.000	0.574	0.0	65	1.905
2.006	0.879	215.3	42.1	0.000	0.000	0.311	0.0	190	0.584

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 4 Tylorstown Phase 4 Existing tip Reprofile

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.008	9	17	45.308	0.040	306.140	290.183	15.957	2.8	500	14.46	50.0
1.007	8	9	2.188	0.040	306.397	306.140	0.257	8.5	500	14.34	50.0
1.006	7	8	3.172	0.040	306.579	306.547	0.032	99.1	1400	14.33	50.0
1.005	6	7	26.550	0.040	307.158	306.579	0.579	45.9	1400	14.26	50.0
1.004	5	6	31.862	0.040	307.390	307.158	0.232	137.3	1400	13.85	50.0
1.003	4	5	35.514	0.040	307.518	307.390	0.128	277.5	1400	12.99	50.0
1.002	3	4	35.242	0.040	307.870	307.518	0.352	100.1	1400	11.63	50.0
1.001	2	3	24.971	0.040	308.120	307.870	0.250	99.9	1400	10.82	50.0
1.000	1	2	21.664	0.040	308.336	308.120	0.216	100.3	1400	10.25	50.0
2.005	15	16	29.103	0.040	290.689	290.375	0.314	92.7	1400	13.72	50.0
2.004	14	15	34.417	0.040	291.010	290.689	0.321	107.2	1400	13.08	50.0
2.003	13	14	29.098	0.040	291.301	291.010	0.291	100.0	1400	12.26	50.0
2.002	12	13	28.207	0.040	291.583	291.301	0.282	100.0	1400	11.59	50.0
2.001	11	12	28.633	0.040	291.869	291.583	0.286	100.1	1400	10.94	50.0
2.000	10	11	24.989	0.040	292.119	291.869	0.250	100.0	1400	10.29	50.0
3.001	20	21	27.960	0.040	294.171	289.345	4.826	5.8	500	10.17	50.0
3.000	19	20	34.455	0.040	300.769	294.171	6.598	5.2	500	10.06	50.0
4.011	54	55	52.704	0.040	290.838	269.694	21.144	2.5	500	13.17	50.0
4.010	53	54	4.369	0.040	292.030	290.838	1.192	3.7	500	13.03	50.0
4.009	47	53	41.742	0.040	307.021	292.030	14.991	2.8	500	9.85	50.0
6.004	52	53	4.529	0.040	292.222	292.180	0.042	107.8	1400	13.02	50.0
6.003	51	52	16.740	0.040	292.581	292.222	0.359	46.6	1400	12.91	50.0
6.002	50	51	21.240	0.040	292.601	292.581	0.020	1062.0	1400	12.65	50.0
6.001	49	50	25.738	0.040	293.053	292.601	0.452	56.9	1400	11.06	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.008	6.261	4695.5	35.6	0.000	0.000	0.263	0.0	40	1.552
1.007	3.616	2711.8	35.6	0.000	0.000	0.263	0.0	54	1.075
1.006	0.729	178.7	35.6	0.000	0.000	0.263	0.0	191	0.487
1.005	1.072	262.7	35.6	0.000	0.000	0.263	0.0	166	0.652
1.004	0.620	151.8	32.4	0.000	0.000	0.239	0.0	196	0.421
1.003	0.436	106.8	27.8	0.000	0.000	0.205	0.0	212	0.312
1.002	0.726	177.8	21.0	0.000	0.000	0.155	0.0	157	0.425
1.001	0.727	178.0	13.1	0.000	0.000	0.097	0.0	132	0.378
1.000	0.725	177.6	6.3	0.000	0.000	0.046	0.0	100	0.315
2.005	0.754	184.8	42.1	0.000	0.000	0.311	0.0	201	0.522
2.004	0.701	171.8	34.0	0.000	0.000	0.251	0.0	190	0.467
2.003	0.726	177.9	26.1	0.000	0.000	0.193	0.0	171	0.450
2.002	0.726	177.9	18.9	0.000	0.000	0.140	0.0	151	0.415
2.001	0.726	177.8	12.9	0.000	0.000	0.095	0.0	131	0.377
2.000	0.726	177.9	6.0	0.000	0.000	0.044	0.0	98	0.311
3.001	4.383	3287.1	12.1	0.000	0.000	0.089	0.0	26	0.845
3.000	4.616	3462.3	5.8	0.000	0.000	0.043	0.0	16	0.665
4.011	6.682	5011.4	122.3	0.000	0.000	0.902	0.0	78	2.428
4.010	5.510	4132.7	122.3	0.000	0.000	0.902	0.0	86	2.124
4.009	6.322	4741.6	84.5	0.000	0.000	0.623	0.0	65	2.081
6.004	0.699	171.3	37.8	0.000	0.000	0.279	0.0	199	0.479
6.003	1.063	260.5	37.8	0.000	0.000	0.279	0.0	170	0.657
6.002	0.223	54.6	26.3	0.000	0.000	0.194	0.0	266	0.186
6.001	0.962	235.7	21.2	0.000	0.000	0.156	0.0	142	0.527

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 5 Tylorstown Phase 4 Existing tip Reprofile

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
6.000	48	49	24.641	0.040	293.105	293.053	0.052	473.9	1400	10.62	50.0
4.008	46	47	3.621	0.040	308.230	307.021	1.209	3.0	500	9.74	50.0
4.007	38	46	36.026	0.040	322.179	308.230	13.949	2.6	500	9.73	50.0
5.006	45	46	4.337	0.040	308.423	308.380	0.043	100.9	1400	9.47	50.0
5.005	44	45	29.538	0.040	308.718	308.423	0.295	100.1	1400	9.37	50.0
5.004	43	44	31.748	0.040	309.036	308.718	0.318	99.8	1400	8.69	50.0
5.003	42	43	36.135	0.040	309.247	309.036	0.211	171.3	1400	7.96	50.0
5.002	41	42	38.459	0.040	309.736	309.247	0.489	78.6	1400	6.88	50.0
5.001	40	41	30.557	0.040	310.079	309.736	0.343	89.1	1400	6.10	50.0
5.000	39	40	19.777	0.040	310.296	310.079	0.217	91.1	1400	5.43	50.0
4.006	37	38	4.163	0.040	323.245	322.179	1.066	3.9	500	9.64	50.0
4.005	36	37	5.098	0.040	323.464	323.395	0.069	73.9	1400	9.63	50.0
4.004	35	36	32.800	0.040	323.774	323.464	0.310	105.8	1400	9.53	50.0
4.003	34	35	33.133	0.040	324.180	323.774	0.406	81.6	1400	8.75	50.0
4.002	33	34	43.902	0.040	324.564	324.180	0.384	114.3	1400	8.07	50.0
4.001	32	33	49.126	0.040	325.050	324.564	0.486	101.1	1400	6.99	50.0
4.000	31	32	46.087	0.040	325.754	325.050	0.704	65.5	1400	5.86	50.0
9.014	81	81_OUT	16.567	0.040	243.507	236.393	7.114	2.3	500	14.78	50.0
9.013	80	81	15.915	0.040	250.620	243.507	7.113	2.2	500	14.74	50.0
9.012	79	80	16.111	0.040	259.095	250.620	8.475	1.9	500	14.70	50.0
9.011	78	79	10.418	0.040	266.114	259.095	7.019	1.5	500	14.66	50.0
9.010	76	78	26.393	0.040	266.992	266.264	0.728	36.3	1400	14.64	50.0
10.000	77	78	7.232	0.040	266.900	266.114	0.786	9.2	500	5.03	50.0
9.009	75	76	29.348	0.040	267.950	266.992	0.958	30.6	1400	14.28	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
6.000	0.334	81.7	6.8	0.000	0.000	0.050	0.0	138	0.179
4.008	6.096	4572.1	84.5	0.000	0.000	0.623	0.0	66	2.023
4.007	6.564	4923.2	40.7	0.000	0.000	0.301	0.0	42	1.674
5.006	0.723	177.1	43.7	0.000	0.000	0.323	0.0	207	0.510
5.005	0.726	177.8	43.7	0.000	0.000	0.323	0.0	207	0.511
5.004	0.727	178.0	35.8	0.000	0.000	0.264	0.0	192	0.487
5.003	0.555	135.9	29.8	0.000	0.000	0.220	0.0	198	0.379
5.002	0.819	200.6	22.5	0.000	0.000	0.166	0.0	154	0.474
5.001	0.769	188.5	15.2	0.000	0.000	0.112	0.0	136	0.410
5.000	0.761	186.3	7.7	0.000	0.000	0.057	0.0	106	0.342
4.006	5.338	4003.8	40.7	0.000	0.000	0.301	0.0	47	1.469
4.005	0.845	207.0	40.7	0.000	0.000	0.301	0.0	190	0.563
4.004	0.706	172.9	40.7	0.000	0.000	0.301	0.0	203	0.492
4.003	0.804	196.9	34.6	0.000	0.000	0.255	0.0	182	0.520
4.002	0.679	166.4	27.7	0.000	0.000	0.204	0.0	179	0.434
4.001	0.722	176.9	19.4	0.000	0.000	0.143	0.0	153	0.416
4.000	0.897	219.9	9.0	0.000	0.000	0.067	0.0	106	0.404
9.014	6.913	5184.8	47.4	0.000	0.000	0.350	0.0	44	1.834
9.013	7.053	5289.5	47.4	0.000	0.000	0.350	0.0	43	1.847
9.012	7.651	5738.5	47.4	0.000	0.000	0.350	0.0	42	1.951
9.011	8.659	6494.2	47.4	0.000	0.000	0.350	0.0	39	2.116
9.010	1.206	295.4	47.4	0.000	0.000	0.350	0.0	176	0.763
10.000	3.478	2608.3	0.0	0.000	0.000	0.000	0.0	0	0.000
9.009	1.312	321.4	45.6	0.000	0.000	0.337	0.0	169	0.806

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 6 Tylorstown Phase 4 Existing tip Reprofile

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
9.008	74	75	29.268	0.040	269.281	267.950	1.331	22.0	1400	13.91	50.0
9.007	73	74	26.347	0.040	269.335	269.281	0.054	487.9	1400	13.59	50.0
9.006	72	73	31.862	0.040	269.724	269.335	0.389	81.9	1400	12.26	50.0
9.005	71	72	28.107	0.040	270.240	269.724	0.516	54.5	1400	11.59	50.0
9.004	70	71	25.117	0.040	272.393	270.240	2.153	11.7	1400	11.12	50.0
9.003	69	70	27.974	0.040	274.940	272.393	2.547	11.0	1400	10.92	50.0
9.002	68	69	31.840	0.040	278.265	274.940	3.325	9.6	1400	10.71	50.0
9.001	67	68	29.275	0.040	280.060	278.265	1.795	16.3	1400	10.48	50.0
9.000	66	67	26.229	0.040	282.216	280.060	2.156	12.2	1400	10.21	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
9.008	1.548	379.4	42.9	0.000	0.000	0.316	0.0	155	0.899
9.007	0.329	80.5	39.2	0.000	0.000	0.289	0.0	267	0.274
9.006	0.802	196.6	35.5	0.000	0.000	0.262	0.0	184	0.523
9.005	0.984	241.0	30.6	0.000	0.000	0.226	0.0	162	0.588
9.004	2.126	520.8	26.4	0.000	0.000	0.195	0.0	115	1.009
9.003	2.191	536.8	22.1	0.000	0.000	0.163	0.0	106	0.986
9.002	2.346	574.9	17.0	0.000	0.000	0.125	0.0	93	0.972
9.001	1.798	440.5	11.4	0.000	0.000	0.084	0.0	89	0.719
9.000	2.082	510.0	6.0	0.000	0.000	0.044	0.0	66	0.684

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.027	31.616	9.2	750	1:2 swale 500mm	256.471	255.971	0.000	253.051	252.551	0.000
1.026	21.300	9.9	750	1:2 swale 500mm	258.612	258.112	0.000	256.471	255.971	0.000
1.025	24.973	9.0	750	1:2 swale 500mm	261.375	260.875	0.000	258.612	258.112	0.000
1.024	24.353	9.7	750	1:2 swale 500mm	263.892	263.392	0.000	261.375	260.875	0.000
8.000	9.516	1.7	1000	1:2 Swale 250mm	267.131	266.881	0.000	261.375	261.125	0.000
1.023	18.366	10.9	750	1:2 swale 500mm	265.581	265.081	0.000	263.892	263.392	0.000
7.000	14.907	2.3	1000	1:2 Swale 250mm	270.390	270.140	0.000	263.892	263.642	0.000
1.022	14.165	16.8	750	1:2 swale 500mm	266.422	265.922	0.000	265.581	265.081	0.000
1.021	18.637	19.9	750	1:2 swale 500mm	267.358	266.858	0.000	266.422	265.922	0.000
1.020	15.449	24.0	750	1:2 swale 500mm	268.003	267.503	0.000	267.358	266.858	0.000
4.012	5.574	2.5	500	1:2 swale 500mm	270.194	269.694	0.000	268.003	267.503	0.000

Link	US Node	Node Type	DS Node	Node Type
1.027	65	Junction	65_OUT	Junction
1.026	64	Junction	65	Junction
1.025	63	Junction	64	Junction
1.024	61	Junction	63	Junction
8.000	62	Junction	63	Junction
1.023	59	Junction	61	Junction
7.000	60	Junction	61	Junction
1.022	58	Junction	59	Junction
1.021	57	Junction	58	Junction
1.020	56	Junction	57	Junction
4.012	55	Junction	56	Junction

Jacques Calitz 24/05/2021 Page 7 Tylorstown Phase 4 Existing tip Reprofile

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.019	6.357	24.0	500	1:2 swale 500mm	268.687	267.768	0.419	268.003	267.503	0.000
1.018	19.787	8.6	500	1:2 swale 500mm	270.995	270.495	0.000	268.687	268.187	0.000
1.017	24.333	9.0	500	1:2 swale 500mm	273.692	273.192	0.000	270.995	270.495	0.000
1.016	24.526	8.7	500	1:2 swale 500mm	276.511	276.011	0.000	273.692	273.192	0.000
1.015	22.998	11.1	500	1:2 swale 500mm	278.587	278.087	0.000	276.511	276.011	0.000
1.014	21.548	12.2	500	1:2 swale 500mm	280.358	279.858	0.000	278.587	278.087	0.000
1.013	24.772	11.3	500	1:2 swale 500mm	282.550	282.050	0.000	280.358	279.858	0.000
1.012	21.706	11.0	500	1:2 swale 500mm	284.526	284.026	0.000	282.550	282.050	0.000
1.011	23.307	11.8	500	1:2 swale 500mm	286.500	286.000	0.000	284.526	284.026	0.000
3.002	28.635	8.6	500	1:2 swale 500mm	289.845	289.345	0.000	286.500	286.000	0.000
1.010	9.010	2.6	500	1:2 swale 500mm	290.024	289.524	0.000	286.500	286.000	0.000
1.009	2.189	3.3	500	1:2 swale 500mm	290.683	290.183	0.000	290.024	289.524	0.000
2.006	2.867	68.3	1400	Trian swale 350mm	290.725	290.375	0.000	290.683	290.333	0.000
1.008	45.308	2.8	500	1:2 swale 500mm	306.640	306.140	0.000	290.683	290.183	0.000
1.007	2.188	8.5	500	1:2 swale 500mm	306.897	306.397	0.000	306.640	306.140	0.000
1.006	3.172	99.1	1400	Trian swale 350mm	306.929	306.579	0.000	306.897	306.547	0.000
1.005	26.550	45.9	1400	Trian swale 350mm	307.508	307.158	0.000	306.929	306.579	0.000
1.004	31.862	137.3	1400	Trian swale 350mm	307.740	307.390	0.000	307.508	307.158	0.000
1.003	35.514	277.5	1400	Trian swale 350mm	307.868	307.518	0.000	307.740	307.390	0.000
1.002	35.242	100.1	1400	Trian swale 350mm	308.220	307.870	0.000	307.868	307.518	0.000
1.001	24.971	99.9	1400	Trian swale 350mm	308.470	308.120	0.000	308.220	307.870	0.000
1.000	21.664	100.3	1400	Trian swale 350mm	308.686	308.336	0.000	308.470	308.120	0.000
2.005	29.103	92.7	1400	Trian swale 350mm	291.039	290.689	0.000	290.725	290.375	0.000
2.004	34.417	107.2	1400	Trian swale 350mm	291.360	291.010	0.000	291.039	290.689	0.000
2.003	29.098	100.0	1400	Trian swale 350mm	291.651	291.301	0.000	291.360	291.010	0.000

Link	US Node	Node Type	DS Node	Node Type
1.019	30	Junction	56	Junction
1.018	29	Junction	30	Junction
1.017	28	Junction	29	Junction
1.016	27	Junction	28	Junction
1.015	26	Junction	27	Junction
1.014	25	Junction	26	Junction
1.013	24	Junction	25	Junction
1.012	23	Junction	24	Junction
1.011	22	Junction	23	Junction
3.002	21	Junction	22	Junction
1.010	18	Junction	22	Junction
1.009	17	Junction	18	Junction
2.006	16	Junction	17	Junction
1.008	9	Junction	17	Junction
1.007	8	Junction	9	Junction
1.006	7	Junction	8	Junction
1.005	6	Junction	7	Junction
1.004	5	Junction	6	Junction
1.003	4	Junction	5	Junction
1.002	3	Junction	4	Junction
1.001	2	Junction	3	Junction
1.000	1	Junction	2	Junction
2.005	15	Junction	16	Junction
2.004	14	Junction	15	Junction
2.003	13	Junction	14	Junction

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 8 Tylorstown Phase 4 Existing tip Reprofile

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
2.002	28.207	100.0	1400	Trian swale 350mm	291.933	291.583	0.000	291.651	291.301	0.000
2.001	28.633	100.1	1400	Trian swale 350mm	292.219	291.869	0.000	291.933	291.583	0.000
2.000	24.989	100.0	1400	Trian swale 350mm	292.469	292.119	0.000	292.219	291.869	0.000
3.001	27.960	5.8	500	1:2 swale 500mm	294.671	294.171	0.000	289.845	289.345	0.000
3.000	34.455	5.2	500	1:2 swale 500mm	301.269	300.769	0.000	294.671	294.171	0.000
4.011	52.704	2.5	500	1:2 swale 500mm	291.338	290.838	0.000	270.194	269.694	0.000
4.010	4.369	3.7	500	1:2 swale 500mm	292.530	292.030	0.000	291.338	290.838	0.000
4.009	41.742	2.8	500	1:2 swale 500mm	307.521	307.021	0.000	292.530	292.030	0.000
6.004	4.529	107.8	1400	Trian swale 350mm	292.572	292.222	0.000	292.530	292.180	0.000
6.003	16.740	46.6	1400	Trian swale 350mm	292.931	292.581	0.000	292.572	292.222	0.000
6.002	21.240	1062.0	1400	Trian swale 350mm	292.951	292.601	0.000	292.931	292.581	0.000
6.001	25.738	56.9	1400	Trian swale 350mm	293.403	293.053	0.000	292.951	292.601	0.000
6.000	24.641	473.9	1400	Trian swale 350mm	293.455	293.105	0.000	293.403	293.053	0.000
4.008	3.621	3.0	500	1:2 swale 500mm	308.730	308.230	0.000	307.521	307.021	0.000
4.007	36.026	2.6	500	1:2 swale 500mm	322.679	322.179	0.000	308.730	308.230	0.000
5.006	4.337	100.9	1400	Trian swale 350mm	308.773	308.423	0.000	308.730	308.380	0.000
5.005	29.538	100.1	1400	Trian swale 350mm	309.068	308.718	0.000	308.773	308.423	0.000
5.004	31.748	99.8	1400	Trian swale 350mm	309.386	309.036	0.000	309.068	308.718	0.000
5.003	36.135	171.3	1400	Trian swale 350mm	309.597	309.247	0.000	309.386	309.036	0.000
5.002	38.459	78.6	1400	Trian swale 350mm	310.086	309.736	0.000	309.597	309.247	0.000
5.001	30.557	89.1	1400	Trian swale 350mm	310.429	310.079	0.000	310.086	309.736	0.000
5.000	19.777	91.1	1400	Trian swale 350mm	310.646	310.296	0.000	310.429	310.079	0.000
4.006	4.163	3.9	500	1:2 swale 500mm	323.745	323.245	0.000	322.679	322.179	0.000
4.005	5.098	73.9	1400	Trian swale 350mm	323.814	323.464	0.000	323.745	323.395	0.000
4.004	32.800	105.8	1400	Trian swale 350mm	324.124	323.774	0.000	323.814	323.464	0.000

Link	US	Node	DS	Node
	Node	Type	Node	Type
2.002	12	Junction	13	Junction
2.001	11	Junction	12	Junction
2.000	10	Junction	11	Junction
3.001	20	Junction	21	Junction
3.000	19	Junction	20	Junction
4.011	54	Junction	55	Junction
4.010	53	Junction	54	Junction
4.009	47	Junction	53	Junction
6.004	52	Junction	53	Junction
6.003	51	Junction	52	Junction
6.002	50	Junction	51	Junction
6.001	49	Junction	50	Junction
6.000	48	Junction	49	Junction
4.008	46	Junction	47	Junction
4.007	38	Junction	46	Junction
5.006	45	Junction	46	Junction
5.005	44	Junction	45	Junction
5.004	43	Junction	44	Junction
5.003	42	Junction	43	Junction
5.002	41	Junction	42	Junction
5.001	40	Junction	41	Junction
5.000	39	Junction	40	Junction
4.006	37	Junction	38	Junction
4.005	36	Junction	37	Junction
4.004	35	Junction	36	Junction

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz Page 9 Tylorstown Phase 4 Existing tip Reprofile

Pipeline Schedule

24/05/2021

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
4.003	33.133	81.6	1400	Trian swale 350mm	324.530	324.180	0.000	324.124	323.774	0.000
4.002	43.902	114.3	1400	Trian swale 350mm	324.914	324.564	0.000	324.530	324.180	0.000
4.001	49.126	101.1	1400	Trian swale 350mm	325.400	325.050	0.000	324.914	324.564	0.000
4.000	46.087	65.5	1400	Trian swale 350mm	326.104	325.754	0.000	325.400	325.050	0.000
9.014	16.567	2.3	500	1:2 swale 500mm	244.007	243.507	0.000	236.893	236.393	0.000
9.013	15.915	2.2	500	1:2 swale 500mm	251.120	250.620	0.000	244.007	243.507	0.000
9.012	16.111	1.9	500	1:2 swale 500mm	259.595	259.095	0.000	251.120	250.620	0.000
9.011	10.418	1.5	500	1:2 swale 500mm	266.614	266.114	0.000	259.595	259.095	0.000
9.010	26.393	36.3	1400	Trian swale 350mm	267.342	266.992	0.000	266.614	266.264	0.000
10.000	7.232	9.2	500	1:2 swale 500mm	267.400	266.900	0.000	266.614	266.114	0.000
9.009	29.348	30.6	1400	Trian swale 350mm	268.300	267.950	0.000	267.342	266.992	0.000
9.008	29.268	22.0	1400	Trian swale 350mm	269.631	269.281	0.000	268.300	267.950	0.000
9.007	26.347	487.9	1400	Trian swale 350mm	269.685	269.335	0.000	269.631	269.281	0.000
9.006	31.862	81.9	1400	Trian swale 350mm	270.074	269.724	0.000	269.685	269.335	0.000
9.005	28.107	54.5	1400	Trian swale 350mm	270.590	270.240	0.000	270.074	269.724	0.000
9.004	25.117	11.7	1400	Trian swale 350mm	272.743	272.393	0.000	270.590	270.240	0.000
9.003	27.974	11.0	1400	Trian swale 350mm	275.290	274.940	0.000	272.743	272.393	0.000
9.002	31.840	9.6	1400	Trian swale 350mm	278.615	278.265	0.000	275.290	274.940	0.000
9.001	29.275	16.3	1400	Trian swale 350mm	280.410	280.060	0.000	278.615	278.265	0.000
9.000	26.229	12.2	1400	Trian swale 350mm	282.566	282.216	0.000	280.410	280.060	0.000

Link	US	Node	DS	Node
	Node	Type	Node	Type
4.003	34	Junction	35	Junction
4.002	33	Junction	34	Junction
4.001	32	Junction	33	Junction
4.000	31	Junction	32	Junction
9.014	81	Junction	81_OUT	Junction
9.013	80	Junction	81	Junction
9.012	79	Junction	80	Junction
9.011	78	Junction	79	Junction
9.010	76	Junction	78	Junction
10.000	77	Junction	78	Junction
9.009	75	Junction	76	Junction
9.008	74	Junction	75	Junction
9.007	73	Junction	74	Junction
9.006	72	Junction	73	Junction
9.005	71	Junction	72	Junction
9.004	70	Junction	71	Junction
9.003	69	Junction	70	Junction
9.002	68	Junction	69	Junction
9.001	67	Junction	68	Junction
9.000	66	Junction	67	Junction

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 10 Tylorstown Phase 4 Existing tip Reprofile

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
31	301055.947	196474.370	326.104	0.350				
					٩			
					9 0	4.000	325.754	1400
32	301079.974	196435.042	325.400	0.350	1 1	4.000	325.050	1400
					\alpha			
					0	4.001	325.050	1400
37	301197.914	196321.002	323.745	0.500	. 1	4.005	323.395	1400
40	204067 270	100217.040	202.455	0.250	0	4.006	323.245	500
48	301067.270	196317.940	293.455	0.350				
					~			
					0	6.000	293.105	1400
53	301138.995	196258.979	292.530	0.500	1, 2	6.004	292.180	1400
					2	4.009	292.030	500
					0	4.010	292.030	500
46	301170.237	196291.867	308.730	0.500	, , 1	5.006	308.380	1400
					2	4.007	308.230	500
							222 222	
39	301035.850	196426.929	310.646	0.350	0	4.008	308.230	500
39	301033.830	190420.929	310.040	0.550				
					<u></u>			
					0	5.000	310.296	1400
56	301096.312	196213.138	268.003	0.500	1 1	4.012	267.503	500
					2	1.019	267.503	500
					0	1.020	267.503	750
1	301174.036	196289.567	308.686	0.350				
					٩			
					0	1.000	308.336	1400
8	301302.967	196165.496	306.897	0.500	1	1.006	306.547	1400
					1 -			
					0 200			
4.7	204270.067	100121 275	200.602	0.500	0	1.007	306.397	500
17	301270.067	196131.275	290.683	0.500	1 2 2	2.006 1.008	290.333 290.183	1400 500
						1.000	250.105	300
					0 0	1.009	290.183	500
22	301262.636	196122.897	286.500	0.500	1 1	1.010	286.000	500
					2	3.002	286.000	500
					0	1.011	286.000	500
10	301142.813	196254.689	292.469	0.350	U			
					a			
					4, -	2.000	202.115	4.00
					0	2.000	292.119	1400

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 11 Tylorstown Phase 4 Existing tip Reprofile

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
19	301345.263	196085.730	301.269	0.500				
					0	3.000	300.769	500
20	301312.300	196095.760	294.671	0.500	1	3.000	294.171	500
					0	3.001	294.171	500
26	301183.626	196168.705	278.587	0.500	1	1.014	278.087	500
					0 K			
					0	1.015	278.087	500
33	301115.327	196400.931	324.914	0.350	. 1	4.001	324.564	1400
	0011101017		0	0.000			021.001	
					1			
	201207.502	105100 015	200.045	0.500	0	4.002	324.564	1400
21	301287.682	196109.016	289.845	0.500	1	3.001	289.345	500
					8			
					0	3.002	289.345	500
79	301080.978	196193.883	259.595	0.500	, 1	9.011	259.095	500
					0 2	9.012	259.095	500
35	301170.656	196347.331	324.124	0.350	, 1	4.003	323.774	1400
					'\			
					4,	4.004	222 774	4.400
78	301087.610	196201.918	266.614	0.500	0	4.004	323.774 266.114	1400 500
70	301007.010	130201.310	200.014	0.500		9.010	266.264	1400
					0 0	9.011	266.114	500
66	301346.293	196028.882	282.566	0.350	0 %			
					0	9.000	282.216	1400
72	301201.655	196115.312	270.074	0.350	0_	9.005	269.724	1400
					0	9.006	269.724	1400
76	301108.271	196185.495	267.342	0.350	1	9.009	266.992	1400
					0 1			
					1		255 222	4.400
41	301071.236	196391.133	310.086	0.350	. 1	9.010 5.001	266.992 309.736	1400 1400
71	3010/1.230	120331.133	310.000	0.330	1	3.001	303.730	1400
					8			
					0	5.002	309.736	1400
43	301124.260	196338.685	309.386	0.350	1	5.003	309.036	1400
					· ·			
					, 0	5.004	309.036	1400
						1		

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 12 Tylorstown Phase 4 Existing tip Reprofile

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections		Link	IL (m)	Dia (mm)
50	301106.166	196285.949	292.951	0.350	1	1	6.001	292.601	1400
						0	6.002	292.601	1400
3	301207.543	196257.132	308.220	0.350	1	1	1.001	307.870	1400
					-0	0	1.002	307.870	1400
5	301259.126	196208.718	307.740	0.350	1	1	1.003	307.390	1400
10	201100 710	105015 707	204 202	0.050	•	0	1.004	307.390	1400
12	301180.742	196216.787	291.933	0.350	1	1	2.001	291.583	1400
14	301222.816	196177.884	201 260	0.350		0	2.002	291.583 291.010	1400 1400
14	301222.816	1901/7.884	291.360	0.350	1	1	2.003	291.010	1400
					0	0	2.004	291.010	1400
68	301298.894	196057.715	278.615	0.350	0 5	1	9.001	278.265	1400
	201217.011	105007.070	070 740	0.050		0	9.002	278.265	1400
70	301247.311	196087.973	272.743	0.350	0 0	0	9.003	272.393 272.393	1400
74	301155.512	196150.795	269.631	0.350	0 0	1	9.007	269.281	1400
2.4	204222 662	406445 444	202.550	0.500		0	9.008	269.281	1400
24	301223.663	196145.414	282.550	0.500	0 6	1	1.012	282.050	500
28	2011/11 522	196190.712	272 602	0.500		0	1.013 1.016	282.050 273.192	500 500
20	301141.332	130130.712	273.032	0.500	0 50				
80	301066.595	196186.624	251.120	0.500		0	1.017 9.012	273.192 250.620	500 500
80	301000.333	130100.024	231.120	0.500	0 0				
81	301053.072	196178.233	244.007	0.500		0	9.013	250.620 243.507	500 500
01	301033.072	130170.233	244.007	0.300	0 1				
81_OUT	301042.922	196165.140	236.893	0.500	•	0	9.014	243.507 236.393	500 500
91_001	301042.922	150105.140	230.693	0.500	1	1	5.014	230.333	500

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 13 Tylorstown Phase 4 Existing tip Reprofile

58	301065.580	196227.882	200 422		h Connections			(m)	(mm)
			266.422	0.500		1	1.021	265.922	750
					1	0	1.022	265.922	750
61	301036.396	196242.239	263.892	0.500	2	1	1.023	263.392	750
					0 ~	2	7.000	263.642	1000
					1	0	1.024	263.392	750
23	301242.578	196134.767	284.526	0.500		1	1.024	284.026	500
					0 ~				
					1				
63	201015 256	106254 220	261 275	0.500		0	1.012 8.000	284.026 261.125	500
05	301015.256	196254.329	261.375	0.500	0 ~ /	1 2	1.024	261.125	1000 750
					2	-	1.02	200.073	730
						0	1.025	260.875	750
64	300993.688	196266.918	258.612	0.500	0 —	1	1.025	258.112	750
					a a				
					`1	0	1.026	258.112	750
38	301195.173	196317.869	322.679	0.500	,1	1	4.006	322.179	500
					0 4	0	4.007	322.179	500
47	301167.700	196289.284	307.521	0.500		1	4.007	307.021	500
					,1				
					•		4.000	207.024	F.00
62	301020.833	196262.040	267.131	0.250		0	4.009	307.021	500
02	301020.033	130202.040	207.131	0.230					
<u> </u>	204425 022	406255.064	204 220	0.500	0	0	8.000	266.881	1000
54	301135.833	196255.964	291.338	0.500	_1	1	4.010	290.838	500
					0 2	0	4.011	290.838	500
9	301301.236	196164.158	306.640	0.500	_1	1	1.007	306.140	500
					g de la companya de l				
					0 4	0	1.008	306.140	500
18	301268.576	196129.672	290.024	0.500		1	1.009	289.524	500
					0 4	0	1.010	289.524	500
65	300975.116	196277.348	256.471	0.500		1	1.026	255.971	750
		- -	_		0 5		_		
					1				
65_OUT	300948.150	196293.853	253.051	0.500		0	1.027 1.027	255.971 252.551	750 750
03_001 :	JUUJ46.1JU	130233.033	233.031	0.300		1	1.027	232.331	750
					°1				
					,				

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 14 Tylorstown Phase 4 Existing tip Reprofile

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
30	301101.956	196210.213	268.687	0.919	0 5	1.018	268.187	500
					1 0	1.019	267.768	500
55	301099.954	196217.358	270.194	0.500	, 1		269.694	500
					0 P	4.012	269.694	500
77	301092.140	196207.556	267.400	0.500				
2.4	201146 002	100270 522	224 520	0.250	° C		266.900	500
34	301146.992	196370.522	324.530	0.350	1 1		324.180 324.180	1400 1400
60	301045.240	196254.239	270.390	0.250		4.003		1400
					° C		270.140	1000
40	301049.747	196412.857	310.429	0.350	1 1		310.079	1400
40	201000 000	105050 510	222 527	0.050	, C		310.079	1400
42	301098.098	196363.610	309.597	0.350	1 1		309.247	1400
44	301146.628	196316.155	309.068	0.350	1 1	5.004	308.718	1400
	301189.690	106274 504	200 470	0.250	C		308.718	1400
2	301189.090	196274.591	308.470	0.350	1		308.120	1400
4	301232.789	196232.543	307.868	0.350	° C		308.120 307.518	1400 1400
							307.518	1400
6	301282.195	196186.741	307.508	0.350	C		307.518	1400
	00==0=		007.000	0.000	1 0 0		307.158	1400
11	301160.600	196237.137	292.219	0.350	1		291.869	1400
	332230.000	30 0 20 1 1 20 1		2.333				
13	301201.603	196197.801	291.651	0.350	° C		291.869 291.301	1400 1400
13	301201.003	150157.001	291.031	0.550	1 20 0		291.301	1400
						1000		50

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz 24/05/2021 Page 15 Tylorstown Phase 4 Existing tip Reprofile

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
15	301247.828	196154.242	291.039	0.350	1 1	2.004	290.689	1400
					0	2.005	290.689	1400
25	301202.157	196157.709	280.358	0.500	1	1.013	279.858	500
					`1 0	1.014	279.858	500
27	301163.608	196180.027	276.511	0.500	1	1.015	276.011	500
					0	1.016	276.011	500
29	301119.745	196201.548	270.995	0.500	1	1.017	270.495	500
					1			
					0	1.018	270.495	500
57	301082.401	196219.858	267.358	0.500	1	1.020	266.858	750
					1			
<u></u>	204052 722	106222 040	265 504	0.500	0	1.021	266.858	750
59	301052.733	196233.848	265.581	0.500	1	1.022	265.081	750
					1			
45	201167.105	100204.007	200 772	0.250	0	1.023	265.081	750
45	301167.105	196294.867	308.773	0.350	1	5.005	308.423	1400
					* 70			
36	301194.282	196324.579	323.814	0.350	. 0	5.006 4.004	308.423 323.464	1400 1400
30	301194.202	190324.379	323.814	0.330	1	4.004	323.404	1400
					7	4.005	222 454	4.400
52	301135.517	196261.880	292.572	0.350	0	4.005 6.003	323.464 292.222	1400 1400
					1			
					~ 0	6.004	292.222	1400
7	301300.593	196167.599	306.929	0.350	1 1	1.005	306.579	1400
					0	1.006	306.579	1400
16	301268.038	196133.300	290.725	0.350	1 1	2.005	290.375	1400
					0	2.006	290.375	1400
49	301086.711	196302.800	293.403	0.350	1 1	6.000	293.053	1400
					0	6.001	293.053	1400
51	301122.992	196272.987	292.931	0.350	1,	6.002	292.581	1400
					8			
					<i>⊸</i> 0	6.003	292.581	1400
				1				

File: Proposed model FSR - opt Network: Storm Network

Jacques Calitz 24/05/2021

Page 16 Tylorstown Phase 4 Existing tip Reprofile

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL (m)	Dia (mm)
67	301323.475	196041.816	280.410	0.350	1	9.000	280.060	1400
					0	9.001	280.060	1400
69	301271.143	196073.324	275.290	0.350	1	9.002	274.940	1400
					1 0	9.003	274.940	1400
71	301225.519	196100.462	270.590	0.350	1	9.004	270.240	1400
					1 0	9.005	270.240	1400
73	301176.356	196134.680	269.685	0.350	0 5	9.006	269.335	1400
					1 0	9.007	269.335	1400
75	301131.934	196168.135	268.300	0.350	1	9.008	267.950	1400
					0	9.009	267.950	1400

Simulation Settings

Rainfall Methodology	FSR	Skip Steady State	\checkmark
FSR Region	England and Wales	Drain Down Time (mins)	360
M5-60 (mm)	20.000	Additional Storage (m³/ha)	20.0
Ratio-R	0.200	Check Discharge Rate(s)	Х
Summer CV	0.750	Check Discharge Volume	\checkmark
Winter CV	0.840	100 year 360 minute (m³)	
Analysis Speed	Detailed		

Storm Durations											
15	30	60	120	180	240	360	480	600	720	960	1440

(CC %)	Additional Area (A %)	Additional Flow (Q %)
0	0	0
0	0	0
0	0	0
0	0	0
40	0	0
	(CC %) 0 0 0	(CC %) (A %) 0 0 0 0 0 0 0 0

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	2.712	Storm Duration (mins)	360
Soil Index	5	Betterment (%)	0
SPR	0.53	PR	
CWI		Runoff Volume (m³)	

File: Proposed model FSR - opt

Network: Storm Network

Jacques Calitz 24/05/2021

Page 17

Tylorstown Phase 4
Existing tip
Reprofile

Node 56 Offline Weir Control

Flap Valve x Loop to Node 77 Invert Level (m) 267.750 Width (m) 1.000 Discharge Coefficient 0.590

Node 20 Online Orifice Control

Flap Valve x Invert Level (m) 294.171
Replaces Downstream Link x Diameter (m) 0.150

Discharge Coefficient 0.600

Node 20 Online Weir Control

Flap Valve x Invert Level (m) 294.571 D
Replaces Downstream Link x Width (m) 2.100

Discharge Coefficient 0.590

Node 21 Online Orifice Control

Flap Valve x Invert Level (m) 289.345 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

Node 21 Online Weir Control

Flap Valve x Invert Level (m) 289.745 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 23 Online Orifice Control

Flap Valve x Invert Level (m) 284.026 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 23 Online Weir Control

Flap Valve x Invert Level (m) 284.426 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 24 Online Orifice Control

Flap Valve x Invert Level (m) 282.050 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 24 Online Weir Control

Flap Valve x Invert Level (m) 282.345 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 25 Online Orifice Control

Flap Valve x Invert Level (m) 279.858 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 25 Online Weir Control

Flap Valve x Invert Level (m) 280.258 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

File: Proposed model FSR - opt Network: Storm Network

Jacques Calitz 24/05/2021 Page 18
Tylorstown Phase 4
Existing tip
Reprofile

Node 26 Online Orifice Control

Flap Valve x Invert Level (m) 278.087 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 26 Online Weir Control

Flap Valve x Invert Level (m) 278.487 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 27 Online Orifice Control

Flap Valve x Invert Level (m) 276.011 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 27 Online Weir Control

Flap Valve x Invert Level (m) 276.411 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 28 Online Orifice Control

Flap Valve x Invert Level (m) 273.192 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 28 Online Weir Control

Flap Valve x Invert Level (m) 273.592 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 29 Online Orifice Control

Flap Valve x Invert Level (m) 270.495 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 29 Online Weir Control

Flap Valve x Invert Level (m) 270.895 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 30 Online Orifice Control

Flap Valve x Invert Level (m) 267.768 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 30 Online Weir Control

Flap Valve x Invert Level (m) 268.587 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 2.100

Node 57 Online Orifice Control

Flap Valve x Invert Level (m) 266.858 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

File: Proposed model FSR - opt

Network: Storm Network Jacques Calitz 24/05/2021 Page 19 Tylorstown Phase 4 Existing tip

Reprofile

Node 57 Online Weir Control

Flap Valve x Invert Level (m) 267.158 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.950

Node 58 Online Orifice Control

Flap Valve x Invert Level (m) 265.922 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

Node 58 Online Weir Control

Flap Valve x Invert Level (m) 266.222 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.950

Node 59 Online Orifice Control

Flap Valve x Invert Level (m) 265.081 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

Node 59 Online Weir Control

Flap Valve x Invert Level (m) 265.381 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.950

Node 36 Online V-Notch Weir Control

Flap Valve x Invert Level (m) 323.464 Discharge Coefficient 0.590 Replaces Downstream Link x Angle of V (degrees) 120.000

Node 45 Online V-Notch Weir Control

Flap Valve x Invert Level (m) 308.423 Discharge Coefficient 0.590 Replaces Downstream Link x Angle of V (degrees) 120.000

Node 52 Online V-Notch Weir Control

Flap Valve x Invert Level (m) 292.222 Discharge Coefficient 0.590 Replaces Downstream Link x Angle of V (degrees) 120.000

Node 7 Online V-Notch Weir Control

Flap Valve x Invert Level (m) 306.579 Discharge Coefficient 0.590 Replaces Downstream Link x Angle of V (degrees) 120.000

Node 16 Online V-Notch Weir Control

Flap Valve x Invert Level (m) 290.375 Discharge Coefficient 0.590 Replaces Downstream Link x Angle of V (degrees) 120.000

Node 67 Online Orifice Control

Flap Valve x Invert Level (m) 280.060 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

Capita File: Proposed model FSR - opt

Network: Storm Network

Jacques Calitz 24/05/2021 Page 20 Tylorstown Phase 4 Existing tip Reprofile

Node 67 Online Weir Control

Flap Valve x	Invert Level (m)	280.310	Discharge Coefficient	0.590
Renlaces Downstream Link x	Width (m)	1 000		

Node 68 Online Orifice Control

Flap Valve	х	Invert Level (m)	278.265	Discharge Coefficient	0.600
Replaces Downstream Link	Х	Diameter (m)	0.150		

Node 68 Online Weir Control

Flap Valve	Х	Invert Level (m)	278.515	Discharge Coefficient	0.590
Replaces Downstream Link	х	Width (m)	1.000		

Node 69 Online Orifice Control

Flap Valve	х	Invert Level (m)	274.940	Discharge Coefficient	0.600
Replaces Downstream Link	Х	Diameter (m)	0.150		

Node 69 Online Weir Control

Flap Valve	Х	Invert Level (m)	275.190	Discharge Coefficient	0.590
Replaces Downstream Link	Х	Width (m)	1.000		

Node 70 Online Orifice Control

Flap Valve	х	Invert Level (m)	272.393	Discharge Coefficient	0.600
Replaces Downstream Link	Х	Diameter (m)	0.150		

Node 70 Online Weir Control

Flap Valve	х	Invert Level (m)	272.643	Discharge Coefficient	0.590
Replaces Downstream Link	Х	Width (m)	1.000		

Node 71 Online Orifice Control

Flap Valve	х	Invert Level (m)	270.240	Discharge Coefficient	0.600
Replaces Downstream Link	х	Diameter (m)	0.150		

Node 71 Online Weir Control

Flap Valve	Х	Invert Level (m)	270.490	Discharge Coefficient	0.590
Replaces Downstream Link	х	Width (m)	1.000		

Node 72 Online Orifice Control

Flap Valve	х	Invert Level (m)	269.724	Discharge Coefficient	0.600
Replaces Downstream Link	Х	Diameter (m)	0.150		

Node 72 Online Weir Control

Flap Valve	Х	Invert Level (m)	269.974	Discharge Coefficient	0.590
Replaces Downstream Link	Х	Width (m)	1.000		

File: Proposed model FSR - opt

Network: Storm Network

Jacques Calitz 24/05/2021

Page 21 Tylorstown Phase 4 Existing tip Reprofile

Node 73 Online Orifice Control

Flap Valve x Invert Level (m) 269.335 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

Node 73 Online Weir Control

Flap Valve x Invert Level (m) 269.585 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 74 Online Orifice Control

Flap Valve x Invert Level (m) 269.281 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

Node 74 Online Weir Control

Flap Valve x Invert Level (m) 269.531 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 75 Online Orifice Control

Flap Valve x Invert Level (m) 267.950 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.150

Node 75 Online Weir Control

Flap Valve x Invert Level (m) 268.200 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 76 Online Orifice Control

Flap Valve x Design Depth (m) 0.500 Discharge Coefficient 0.600

Replaces Downstream Link x Design Flow (l/s) 20.0

Invert Level (m) 266.992 Diameter (m) 0.150

Node 76 Online Weir Control

Flap Valve x Invert Level (m) 267.242 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Rainfall

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
2 year 15 minute summer	112.777	31.912	2 year 240 minute winter	19.398	7.716
2 year 15 minute winter	79.142	31.912	2 year 360 minute summer	23.988	6.173
2 year 30 minute summer	81.416	23.038	2 year 360 minute winter	15.593	6.173
2 year 30 minute winter	57.134	23.038	2 year 480 minute summer	19.942	5.270
2 year 60 minute summer	61.301	16.200	2 year 480 minute winter	13.249	5.270
2 year 60 minute winter	40.727	16.200	2 year 600 minute summer	17.030	4.658
2 year 120 minute summer	42.559	11.247	2 year 600 minute winter	11.636	4.658
2 year 120 minute winter	28.275	11.247	2 year 720 minute summer	15.715	4.212
2 year 180 minute summer	35.121	9.038	2 year 720 minute winter	10.561	4.212
2 year 180 minute winter	22.829	9.038	2 year 960 minute summer	13.650	3.594
2 year 240 minute summer	29.197	7.716	2 year 960 minute winter	9.042	3.594

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz Page 22 Tylorstown Phase 4 Existing tip Reprofile

Rainfall

24/05/2021

Event	Peak Intensity	Average Intensity	Event	Peak Intensity	Average Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
2 year 1440 minute summer	10.717	2.872	30 year 1440 minute winter	11.127	4.437
2 year 1440 minute winter	7.203	2.872	100 year 15 minute summer	273.602	77.420
5 year 15 minute summer	147.002	41.597	100 year 15 minute winter	192.002	77.420
5 year 15 minute winter	103.160	41.597	100 year 30 minute summer	202.154	57.203
5 year 30 minute summer	104.975	29.704	100 year 30 minute winter	141.863	57.203
5 year 30 minute winter	73.667	29.704	100 year 60 minute summer	153.288	40.510
5 year 60 minute summer	77.950	20.600	100 year 60 minute winter	101.841	40.510
5 year 60 minute winter	51.788	20.600	100 year 120 minute summer	103.325	27.306
5 year 120 minute summer	53.163	14.049	100 year 120 minute winter	68.647	27.306
5 year 120 minute winter	35.320	14.049	100 year 180 minute summer	82.228	21.160
5 year 180 minute summer	43.395	11.167	100 year 180 minute winter	53.450	21.160
5 year 180 minute winter	28.208	11.167	100 year 240 minute summer	66.740	17.637
5 year 240 minute summer	35.814	9.465	100 year 240 minute winter	44.341	17.637
5 year 240 minute winter	23.794	9.465	100 year 360 minute summer	52.784	13.583
5 year 360 minute summer	28.994	7.461	100 year 360 minute winter	34.311	13.583
5 year 360 minute winter	18.847	7.461	100 year 480 minute summer	42.569	11.250
5 year 480 minute summer	23.941	6.327	100 year 480 minute winter	28.282	11.250
5 year 480 minute winter	15.906	6.327	100 year 600 minute summer	35.470	9.702
5 year 600 minute summer	20.349	5.566	100 year 600 minute winter	24.235	9.702
5 year 600 minute winter	13.904	5.566	100 year 720 minute summer	32.039	8.587
5 year 720 minute summer	18.700	5.012	100 year 720 minute winter	21.532	8.587
5 year 720 minute winter	12.568	5.012	100 year 960 minute summer	26.838	7.067
5 year 960 minute summer	16.127	4.247	100 year 960 minute winter	17.778	7.067
5 year 960 minute winter	10.683	4.247	100 year 1440 minute summer	19.990	5.358
5 year 1440 minute summer	12.542	3.361	100 year 1440 minute winter	13.435	5.358
5 year 1440 minute winter	8.429	3.361	100 year +40% CC 15 minute summer	383.043	108.388
30 year 15 minute summer	212.586	60.154	100 year +40% CC 15 minute winter	268.802	108.388
30 year 15 minute winter	149.183	60.154	100 year +40% CC 30 minute summer	283.016	80.084
30 year 30 minute summer	155.010	43.862	100 year +40% CC 30 minute winter	198.608	80.084
30 year 30 minute winter	108.779	43.862	100 year +40% CC 60 minute summer	214.603	56.713
30 year 60 minute summer	116.589	30.811	100 year +40% CC 60 minute winter	142.577	56.713
30 year 60 minute winter	77.459	30.811	100 year +40% CC 120 minute summer	144.655	38.228
30 year 120 minute summer	78.946	20.863	100 year +40% CC 120 minute winter	96.105	38.228
30 year 120 minute winter	52.450	20.863	100 year +40% CC 180 minute summer	115.119	29.624
30 year 180 minute summer	63.479	16.335	100 year +40% CC 180 minute winter	74.831	29.624
30 year 180 minute winter	41.263	16.335	100 year +40% CC 240 minute summer	93.436	24.692
30 year 240 minute summer	51.899	13.715	100 year +40% CC 240 minute winter	62.077	24.692
30 year 240 minute winter	34.480	13.715	100 year +40% CC 360 minute summer	73.898	19.016
30 year 360 minute summer	41.522	10.685	100 year +40% CC 360 minute winter	48.036	19.016
30 year 360 minute winter	26.991	10.685	100 year +40% CC 480 minute summer	59.596	15.750
30 year 480 minute summer	33.795	8.931	100 year +40% CC 480 minute winter	39.594	15.750
30 year 480 minute winter	22.452	8.931	100 year +40% CC 600 minute summer	49.658	13.583
30 year 600 minute summer	28.377	7.762	100 year +40% CC 600 minute winter	33.930	13.583
30 year 600 minute winter	19.389	7.762	100 year +40% CC 720 minute summer	44.855	12.022
30 year 720 minute summer	25.804	6.916	100 year +40% CC 720 minute winter	30.145	12.022
30 year 720 minute winter	17.342	6.916	100 year +40% CC 960 minute summer	37.573	9.894
30 year 960 minute summer	21.860	5.756	100 year +40% CC 960 minute winter	24.889	9.894
30 year 960 minute winter	14.481	5.756	100 year +40% CC 1440 minute summer	27.987	7.501
30 year 1440 minute summer	16.557	4.437	100 year +40% CC 1440 minute winter	18.809	7.501

Jacques Calitz 24/05/2021 Page 23 Tylorstown Phase 4 Existing tip Reprofile

Results for 2 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event		US lode	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winte		·ouc	11	325.860	0.106	9.7	0.4015	0.0000	OK
15 minute winte			12	325.196	0.146	19.5	0.6379	0.0000	OK
30 minute winte			22	323.285	0.040	30.1	0.0000	0.0000	OK
15 minute winte			11	293.212	0.107	3.6	0.1524	0.0000	OK
30 minute winte		00:50%	21	293.200	0.121	5.5	0.8453	0.0000	OK
30 minute winte			22	292.104	0.074	90.1	0.0000	0.0000	OK
30 minute winte			22	308.286	0.056	63.1	0.0000	0.0000	OK
15 minute winte			11	310.403	0.107	8.2	0.3467	0.0000	OK
30 minute winte			24	267.650	0.147	178.7	0.2143	0.0000	ОК
30 minute winte	r 1.02	20:50%	25	267.327	0.147	179.7	2.4060	0.0000	ОК
15 minute winte	r 1		10	308.414	0.078	3.3	0.1002	0.0000	OK
15 minute winte	r 1.00	00:50%	11	308.322	0.094	5.5	0.0000	0.0000	OK
30 minute winte	r 8		24	306.442	0.045	23.7	0.0000	0.0000	OK
30 minute winte	r 17		25	290.234	0.051	49.6	0.0000	0.0000	OK
30 minute winte	r 22		24	286.081	0.081	61.6	0.0452	0.0000	OK
15 minute winte	r 10		10	292.197	0.078	3.4	0.1060	0.0000	OK
15 minute winte	r 2.00	00:50%	11	292.087	0.093	5.3	0.0000	0.0000	OK
15 minute winte	r 19		10	300.783	0.014	4.8	0.0190	0.0000	OK
15 minute winte	r 3.00	00:50%	11	297.486	0.016	5.6	0.0010	0.0000	OK
15 minute winte	r 20		12	294.290	0.119	9.6	0.1345	0.0000	OK
15 minute winte	r 3.00	01:50%	11	291.782	0.024	11.2	0.0067	0.0000	OK
30 minute winte	r 26		25	278.552	0.465	77.7	0.5179	0.0000	OK
15 minute winte	r 33		13	324.732	0.168	24.5	0.5848	0.0000	OK
15 minute winte	r 21		12	289.510	0.165	15.1	0.1994	0.0000	OK
Link Event	US	Link	DS			-	low/Cap	Link	Discharge
(Outflow)	Node		Node		/s)	(m/s)		Vol (m³)	Discharge Vol (m³)
(Outflow) 15 minute winter	Node 31	4.000	Node 32		/s) 9.0	(m/s) 0.301	0.041	Vol (m³) 1.4739	_
(Outflow) 15 minute winter 15 minute winter	Node 31 32	4.000 4.001	Node 32 33		/s) 9.0 17.2	(m/s) 0.301 0.362	0.041 0.097	Vol (m³) 1.4739 2.3976	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37	4.000 4.001 4.006	Node 32 33 38	e (I <u>,</u>	9.0 17.2 30.1	(m/s) 0.301 0.362 1.407	0.041 0.097 0.008	Vol (m³) 1.4739 2.3976 0.0891	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter	Node 31 32 37 48	4.000 4.001 4.006 6.000	Node 32 33 38 6.000:5	e (I <u>,</u>	9.0 17.2 30.1 3.3	(m/s) 0.301 0.362 1.407 0.165	0.041 0.097 0.008 0.041	Vol (m³) 1.4739 2.3976 0.0891 0.3073	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48	4.000 4.001 4.006 6.000 6.000	Node 32 33 38 6.000:5	e (I	/s) 9.0 17.2 30.1 3.3 4.9	(m/s) 0.301 0.362 1.407 0.165 0.187	0.041 0.097 0.008 0.041 0.060	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53	4.000 4.001 4.006 6.000 6.000 4.010	Node 32 33 38 6.000:5 49 54	e (I	9.0 17.2 30.1 3.3 4.9 90.1	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028	0.041 0.097 0.008 0.041 0.060 0.022	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46	4.000 4.001 4.006 6.000 6.000 4.010 4.008	Node 32 33 38 6.000:5 49 54 47	e (I	9.0 17.2 30.1 3.3 4.9 90.1 63.0	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880	0.041 0.097 0.008 0.041 0.060 0.022 0.014	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000	Node 32 33 38 6.000:5 49 54 47 40	e (I,	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5	e (I,	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880	0.041 0.097 0.008 0.041 0.060 0.022 0.014	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir	Node 32 33 38 6.000:5 49 54 47 40 1.020:5	e (I,50%	9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57	e (I,50%)	9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (I,50%)	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (I,50%)	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (I,50%)	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9	e (I,50%)	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23	e (I, 50% 150% 1	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (I, 50% 150% 1	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (I, 50% 150% 150%	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3 5.2	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233 0.246	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018 0.029	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838 0.2644	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	e (I, 50% 150% 150%	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3 5.2 4.7	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233 0.246 0.596	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018 0.029 0.001	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838 0.2644 0.1372	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	e (I, 50% 1 50% 50% 50%	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3 5.2 4.7 5.5	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233 0.246 0.596 0.144	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018 0.029 0.001	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838 0.2644 0.1372 0.8249	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	e (I, 50% 1 50% 50% 50%	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3 5.2 4.7 5.5 8.8	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233 0.246 0.596 0.144 0.705	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018 0.029 0.001 0.002	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838 0.2644 0.1372 0.8249 0.1751	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	e (I, 50% 1 50% 50% 50%	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3 5.2 4.7 5.5 8.8 11.0	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233 0.246 0.596 0.144 0.705 0.179	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018 0.029 0.001 0.002 0.003 0.003	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838 0.2644 0.1372 0.8249 0.1751 1.0538	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	e (I, 50% 1 50% 50% 50%	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3 5.2 4.7 5.5 8.8	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233 0.246 0.596 0.144 0.705	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018 0.029 0.001 0.002	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838 0.2644 0.1372 0.8249 0.1751	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20 26	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.001 3.001 1.015	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5 21 27	e (I, 50% 150% 50% 50% 50% 50% 50% 50% 50% 50% 50%	/s) 9.0 17.2 30.1 3.3 4.9 90.1 63.0 7.9 78.3 0.0 78.7 3.2 5.4 23.7 49.6 61.7 3.3 5.2 4.7 5.5 8.8 11.0 77.5	(m/s) 0.301 0.362 1.407 0.165 0.187 2.028 1.880 0.274 1.173 0.476 0.223 0.251 1.092 1.725 0.222 0.233 0.246 0.596 0.144 0.705 0.179 0.392	0.041 0.097 0.008 0.041 0.060 0.022 0.014 0.042 0.090 0.091 0.018 0.030 0.009 0.011 0.027 0.018 0.029 0.001 0.002 0.003 0.003	Vol (m³) 1.4739 2.3976 0.0891 0.3073 0.3516 0.1943 0.1213 0.5908 1.1822 3.1951 0.1612 0.2348 0.0476 0.0630 8.0975 0.1838 0.2644 0.1372 0.8249 0.1751 1.0538 8.4056	Vol (m³)

Jacques Calitz 24/05/2021 Page 24 Tylorstown Phase 4 Existing tip Reprofile

Results for 2 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	3.002:50%	12	287.708	0.036	17.4	0.1324	0.0000	OK
60 minute winter	79	49	259.120	0.025	20.6	0.0000	0.0000	OK
30 minute winter	35	21	323.956	0.182	31.0	0.4750	0.0000	OK
60 minute winter	78	49	266.137	0.023	20.6	0.0000	0.0000	OK
30 minute winter	66	21	282.276	0.060	4.6	0.1509	0.0000	OK
30 minute winter	72	27	269.989	0.265	19.7	0.5428	0.0000	OK
60 minute winter	76	48	267.257	0.265	20.8	0.2009	0.0000	OK
15 minute winter	41	12	309.886	0.150	22.4	0.4569	0.0000	OK
30 minute summer	43	21	309.212	0.176	29.6	0.4405	0.0000	OK
30 minute summer	50	20	292.811	0.209	19.0	0.2480	0.0000	OK
30 minute winter	6.002:50%	21	292.790	0.199	20.0	0.3861	0.0000	OK
15 minute winter	3	12	308.006	0.136	14.6	0.2249	0.0000	OK
15 minute winter	1.002:50%	13	307.839	0.145	17.3	0.0000	0.0000	OK
30 minute winter	5	23	307.580	0.190	22.7	0.3678	0.0000	OK
15 minute winter	12	12	291.716	0.133	13.6	0.1802	0.0000	OK
15 minute winter	2.002:50%	13	291.581	0.139	15.5	0.0000	0.0000	OK
30 minute winter	14	23	291.168	0.158	20.7	0.2865	0.0000	OK
30 minute winter	2.004:50%	24	291.013	0.163	23.2	1.4916	0.0000	OK
30 minute winter	68	22	278.419	0.154	12.7	0.3647	0.0000	OK
30 minute winter	70	26	272.612	0.219	17.5	0.3920	0.0000	OK
60 minute winter	74	46	269.542	0.261	20.1	0.4077	0.0000	OK
30 minute winter	24	24	282.406	0.356	69.6	0.3415	0.0000	OK
30 minute winter	28	25	273.664	0.472	88.0	0.5164	0.0000	OK
30 minute winter	1.017:50%	25	271.936	0.092	89.2	0.0000	0.0000	OK
60 minute winter	80	49	250.647	0.027	20.6	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	21	3.002	22	17.4	0.703	0.006	0.4361	
60 minute winter	79	9.012	80	20.6	1.433	0.004	0.2312	
30 minute winter	35	4.004	36	30.3	0.411	0.175	2.4521	
60 minute winter	78	9.011	79	20.6	1.538	0.003	0.1393	
30 minute winter	66	9.000	67	4.6	0.309	0.009	0.5604	
30 minute winter	72	9.006	73	19.4	0.226	0.099	3.1277	
60 minute winter	76	9.010	78	20.6	0.659	0.070	0.8267	
15 minute winter	41	5.002	42	20.9	0.371	0.104	2.2900	
30 minute summer	43	5.004	44	28.4	0.436	0.160	2.0700	
30 minute summer	50	6.002	6.002:50%	18.3	0.224	0.336	0.8875	
30 minute winter	50	6.002	51	19.7	0.329	0.362	0.6531	
15 minute winter	3	1.002	1.002:50%	14.4	0.371	0.081	0.6959	
15 minute winter	3	1.002	4	16.9	0.306	0.095	0.9962	
30 minute winter	5	1.004	6	22.4	0.407	0.148	1.7945	
15 minute winter	12	2.002	2.002:50%	13.5	0.367	0.076	0.5221	
15 minute winter	12	2.002	13	15.2	0.352	0.086	0.6568	
30 minute winter	14	2.004	2.004:50%	20.6	0.409	0.120	0.8864	
30 minute winter	14	2.004	15	22.5	0.423	0.131	0.9158	
30 minute winter	68	9.002	69	12.5	0.391	0.022	1.4369	
30 minute winter	70	9.004	71	16.5	0.358	0.032	1.9038	
60 minute winter	74	9.008	75	20.0	0.357	0.053	2.4274	
30 minute winter	24	1.013	25	69.4	0.390	0.029	8.8190	
30 minute winter	28	1.017	1.017:50%	87.9	1.395	0.033	0.7667	
30 minute winter	28	1.017	29	89.2	0.342	0.034	4.5542	
60 minute winter	80	9.013	81	20.6	1.377	0.004	0.2378	

US

Peak

Node Event

File: Proposed model FSR - opt Network: Storm Network

Node

Flood

Jacques Calitz 24/05/2021

Depth Inflow

Page 25 Tylorstown Phase 4 Existing tip Reprofile

Status

Results for 2 year Critical Storm Duration. Lowest mass balance: 97.13%

Level

Node Event	U		Peak	Levei	Deptil	IIIIIOW	Noue	FIOOU	Status
	No	de ((mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	81		49	243.534	1 0.027	20.6	0.0000	0.0000	OK
60 minute winter	81_0	UT	49	236.419	0.026	20.6	0.0000	0.0000	OK
60 minute summer	58		39	266.346	0.424	182.4	0.3399	0.0000	OK
60 minute summer	1.022	2:50%	39	265.637	7 0.135	183.8	0.4359	0.0000	OK
60 minute summer	61		39	263.513	0.121	197.3	0.1106	0.0000	OK
30 minute winter	23		24	284.481	L 0.455	62.5	0.3279	0.0000	OK
60 minute summer	63		39	260.995	0.120	202.9	0.4432	0.0000	OK
60 minute summer	1.025	5:50%	39	259.617	7 0.124	214.0	1.5254	0.0000	OK
60 minute summer	64		39	258.240	0.128	216.3	0.2689	0.0000	OK
60 minute summer	1.026	5:50%	39	257.174	0.133	229.3	0.0000	0.0000	OK
30 minute winter	38		22	322.213	0.034	30.1	0.0000	0.0000	OK
30 minute winter	47		22	307.075	0.054	63.0	0.0000	0.0000	OK
15 minute winter	62		10	266.917	0.036	3.1	0.0602	0.0000	OK
30 minute winter	54		22	290.903	0.065	90.1	0.0000	0.0000	OK
30 minute winter	9		24	306.171	0.031	23.7	0.0000	0.0000	OK
30 minute winter	18		25	289.569	0.045	49.6	0.0000	0.0000	OK
60 minute summer	65		39	256.102	0.131	233.6	0.4482	0.0000	OK
60 minute winter	1.027	7:50%	38	254.393	0.132	238.4	0.0000	0.0000	OK
60 minute winter	65_O		38	252.683		238.1	0.0000	0.0000	OK
60 minute winter	30		40	268.658		92.3	0.0000	0.0000	FLOOD RISK
30 minute winter	55		22	269.758		90.0	0.0000	0.0000	OK
15 minute summer	77		1	266.900		0.0	0.0000	0.0000	ОК
30 minute winter	34		21	324.346		27.5	0.4807	0.0000	OK
15 minute winter	60		10	270.199		10.9	0.1602	0.0000	OK
15 minute winter	7.000):50%	11	266.959		14.7	0.0000	0.0000	OK
Link Event	US	Link		DS .	Outflow	Velocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link			Outflow (I/s)	Velocity (m/s)	Flow/Cap		_
(Outflow)	Node		N	ode	(I/s)	(m/s)		Vol (m	³) Vol (m³)
		Link 9.014		ode		-	Flow/Cap 0.004	Vol (m	³) Vol (m³)
(Outflow) 60 minute winter	Node 81	9.014	N (81_0	ode DUT	(I/s) 20.6	(m/s) 1.388	0.004	Vol (m 0.245	3) Vol (m³) 55 47.6
(Outflow) 60 minute winter 60 minute summer	Node 81 58	9.014 1.022	No 81_0 1.02	ode	(I/s) 20.6 182.3	(m/s) 1.388 1.323	0.004	Vol (m 0.245 0.975	Vol (m³) 5 47.6
(Outflow) 60 minute winter 60 minute summer 60 minute summer	Node 81 58 58	9.014 1.022 1.022	No 81_0 1.02 59	ode DUT	(I/s) 20.6 182.3 183.7	(m/s) 1.388 1.323 0.502	0.004 0.078 0.078	Vol (m 0.245 0.975 2.889	Vol (m³) 55 47.6 66
(Outflow) 60 minute winter 60 minute summer 60 minute summer	Node 81 58 58 61	9.014 1.022 1.022 1.024	1.02 59 63	ode DUT	(I/s) 20.6 182.3 183.7 197.0	(m/s) 1.388 1.323 0.502 1.651	0.004 0.078 0.078 0.064	Vol (m 0.245 0.975 2.889 2.906	Vol (m³) 47.6 47.6
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter	Node 81 58 58 61 23	9.014 1.022 1.022 1.024 1.012	1.02 59 63 24	ode DUT 2:50%	(I/s) 20.6 182.3 183.7 197.0 62.4	(m/s) 1.388 1.323 0.502 1.651 0.306	0.004 0.078 0.078 0.064 0.026	Vol (m 0.245 0.975 2.889 2.906 5.260	Vol (m³) 47.6 47.6 99 98
(Outflow) 60 minute winter 60 minute summer 60 minute summer 30 minute winter 60 minute summer	Node 81 58 58 61 23 63	9.014 1.022 1.022 1.024 1.012 1.025	1.02 59 63 24 1.02	ode DUT	182.3 183.7 197.0 62.4 202.7	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674	0.004 0.078 0.078 0.064 0.026 0.063	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512	Vol (m³) 47.6 47.6 49 48 45
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer	Node 81 58 58 61 23 63 63	9.014 1.022 1.022 1.024 1.012 1.025 1.025	1.02 59 63 24 1.02 64	ode OUT 2:50% 5:50%	182.3 183.7 197.0 62.4 202.7 213.6	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696	0.004 0.078 0.078 0.064 0.026 0.063 0.067	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572	Vol (m³) 47.6 47.6 66 69 69 88 85.5
(Outflow) 60 minute winter 60 minute summer 60 minute summer 30 minute summer 60 minute summer 60 minute summer 60 minute summer	Node 81 58 58 61 23 63 63 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	1.02 59 63 24 1.02 64 1.02	ode DUT 2:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644	0.004 0.078 0.078 0.064 0.026 0.063 0.067	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401	Vol (m³) 47.6 47.6 66 69 68 65 65 65 66 67 68 68 68 68 68 68 68 68 68 68 68 68 68
(Outflow) 60 minute winter 60 minute summer 60 minute summer 30 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer	Node 81 58 58 61 23 63 63 64 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	1.02 59 63 24 1.02 64 1.02 65	ode OUT 2:50% 5:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420	Vol (m³) 47.6 47.6 99 98 95 96 97 98 98 98 98 98 98
(Outflow) 60 minute winter 60 minute summer 60 minute summer 30 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute summer	Node 81 58 58 61 23 63 63 64 64 38	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007	1.02 59 63 24 1.02 64 1.02 65 46	ode OUT 2:50% 5:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969	Vol (m³) 47.6 47.6 49 99 98 55 99 92 96 66
(Outflow) 60 minute winter 60 minute summer 60 minute summer 30 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute summer 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009	1.02 59 63 24 1.02 64 1.02 65 46 53	ode OUT 2:50% 5:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676	Vol (m³) 47.6 47.6 49 49 48 49 49 49 49 49 49 49 49 49 49 49 49 49
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 31 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63	ode OUT 2:50% 5:50%	(I/s) 20.6 182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013 0.005	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023	Vol (m³) 47.6 47.6 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 64 38 47 62 54	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55	ode OUT 2:50% 5:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013 0.005 0.018	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136	Vol (m³) 47.6 47.6 66 69 69 68 65 66 66 66 66
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter	58 58 61 23 63 64 64 38 47 62 54 9	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17	ode OUT 2:50% 5:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013 0.005 0.018	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083	3) Vol (m³) 47.6 47.6 66 69 68 65 66 67
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18	9.014 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22	ode OUT 2:50% 5:50% 6:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.075 0.006 0.013 0.005 0.018	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362	Vol (m³) 47.6 47.6 47.6 49 98 98 98 99 98 98 99 98 98 99 98 98 98
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02	ode OUT 2:50% 5:50% 6:50%	(I/s) 20.6 182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6 233.5	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261 1.754	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.075 0.006 0.013 0.005 0.018 0.005 0.010 0.074	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104	Vol (m³) 47.6 47.6 47.6 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18	9.014 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22	ode OUT 2:50% 5:50% 6:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.075 0.006 0.013 0.005 0.018	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104	Vol (m³) 47.6 47.6 47.6 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02	ode OUT 2:50% 5:50% 6:50%	(I/s) 20.6 182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6 233.5	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261 1.754	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.075 0.006 0.013 0.005 0.018 0.005 0.010 0.074	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104 2.122	Vol (m³) 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6 233.5 238.1	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261 1.754 1.774	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013 0.005 0.018 0.005 0.010 0.074 0.075	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104 2.122	Vol (m³) 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute winter 60 minute winter	58 58 61 23 63 64 64 38 47 62 54 9 18 65 65 30	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_(56	ode OUT 2:50% 5:50% 6:50%	(I/s) 20.6 182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6 233.5 238.1	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261 1.754 1.774	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013 0.005 0.018 0.005 0.010 0.074 0.075	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104 2.122	Vol (m³) 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute winter 60 minute summer 60 minute winter	58 58 61 23 63 64 64 38 47 62 54 9 18 65 65 55	9.014 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_(56	ode OUT 2:50% 5:50% 6:50%	(I/s) 20.6 182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6 233.5 238.1	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261 1.754 1.774 0.916 1.427	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013 0.005 0.018 0.005 0.010 0.074 0.075 0.057 0.018	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104 2.122	Vol (m³) 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 60 minute summer 60 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute summer 60 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65 65 77 34	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000 4.003	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0 56 56 78 35	ode DUT 2:50% 5:50% 6:50% 7:50% DUT	(I/s) 20.6 182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6 233.5 238.1 92.3 89.7 0.0 26.7	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261 1.754 1.774 0.916 1.427 0.000 0.444	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.071 0.075 0.006 0.013 0.005 0.018 0.005 0.018 0.0074 0.075 0.018 0.0000 0.136	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104 2.122	Vol (m³) 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6
(Outflow) 60 minute winter 60 minute summer 60 minute summer 60 minute summer 30 minute winter 60 minute summer 60 minute summer 60 minute summer 60 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 60 minute summer 60 minute summer 60 minute winter 30 minute winter 30 minute winter 60 minute summer 60 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65 65 65	9.014 1.022 1.024 1.012 1.025 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0 56 56 78 35	ode OUT 2:50% 5:50% 6:50%	(I/s) 20.6 182.3 183.7 197.0 62.4 202.7 213.6 216.1 229.2 30.0 62.8 3.1 90.0 23.6 49.6 233.5 238.1	(m/s) 1.388 1.323 0.502 1.651 0.306 1.674 1.696 1.644 1.719 1.125 1.580 1.265 2.220 0.999 1.261 1.754 1.774 0.916 1.427 0.000	0.004 0.078 0.078 0.064 0.026 0.063 0.067 0.075 0.006 0.013 0.005 0.018 0.0074 0.075 0.0057 0.018 0.0057	Vol (m 0.245 0.975 2.889 2.906 5.260 1.512 1.572 1.401 1.420 0.969 1.676 0.023 2.136 1.083 0.362 2.104 2.122 0.650 0.434 0.034 2.005 0.060	Vol (m³) 47.6 47.6 47.6 47.6 47.6 47.6 47.6 47.6

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz

24/05/2021

Page 26 Tylorstown Phase 4 Existing tip Reprofile

Results for 2 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	40	11	310.215	0.136	15.8	0.4313	0.0000	OK
15 minute winter	42	13	309.441	0.194	27.3	0.6029	0.0000	OK
30 minute winter	44	21	308.905	0.187	33.9	0.6281	0.0000	OK
15 minute winter	2	11	308.233	0.113	8.9	0.1659	0.0000	OK
15 minute winter	1.001:50%	12	308.118	0.123	11.1	0.0000	0.0000	OK
15 minute winter	4	12	307.707	0.189	20.1	0.3170	0.0000	OK
30 minute winter	1.003:50%	22	307.642	0.188	21.6	1.8330	0.0000	OK
30 minute winter	6	23	307.300	0.142	23.9	0.1918	0.0000	OK
15 minute winter	11	11	291.981	0.112	8.8	0.1686	0.0000	OK
15 minute winter	2.001:50%	12	291.849	0.123	10.9	0.0000	0.0000	OK
15 minute winter	13	12	291.466	0.165	18.3	0.2685	0.0000	OK
30 minute winter	2.003:50%	23	291.305	0.150	21.0	3.1946	0.0000	OK
30 minute winter	15	24	290.852	0.163	24.2	0.2865	0.0000	OK
30 minute winter	2.005:50%	25	290.700	0.168	26.7	1.6799	0.0000	OK
30 minute winter	25	25	280.319	0.461	70.8	0.5075	0.0000	OK
30 minute winter	27	25	276.478	0.467	80.2	1.1586	0.0000	OK
30 minute winter	1.016:50%	25	274.688	0.087	80.9	0.0000	0.0000	OK
60 minute winter	29	40	270.969	0.474	90.6	0.5788	0.0000	OK
60 minute winter	1.018:50%	40	269.434	0.093	92.3	0.0000	0.0000	OK
60 minute summer	57	39	267.281	0.423	179.7	0.4133	0.0000	OK
60 minute summer	1.021:50%	39	266.531	0.141	181.4	0.1265	0.0000	OK
60 minute summer	59	39	265.505	0.424	183.7	0.0000	0.0000	OK
60 minute summer	1.023:50%	39	264.357	0.120	185.3	0.7907	0.0000	OK
30 minute winter	45	22	308.638	0.215	33.3	0.0000	0.0000	OK
30 minute winter	36	22	323.668	0.204	30.3	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	40	5.001	41	15.1	0.382	0.080	1.2363	
15 minute winter	42	5.003	43	25.4	0.376	0.187	2.4447	
30 minute winter	44	5.005	45	33.3	0.417	0.187	2.3830	
15 minute winter	2	1.001	1.001:50%	8.7	0.316	0.049	0.3461	
15 minute winter	2	1.001	3	11.0	0.327	0.062	0.4219	
15 minute winter	4	1.003	1.003:50%	20.1	0.329	0.189	1.1826	
30 minute winter	4	1.003	5	20.2	0.285	0.190	1.2664	
30 minute winter	6	1.005	7	23.7	0.441	0.090	1.4617	
15 minute winter	11	2.001	2.001:50%	8.5	0.315	0.048	0.3928	
15 minute winter	11	2.001	12	10.8	0.331	0.061	0.4686	
15 minute winter	13	2.003	2.003:50%	18.9	0.454	0.106	0.6380	
30 minute winter	13	2.003	14	18.5	0.391	0.104	0.6897	
30 minute winter	15	2.005	2.005:50%	24.1	0.444	0.130	0.7963	
30 minute winter	15	2.005	16	26.0	0.409	0.141	0.9315	
30 minute winter	25	1.014	26	70.5	0.242	0.031	7.8165	
30 minute winter	27	1.016	1.016:50%	79.9	1.373	0.030	0.7132	
30 minute winter	27	1.016	28	80.9	0.273	0.030	4.5378	
60 minute winter	29	1.018	1.018:50%	90.5	1.430	0.033	0.6259	
60 minute winter	29	1.018	30	92.3	0.766	0.034	3.6800	
60 minute summer	57	1.021	1.021:50%	179.8	1.242	0.083	1.3483	
60 minute summer	57	1.021	58	181.3	0.489	0.084	3.8316	
60 minute summer	59	1.023	1.023:50%	183.6	1.545	0.063	1.0914	
60 minute summer	59	1.023	61	184.9	1.548	0.063	1.0971	
30 minute winter	45	5.006	46	33.1	0.625	0.187	0.2335	
30 minute winter	36	4.005	37	30.1	0.632	0.145	0.2460	

Jacques Calitz 24/05/2021 Page 27 Tylorstown Phase 4 Existing tip Reprofile

Results for 2 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	52	20	292.426	0.204	28.3	0.0000	0.0000	OK
30 minute winter	7	24	306.766	0.187	23.7	0.0000	0.0000	OK
30 minute winter	16	25	290.564	0.189	26.0	0.0000	0.0000	OK
30 minute summer	49	19	293.174	0.121	14.1	0.5470	0.0000	OK
15 minute winter	6.001:50%	12	292.956	0.129	16.5	0.0000	0.0000	OK
30 minute summer	51	20	292.729	0.148	26.4	0.5445	0.0000	OK
30 minute summer	6.003:50%	20	292.554	0.152	28.3	0.0000	0.0000	OK
30 minute winter	67	22	280.194	0.134	8.8	0.3031	0.0000	OK
30 minute winter	69	24	275.136	0.196	16.2	0.4231	0.0000	OK
30 minute winter	71	26	270.498	0.258	18.5	0.4635	0.0000	OK
60 minute winter	73	44	269.613	0.278	19.8	0.4333	0.0000	OK
60 minute winter	75	47	268.214	0.264	20.6	0.3056	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute winter	52	6.004	53	28.2	0.590	0.165	0.2214	
30 minute winter	7	1.006	8	23.7	0.591	0.132	0.1291	
30 minute winter	16	2.006	17	26.0	0.645	0.121	0.1168	
30 minute summer	49	6.001	6.001:50%	13.9	0.447	0.059	0.4026	
15 minute winter	49	6.001	50	16.5	0.297	0.070	0.7681	
30 minute summer	51	6.003	6.003:50%	26.3	0.584	0.101	0.3775	
30 minute summer	51	6.003	52	28.3	0.447	0.109	0.5411	
30 minute winter	67	9.001	68	8.5	0.326	0.019	0.8769	
30 minute winter	69	9.003	70	15.1	0.391	0.028	1.5711	
30 minute winter	71	9.005	72	18.0	0.279	0.075	2.4605	
60 minute winter	73	9.007	74	19.2	0.204	0.239	3.1539	
60 minute winter	75	9.009	76	20.5	0.341	0.064	2.5212	

Jacques Calitz 24/05/2021 Page 28 Tylorstown Phase 4 Existing tip Reprofile

Results for 5 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event		US lode	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winte		·ouc	11	325.871	0.117	12.6	0.4452	0.0000	OK
15 minute winte			12	325.213	0.163	25.7	0.7107	0.0000	OK
30 minute winte			22	323.293	0.048	39.9	0.0000	0.0000	OK
15 minute winte			11	293.225	0.119	4.7	0.1706	0.0000	OK
30 minute winte		00:50%	21	293.213	0.134	7.1	1.0376	0.0000	OK
30 minute winte			22	292.116	0.086	119.0	0.0000	0.0000	OK
30 minute winte			22	308.296	0.066	83.6	0.0000	0.0000	OK
15 minute winte			11	310.414	0.118	10.7	0.3828	0.0000	OK
30 minute winte			23	267.675	0.172	237.6	0.2502	0.0000	OK
30 minute winte	r 1.0	20:50%	24	267.352	0.172	239.5	3.2908	0.0000	ОК
15 minute winte	r 1		10	308.422	0.086	4.3	0.1107	0.0000	OK
15 minute winte	r 1.00	00:50%	11	308.332	0.104	7.1	0.0000	0.0000	OK
30 minute winte	r 8		24	306.450	0.052	31.3	0.0000	0.0000	OK
30 minute winte	r 17		24	290.243	0.060	65.7	0.0000	0.0000	OK
30 minute winte	r 22		23	286.096	0.096	83.6	0.0533	0.0000	OK
15 minute winte	r 10		10	292.206	0.087	4.5	0.1178	0.0000	OK
15 minute winte	r 2.00	00:50%	11	292.097	0.103	6.9	0.0000	0.0000	OK
15 minute winte	r 19		10	300.786	0.017	6.3	0.0223	0.0000	OK
15 minute winte	r 3.00	00:50%	11	297.489	0.018	7.4	0.0014	0.0000	OK
15 minute winte	r 20		11	294.314	0.143	12.6	0.1619	0.0000	OK
15 minute winte	r 3.00	01:50%	11	291.787	0.029	14.7	0.0094	0.0000	OK
30 minute winte	r 26		25	278.567	0.480	100.8	0.5342	0.0000	OK
15 minute winte	r 33		12	324.751	0.187	32.9	0.6513	0.0000	OK
15 minute winte	r 21		13	289.561	0.216	20.0	0.2606	0.0000	OK
Link Event	US	Link	DS			-	low/Cap	Link	Discharge
(Outflow)	Node		Node	e (I,	/s) ((m/s)		Vol (m³)	Discharge Vol (m³)
(Outflow) 15 minute winter	Node 31	4.000	Node 32	e (I,	/s) 11.9	(m/s) 0.319	0.054	Vol (m³) 1.8197	_
(Outflow) 15 minute winter 15 minute winter	Node 31 32	4.000 4.001	Node 32 33	e (I,	/s) 11.9 22.9	(m/s) 0.319 0.384	0.054 0.129	Vol (m³) 1.8197 3.0107	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37	4.000 4.001 4.006	Node 32 33 38	e (I,	/s) 11.9 22.9 39.9	(m/s) 0.319 0.384 1.547	0.054 0.129 0.010	Vol (m³) 1.8197 3.0107 0.1074	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter	Node 31 32 37 48	4.000 4.001 4.006 6.000	Node 32 33 38 6.000:5	e (I,	/s) 11.9 22.9 39.9 4.3	(m/s) 0.319 0.384 1.547 0.173	0.054 0.129 0.010 0.053	Vol (m³) 1.8197 3.0107 0.1074 0.3898	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48	4.000 4.001 4.006 6.000 6.000	Node 32 33 38 6.000:5	e (I,	/s) 11.9 22.9 39.9 4.3 6.5	(m/s) 0.319 0.384 1.547 0.173 0.202	0.054 0.129 0.010 0.053 0.080	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53	4.000 4.001 4.006 6.000 6.000 4.010	Node 32 33 38 6.000:5 49 54	e (I, 50% 1	/s) (11.9 22.9 39.9 4.3 6.5 19.2	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211	0.054 0.129 0.010 0.053 0.080 0.029	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46	4.000 4.001 4.006 6.000 6.000 4.010 4.008	Node 32 33 38 6.000:5 49 54 47	e (I, 50%	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058	0.054 0.129 0.010 0.053 0.080 0.029 0.018	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000	Node 32 33 38 6.000:5 49 54 47 40	e (i, 50% 1	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5	e (i, 50% 1	/s) (11.9	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058	0.054 0.129 0.010 0.053 0.080 0.029 0.018	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir	Node 32 33 38 6.000:5 49 54 47 40 1.020:5	e (I) 50% 1 50% 2	/s) 11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57	e (I) 50% 1 50% 2	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (I) 50% 1 50% 2	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (1,650% 1 2 50%	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (1) 50% 1 50% 2 2	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9	e (i, 50% 1 50% 2 2 50%	/s) (11.9	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23	e (I) 50% 1 50% 2 2	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (I) 50% 1 50% 2 2	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (1) 50% 1 50% 2 2 50%	/s) (11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3 6.8	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248 0.263	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024 0.038	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264 0.3266	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	e (1) 50% 1 50% 2 2 50%	/s) 11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3 6.8 6.2	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248 0.263 0.659	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024 0.038 0.002	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264 0.3266 0.1631	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	e (1) 50% 1 50% 2 2 50% 50%	/s) 11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3 6.8 6.2 7.3	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248 0.263 0.659 0.152	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024 0.038 0.002 0.002	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264 0.3266 0.1631 1.0520	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	e (1) 50% 1 50% 2 50% 2 50% 50%	/s) 11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3 6.8 6.2 7.3 11.6	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248 0.263 0.659 0.152 0.779	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024 0.038 0.002 0.002	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264 0.3266 0.1631 1.0520 0.2088	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	e (1) 50% 1 50% 2 50% 50% 50%	/s) 11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3 6.8 6.2 7.3 11.6 14.6	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248 0.263 0.659 0.152 0.779 0.187	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024 0.038 0.002 0.002 0.004 0.004	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264 0.3266 0.1631 1.0520 0.2088 1.5178	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20 26	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.001 3.001 1.015	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5 21 27	e (1) 50% 1 50% 2 50% 50% 50% 1	/s) 11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3 6.8 6.2 7.3 11.6 14.6 00.7	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248 0.263 0.659 0.152 0.779 0.187 0.389	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024 0.038 0.002 0.002 0.004 0.004 0.004	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264 0.3266 0.1631 1.0520 0.2088 1.5178 8.9658	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	e (1) 50% 1 50% 2 2 50% 50% 1	/s) 11.9 22.9 39.9 4.3 6.5 19.2 83.7 10.3 37.6 0.0 38.4 4.2 7.0 31.3 65.5 83.3 4.3 6.8 6.2 7.3 11.6 14.6	(m/s) 0.319 0.384 1.547 0.173 0.202 2.211 2.058 0.292 1.273 0.556 0.237 0.267 1.202 1.890 0.276 0.248 0.263 0.659 0.152 0.779 0.187	0.054 0.129 0.010 0.053 0.080 0.029 0.018 0.055 0.120 0.121 0.023 0.040 0.012 0.015 0.036 0.024 0.038 0.002 0.002 0.004 0.004	Vol (m³) 1.8197 3.0107 0.1074 0.3898 0.4317 0.2357 0.1472 0.7239 1.4487 3.6187 0.1966 0.2884 0.0573 0.0760 8.6576 0.2264 0.3266 0.1631 1.0520 0.2088 1.5178	Vol (m³)

Jacques Calitz 24/05/2021 Page 29 Tylorstown Phase 4 Existing tip Reprofile

Results for 5 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	3.002:50%	12	287.714	0.041	21.9	0.1722	0.0000	OK
60 minute winter	79	44	259.126	0.031	28.7	0.0000	0.0000	OK
30 minute winter	35	21	323.977	0.203	41.0	0.5284	0.0000	OK
60 minute winter	78	44	266.143	0.028	28.7	0.0000	0.0000	OK
30 minute winter	66	20	282.282	0.066	6.0	0.1661	0.0000	OK
30 minute winter	72	25	270.002	0.278	25.2	0.5702	0.0000	OK
60 minute winter	76	44	267.276	0.284	28.9	0.2149	0.0000	OK
15 minute winter	41	12	309.903	0.166	29.3	0.5076	0.0000	OK
15 minute winter	43	13	309.232	0.196	39.8	0.4906	0.0000	OK
30 minute summer	50	20	292.831	0.230	24.8	0.2720	0.0000	OK
15 minute winter	6.002:50%	13	292.810	0.219	26.6	0.4644	0.0000	OK
15 minute winter	3	12	308.021	0.151	19.3	0.2494	0.0000	OK
15 minute winter	1.002:50%	12	307.855	0.161	22.7	0.0000	0.0000	OK
30 minute winter	5	22	307.600	0.210	29.8	0.4056	0.0000	OK
15 minute winter	12	12	291.731	0.148	18.0	0.2003	0.0000	OK
15 minute winter	2.002:50%	12	291.597	0.155	20.5	0.0000	0.0000	OK
30 minute winter	14	22	291.186	0.176	27.3	0.3183	0.0000	OK
30 minute winter	2.004:50%	23	291.031	0.181	30.6	1.8380	0.0000	OK
30 minute winter	68	23	278.463	0.198	16.8	0.4691	0.0000	OK
30 minute winter	70	25	272.652	0.259	20.9	0.4645	0.0000	OK
60 minute winter	74	42	269.560	0.279	27.2	0.4354	0.0000	OK
30 minute winter	24	24	282.421	0.371	91.9	0.3556	0.0000	OK
30 minute winter	28	25	273.679	0.487	112.6	0.5329	0.0000	OK
30 minute winter	1.017:50%	25	271.950	0.106	114.4	0.0000	0.0000	OK
60 minute winter	80	44	250.652	0.032	28.7	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	21	3.002	22	21.8	0.745	0.008	0.5595	
60 minute winter	79	9.012	80	28.7	1.611	0.005	0.2866	
30 minute winter	35	4.004	36	40.2	0.440	0.233	3.0218	
60 minute winter	78	9.011	79	28.7	1.730	0.004	0.1726	
30 minute winter	66	9.000	67	5.9	0.332	0.012	0.7041	
30 minute winter	72	9.006	73	24.8	0.243	0.126	3.5343	
60 minute winter	76	9.010	78	28.7	0.714	0.097	1.0630	
15 minute winter	41	5.002	42	27.7	0.393	0.138	2.8609	
15 minute winter	43	5.004	44	37.8	0.473	0.213	2.5410	
15 minute winter	50	6.002	6.002:50%	24.4	0.248	0.447	1.0650	
15 minute winter	50	6.002	51	26.1	0.358	0.478	0.7892	
15 minute winter	3	1.002	1.002:50%	19.0	0.396	0.107	0.8586	
15 minute winter	3	1.002	4	22.3	0.329	0.126	1.2181	
30 minute winter	5	1.004	6	29.5	0.437	0.194	2.1916	
15 minute winter	12	2.002	2.002:50%	17.9	0.393	0.101	0.6469	
15 minute winter	12	2.002	13	20.2	0.380	0.114	0.7968	
30 minute winter	14	2.004	2.004:50%	27.3	0.436	0.159	1.0924	
30 minute winter	14	2.004	15	29.8	0.453	0.173	1.1318	
30 minute winter	68	9.002	69	15.4	0.386	0.027	2.1837	
30 minute winter	70	9.004	71	20.2	0.344	0.039	2.1114	
60 minute winter	74	9.008	75	27.1	0.350	0.071	2.8188	
30 minute winter	24	1.013	25	91.8	0.380	0.039	9.4130	
30 minute winter	28	1.017	1.017:50%	112.7	1.502	0.043	0.9134	
30 minute winter	28	1.017	29	114.5	0.351	0.043	4.8566	
60 minute winter	80	9.013	81	28.6	1.546	0.005	0.2946	

Jacques Calitz 24/05/2021

Page 30 Tylorstown Phase 4 Existing tip Reprofile

Results for 5 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	U		Peak	Level	Depth	Inflow	Node	Flood	Status	
	No	de	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	014	
60 minute winter	81		45	243.540		28.6	0.0000	0.0000	OK	
60 minute winter	81_0	UI	45	236.425		28.6	0.0000	0.0000	OK	
30 minute winter	58	50 0/	24	266.376		243.4	0.3641	0.0000	OK	
30 minute winter	1.022	:50%	24	265.660		245.3	0.5978	0.0000	OK	
30 minute winter	61		24	263.533		259.8	0.1288	0.0000	OK	
30 minute winter	23		24	284.496		84.7	0.3388	0.0000	OK	
30 minute winter	63	500 /	25	261.014		265.8	0.5144	0.0000	OK	
30 minute winter	1.025	:50%	25	259.637		279.3	2.0525	0.0000	OK	
30 minute winter	64	- 00/	25	258.260		281.9	0.3116	0.0000	OK	
30 minute winter	1.026	:50%	25	257.195		297.4	0.0000	0.0000	OK	
30 minute winter	38		22	322.219		39.9	0.0000	0.0000	OK	
30 minute winter	47		22	307.084		83.7	0.0000	0.0000	OK	
15 minute winter	62		10	266.920		4.0	0.0664	0.0000	OK	
30 minute winter	54		22	290.914		119.2	0.0000	0.0000	OK	
30 minute winter	9		24	306.176		31.3	0.0000	0.0000	OK	
30 minute winter	18		25	289.577		65.5	0.0000	0.0000	OK	
30 minute winter	65	v.E. Q 0/	25	256.122		302.0	0.5169	0.0000	OK	
60 minute summer	1.027		37	254.414		309.3	0.0000	0.0000	OK	
60 minute summer	65_O	UI	37	252.703		308.7	0.0000	0.0000	OK	
30 minute winter	30		25	268.674		118.4	0.0000	0.0000	FLOOD RISK	
30 minute winter	55 77		22	269.769		119.3	0.0000	0.0000	OK	
15 minute summer	77 24		1	266.900		0.0	0.0000	0.0000	OK	
30 minute summer	34		21	324.364		36.6	0.5329	0.0000	OK	
15 minute winter	60	·- C 00/	10	270.202		12.4	0.1681	0.0000	OK	
15 minute winter	7.000	1:50%	11	266.963	0.072	17.4	0.0000	0.0000	OK	
Link Event	US	Link	I	os c	Outflow	Velocity	Flow/Cap		Discharge	
Link Event (Outflow)	US Node	Link		OS C	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m	_	
		Link 9.014		ode		-	Flow/Cap 0.006	Vol (m	³) Vol (m ³)	
(Outflow)	Node		N (81_0	ode	(I/s)	(m/s)		Vol (m 0.304	3) Vol (m³) 2 60.1	
(Outflow) 60 minute winter	Node 81	9.014	N (81_0	ode DUT	(I/s) 28.6	(m/s) 1.558	0.006	Vol (m 0.304 1.194	Vol (m³) 2 60.1	
(Outflow) 60 minute winter 30 minute winter	Node 81 58	9.014 1.022	Ne 81_0 1.02	ode DUT	(I/s) 28.6 243.3	(m/s) 1.558 1.443	0.006	Vol (m 0.304 1.194 3.267	Vol (m³) 2 60.1 7	
(Outflow) 60 minute winter 30 minute winter 30 minute winter	Node 81 58 58	9.014 1.022 1.022	N (81_0 1.02 59	ode DUT	(I/s) 28.6 243.3 245.0	(m/s) 1.558 1.443 0.587	0.006 0.103 0.104	Vol (m 0.304 1.194 3.267 3.511	Vol (m ³) 2 60.1 7 1	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61	9.014 1.022 1.022 1.024	1.02 59 63 24	ode DUT	28.6 243.3 245.0 259.0	(m/s) 1.558 1.443 0.587 1.797	0.006 0.103 0.104 0.083	Vol (m 0.304 1.194 3.267 3.511 5.706	Vol (m ³) 2 60.1 7 1 8 1	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23	9.014 1.022 1.022 1.024 1.012	1.02 59 63 24	ode DUT 2:50%	(I/s) 28.6 243.3 245.0 259.0 84.5	(m/s) 1.558 1.443 0.587 1.797 0.376	0.006 0.103 0.104 0.083 0.035	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824	Nol (m ³) 12 60.1 17 11 18 11 10	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63	9.014 1.022 1.022 1.024 1.012 1.025	1.02 59 63 24 1.02 64	ode DUT 2:50%	243.3 245.0 259.0 84.5 265.3	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820	0.006 0.103 0.104 0.083 0.035 0.083	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896	Nol (m ³) 12 60.1 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63	9.014 1.022 1.022 1.024 1.012 1.025 1.025	1.02 59 63 24 1.02 64	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840	0.006 0.103 0.104 0.083 0.035 0.083 0.087	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686	Nol (m ³) 12 60.1 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	1.02 59 63 24 1.02 64 1.02	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784	0.006 0.103 0.104 0.083 0.035 0.083 0.087 0.092	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705	Vol (m ³) 12 60.1 17 11 18 11 10 14 13 12 13 14 15 15 16 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	1.02 59 63 24 1.02 64 1.02	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861	0.006 0.103 0.104 0.083 0.035 0.083 0.087 0.092 0.097	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.705 1.173	Vol (m ³) 12 60.1 17 11 18 11 10 14 13 14 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 38	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007	1.02 59 63 24 1.02 64 1.02 65 46	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237	0.006 0.103 0.104 0.083 0.035 0.083 0.087 0.092 0.097 0.008	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.705 1.173 2.035	Nol (m ³) 12 60.1 17 11 18 11 10 10 10 10 10 10 10 10 10 10 10 10	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725	0.006 0.103 0.104 0.083 0.035 0.083 0.087 0.092 0.097 0.008 0.018	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705 1.173 2.035 0.028	Nol (m ³) 12 60.1 17 11 18 10 10 10 10 10 10 10 10 10 10 10 10 10	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.018	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705 1.173 2.035 0.028 2.594	3) Vol (m ³) 12 60.1 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.007 0.024	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.705 1.173 2.035 0.028 2.594 1.306	3) Vol (m³) 12 60.1 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22	ode DUT 2:50% 5:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098	0.006 0.103 0.104 0.083 0.083 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.705 1.173 2.035 0.028 2.594 1.306 0.444	Nol (m ³) 12 60.1 17 11 18 11 10 14 13 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 38 47 62 54 9 18	9.014 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22	ode OUT 2:50% 5:50% 6:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3 65.5	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098 1.370	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007 0.013	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.705 1.173 2.035 0.028 2.594 1.306 0.444 2.521	3) Vol (m ³) 12 60.1 17 11 8 11 10	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3 65.5 302.7 308.7	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098 1.370 1.897 1.917	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007 0.013 0.095 0.097	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705 1.173 2.035 0.028 2.594 1.306 0.444 2.521 2.545	3) Vol (m ³) 12 60.1 17 11 18 10 10 10 10 10 10 10 10 10 10 10 10 10	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3 65.5 302.7 308.7	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098 1.370 1.897 1.917	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007 0.013 0.095 0.097	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705 1.173 2.035 0.028 2.594 1.306 0.444 2.521 2.545	3) Vol (m³) 12 60.1 17 11 88 11 100 14 13 15 16 16 1019.4	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65 65 65	9.014 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3 65.5 302.7 308.7	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098 1.370 1.897 1.917 0.976 1.517	0.006 0.103 0.104 0.083 0.035 0.083 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007 0.013 0.095 0.097	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705 1.173 2.035 0.028 2.594 1.306 0.444 2.521 2.545	Vol (m³) 12 60.1 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3 65.5 302.7 308.7	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098 1.370 1.897 1.917 0.976 1.517 0.000	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007 0.013 0.095 0.097	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.705 1.173 2.035 0.028 2.594 1.306 0.444 2.521 2.545 0.806 0.537 0.038	Vol (m ³) 12 60.1 17 11 88 11 100 14 13 160 15 16 100 16 1019.4	
(Outflow) 60 minute winter 30 minute winter 50 minute summer	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000 4.003	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0 56 56 56	ode OUT 2:50% 5:50% 6:50%	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3 65.5 302.7 308.7 118.5 119.3 0.0 35.2	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098 1.370 1.897 1.917 0.976 1.517 0.000 0.479	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007 0.013 0.095 0.097	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705 1.173 2.035 0.028 2.594 1.306 0.444 2.521 2.545 0.806 0.537 0.038 2.462	3) Vol (m ³) 12 60.1 17 11 88 11 10 14 13 15 16 16 16 10 19.4 16 16 10 19.4 16 16 16 16 16 16 16 16 16 16 16 16 16 1	
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer	58 58 61 23 63 64 64 64 9 18 65 65 77	9.014 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0 56 56 56	ode DUT 2:50% 5:50% 6:50% 7:50% DUT	243.3 245.0 259.0 84.5 265.3 279.4 282.3 297.9 39.9 83.7 4.0 119.3 31.3 65.5 302.7 308.7	(m/s) 1.558 1.443 0.587 1.797 0.376 1.820 1.840 1.784 1.861 1.237 1.725 1.349 2.423 1.098 1.370 1.897 1.917 0.976 1.517 0.000	0.006 0.103 0.104 0.083 0.035 0.087 0.092 0.097 0.008 0.018 0.007 0.024 0.007 0.013 0.095 0.097	Vol (m 0.304 1.194 3.267 3.511 5.706 1.824 1.896 1.686 1.705 1.173 2.035 0.028 2.594 1.306 0.444 2.521 2.545 0.806 0.537 0.038 2.462 0.067	Vol (m ³) 12 60.1 17 11 .8 16 .6 17 18 .8 19 .6 19 .6 1019.4 10 .6 10 .	

US

Peak

Node Event

File: Proposed model FSR - opt Network: Storm Network

Inflow

Node

Flood

Jacques Calitz 24/05/2021

Depth

Page 31 Tylorstown Phase 4 Existing tip Reprofile

Status

Results for 5 year Critical Storm Duration. Lowest mass balance: 97.13%

Level

Node Event		US	Реак	Levei	Depth	intiow	Node	Flood	Status
	ſ	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winte	er 40		11	310.230	0.150	20.7	0.4782	0.0000	OK
15 minute winte	er 42		12	309.463	0.216	36.5	0.6699	0.0000	OK
30 minute winte	er 44		21	308.926	0.208	44.9	0.6985	0.0000	OK
15 minute winte	er 2		11	308.245	0.125	11.6	0.1841	0.0000	OK
15 minute winte	er 1.0	01:50%	12	308.132	0.137	14.6	0.0000	0.0000	ОК
15 minute winte	er 4		12	307.726	0.208	26.6	0.3493	0.0000	ОК
30 minute winte	er 1.0	03:50%	22	307.662	0.208	28.2	2.2491	0.0000	ОК
30 minute winte	er 6		23	307.316	0.158	31.6	0.2131	0.0000	ОК
15 minute winte	er 11		11	291.994	0.125	11.5	0.1876	0.0000	ОК
15 minute winte	er 2.0	01:50%	12	291.862	0.136	14.4	0.0000	0.0000	ОК
15 minute winte	er 13		12	291.481	0.180	24.4	0.2931	0.0000	ОК
30 minute winte	er 2.0	03:50%	22	291.321	0.166	27.2	3.9163	0.0000	ОК
30 minute winte	er 15		23	290.870	0.181	32.1	0.3189	0.0000	ОК
30 minute winte	er 2.0	05:50%	24	290.719	0.187	35.6	2.0815	0.0000	ОК
30 minute winte			24	280.334	0.475	93.5	0.5240	0.0000	ОК
30 minute winte			25	276.493	0.482	103.9	1.1961	0.0000	ОК
30 minute winte		16:50%	25	274.702	0.100	105.3	0.0000	0.0000	ОК
30 minute winte			25	270.984	0.489	116.0	0.5976	0.0000	OK
30 minute winte		18:50%	24	269.447	0.106	118.5	0.0000	0.0000	OK
30 minute winte			24	267.311	0.453	239.9	0.4426	0.0000	OK
30 minute winte		21:50%	24	266.555	0.165	242.2	0.1735	0.0000	OK
30 minute winte			24	265.535	0.454	245.0	0.0000	0.0000	OK
30 minute winte		23:50%	24	264.377	0.141	246.8	1.0883	0.0000	OK
30 minute winte			22	308.661	0.238	44.1	0.0000	0.0000	OK
30 minute winte			22	323.691	0.227	40.2	0.0000	0.0000	OK
50 minate wints	30			323.031	0.227	10.2	0.0000	0.0000	OK
Link Event	us	Link	DS	Outfl	ow Ve	locity F	low/Can	Link	Discharge
Link Event	US Node	Link	DS Node	Outfl (I/s		-	low/Cap	Link Vol (m³)	Discharge
(Outflow)	Node		Node	(I/s	s) (r	n/s)	•	Vol (m³)	Discharge Vol (m³)
(Outflow) 15 minute winter	Node 40	5.001	Node 41	(I/s 1	s) (r 9.8 (n/s) 0.404	0.105	Vol (m³) 1.5203	_
(Outflow) 15 minute winter 15 minute winter	Node 40 42	5.001 5.003	Node 41 43	(I/s 1 3	9.8 (r 4.2 (m/s) 0.404 0.405	0.105 0.252	Vol (m³) 1.5203 3.0648	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter	Node 40 42 44	5.001 5.003 5.005	Node 41 43 45	(I/s 1 3 4	9.8 (r 4.2 (4.1 (n/s) 0.404 0.405 0.447	0.105 0.252 0.248	Vol (m³) 1.5203 3.0648 2.9423	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter	Node 40 42 44 2	5.001 5.003 5.005 1.001	Node 41 43 45 1.001:50	(I/s 1 3 4 0% 1	9.8 (r 9.8 (4.2 (4.1 (1.5 (n/s) 0.404 0.405 0.447 0.338	0.105 0.252 0.248 0.065	Vol (m³) 1.5203 3.0648 2.9423 0.4259	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 40 42 44 2 2	5.001 5.003 5.005 1.001 1.001	Node 41 43 45 1.001:50	(I/s 1 3 4 0% 1 1	9.8 (r 9.8 (4.2 (4.1 (1.5 (4.5 (n/s) 0.404 0.405 0.447 0.338 0.349	0.105 0.252 0.248 0.065 0.081	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 40 42 44 2 2 4	5.001 5.003 5.005 1.001 1.001 1.003	Node 41 43 45 1.001:50 3 1.003:50	(I/s 1 3 4 0% 1 1 0% 2	9.8 (r 9.8 (4.2 (4.1 (1.5 (4.5 (6.4 (6.4 (6.4 (6.4 (6.4 (6.4 (6.4 (6.4	m/s) 0.404 0.405 0.447 0.338 0.349 0.353	0.105 0.252 0.248 0.065 0.081 0.247	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 40 42 44 2 2 2 4 4	5.001 5.003 5.005 1.001 1.001 1.003 1.003	Node 41 43 45 1.001:50 3 1.003:50 5	(I/s 1 3 4 0% 1 1 0% 2	(r) (r) 9.8 (r) 9.8 (r) 4.2 (r) 4.1 (r) 4.5 (r) 6.4 (r) 6.6 (r)	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305	0.105 0.252 0.248 0.065 0.081 0.247 0.249	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 4 6	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005	Node 41 43 45 1.001:50 3 1.003:50 5 7	(I/s 1 3 4 0% 1 1 0% 2 2 3	9.8 (r 9.8 (d 4.2 (d 4.1 (d 1.5 (d 4.5 (d 6.4 (d 6.6 (d)	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028	_
(Outflow) 15 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter	Node 40 42 44 2 2 4 4 6 11	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50	(I/s 1 3 4 0% 1 1 0% 2 2 3 0% 1	9.8 (r 9.8 (d 4.2 (d 4.1 (d 1.5 (d 4.5 (d 6.4 (d 6.6 (d 1.4 (d)	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.337	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 40 42 44 2 2 4 4 6 11 11	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005 2.001 2.001	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50	(I/s 1 3 4 0% 1 1 0% 2 2 3 0% 1 1	9.8 (r 9.8 (4.2 (4.1 (4.5 (6.4 (6.6 (6.6 (1.4 (4.3 (4.3 (4.3 (4.3 (4.3 (4.3 (4.3 (4	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.337	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005 2.001 2.001 2.003	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50	(Il/s 1 3 4 0% 1 1 0% 2 2 3 0% 1 1 1 0% 2	9.8 (r 9.8 (d.2 (d.4.2 (d.4.1 (d.5 (d.4.5 (d.6.6 (d.6.6 (d.4.1.3 (d.4.3	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.337 0.355 0.490	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14	(Il/s 1 3 4 0% 1 1 0% 2 2 3 0% 1 1 0% 2	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 4.3 (d) 4.3 (d)	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.337 0.355 0.490 0.418	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.003	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50	(I/s 1 3 4 0% 1 1 0% 2 2 3 0% 1 1 0% 2	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d)	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.337 0.355 0.490 0.418 0.476	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 3 0% 3	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 5.1 (d) 4.3 (d	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.337 0.355 0.490 0.418 0.476 0.439	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 2 3 0% 3 9	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.4 (d) 4.4 (d) 4.5 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50	(II/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 0% 3 9 0% 10	9.8 (r 9.8 (d) 4.2 (d) 4.1 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.3 (d) 4.3 (d) 5.1 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.5 (d) 4.7 (d) 4.7 (d) 4.8 (d) 4.9 (d) 4.1 (d) 4.1 (d) 4.2 (d) 4.3 (d) 4.7 (d) 4.7 (d) 4.8	m/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.473 0.349 0.418 0.476 0.439 0.295 1.486	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.173 0.188 0.041 0.039	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 3 0% 1 1 0% 2 0% 3 9 0% 10 10	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.7 (d) 4.7 (d) 4.7 (d) 4.7 (d) 4.7 (d) 4.8 (d) 4.9 (d) 4.9 (d) 4.1 (d) 4.1 (d) 4.2 (d) 4.3 (d) 4.0 (d) 5.3 (d) 6.3 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.173 0.188 0.041 0.039 0.039	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 15 15 25 27 27 29	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28 1.018:50	(I/s 1 3 4 0% 1 1 0% 2 2 3 0% 1 1 0% 2 2 0% 3 9 0% 10 10 0% 11	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 4.3 (d) 4.7 (d) 4.7 (d) 4.7 (d) 4.7 (d) 4.7 (d) 4.8 (d) 4.9 (d) 4.1 (d) 4.1 (d) 4.2 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 4.5 (d) 4.5 (d) 4.6 (d) 4.7 (d) 4.8 (d) 4.9 (d) 4.9 (d) 4.0 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330 1.540	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041 0.039 0.039 0.043	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344 0.7457	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.018 1.018	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28 1.018:50 30	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 0% 3 0% 1 1 0% 2 0% 3 1 0% 10 10 0% 11 11	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 4.3 (d) 4.7 (d) 4.7 (d) 4.7 (d) 5.3 (d) 6.1 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.6 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330 1.540 0.785	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041 0.039 0.039 0.043 0.044	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344 0.7457 3.9313	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.018	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28 1.018:50 30 1.021:50	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 0% 3 9 0% 10 10 0% 11 11 0% 24	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 5.1 (d) 4.7 (d) 4.7 (d) 5.3 (d) 6.1 (d) 6.1 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.5 (d) 6.6 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d) 6.9 (d) 6.0 (d) 6.1 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.5 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330 1.540 0.785 1.353	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041 0.039 0.039 0.043 0.044 0.111	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344 0.7457 3.9313 1.6527	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57 57	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.018 1.021	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28 1.018:50 30 1.021:50 58	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 2 0% 3 3 9 0% 10 10 10 0% 11 11 0% 24 24	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 4.3 (d) 4.7 (d) 4.7 (d) 5.3 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.6 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d) 6.9 (d) 6.0 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.5 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d) 6.9 (d) 6.9 (d) 6.0 (d) 6.0 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.5 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330 1.540 0.785 1.353 0.572	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041 0.039 0.039 0.043 0.044 0.111	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344 0.7457 3.9313 1.6527 4.3365	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 27 27 29 29 57 57 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021 1.021	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28 1.018:50 30 1.021:50 58 1.023:50	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 2 0% 3 9 0% 10 10 0% 11 11 0% 24 24 0% 24	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 5.1 (d) 4.3 (d) 5.1 (d) 4.0 (d) 5.3 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.6 (d) 6.6 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330 1.540 0.785 1.353 0.572 1.685	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041 0.039 0.039 0.043 0.044 0.111 0.112 0.084	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344 0.7457 3.9313 1.6527 4.3365 1.3329	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 15 15 27 27 29 29 57 57 59 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021 1.023 1.023	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28 1.018:50 30 1.021:50 58 1.023:50 61	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 2 0% 3 9 0% 10 10 0% 11 11 0% 24 24 0% 24	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 4.3 (d) 4.3 (d) 5.1 (d) 4.3 (d) 5.1 (d) 4.5 (d) 6.6 (d) 6.6 (d) 6.6 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330 1.540 0.785 1.353 0.572 1.685 1.693	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041 0.039 0.039 0.043 0.044 0.111 0.112 0.084 0.084	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344 0.7457 3.9313 1.6527 4.3365 1.3329 1.3339	_
(Outflow) 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 27 27 29 29 57 57 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021 1.021	Node 41 43 45 1.001:50 3 1.003:50 5 7 2.001:50 12 2.003:50 14 2.005:50 16 26 1.016:50 28 1.018:50 30 1.021:50 58 1.023:50	(I/s 1 3 4 0% 1 1 0% 2 3 0% 1 1 0% 2 0% 3 9 0% 10 10 0% 11 11 0% 24 24 24 4	9.8 (r 9.8 (d 4.2 (d 4.1 (d) 1.5 (d) 4.5 (d) 6.4 (d) 6.6 (d) 1.4 (d) 1.3 (d) 4.3 (d) 5.1 (d) 4.7 (d) 5.3 (d) 6.1 (d) 6.1 (d) 6.2 (d) 6.3 (d) 6.4 (d) 6.6 (d) 6.6 (d) 6.6 (d) 6.7 (d) 6.8 (d) 6.9 (d	n/s) 0.404 0.405 0.447 0.338 0.349 0.353 0.305 0.473 0.355 0.490 0.418 0.476 0.439 0.295 1.486 0.330 1.540 0.785 1.353 0.572 1.685	0.105 0.252 0.248 0.065 0.081 0.247 0.249 0.120 0.064 0.080 0.141 0.137 0.173 0.188 0.041 0.039 0.039 0.043 0.044 0.111 0.112 0.084	Vol (m³) 1.5203 3.0648 2.9423 0.4259 0.5185 1.4614 1.5473 1.8028 0.4825 0.5782 0.7868 0.8487 0.9848 1.1536 8.3323 0.8578 4.8344 0.7457 3.9313 1.6527 4.3365 1.3329	_

Jacques Calitz 24/05/2021 Page 32 Tylorstown Phase 4 Existing tip Reprofile

Results for 5 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	52	20	292.448	0.226	37.3	0.0000	0.0000	OK
30 minute winter	7	23	306.786	0.207	31.4	0.0000	0.0000	OK
30 minute winter	16	25	290.586	0.211	34.7	0.0000	0.0000	OK
15 minute winter	49	11	293.188	0.135	19.0	0.6094	0.0000	OK
15 minute winter	6.001:50%	12	292.971	0.143	21.9	0.0000	0.0000	OK
15 minute winter	51	12	292.746	0.165	35.0	0.6053	0.0000	OK
30 minute summer	6.003:50%	20	292.570	0.169	37.2	0.0000	0.0000	OK
30 minute winter	67	20	280.210	0.150	11.3	0.3405	0.0000	OK
30 minute winter	69	25	275.186	0.246	20.0	0.5324	0.0000	OK
30 minute winter	71	25	270.511	0.271	22.5	0.4865	0.0000	OK
60 minute winter	73	41	269.627	0.292	25.9	0.4542	0.0000	OK
60 minute winter	75	43	268.232	0.282	28.3	0.3266	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute summer	52	6.004	53	37.4	0.638	0.218	0.2702	
30 minute winter	7	1.006	8	31.3	0.638	0.175	0.1578	
30 minute winter	16	2.006	17	34.6	0.694	0.161	0.1440	
15 minute winter	49	6.001	6.001:50%	18.5	0.483	0.079	0.4959	
15 minute winter	49	6.001	50	21.9	0.321	0.093	0.9437	
15 minute winter	51	6.003	6.003:50%	34.8	0.627	0.134	0.4650	
30 minute summer	51	6.003	52	37.3	0.481	0.143	0.6651	
30 minute winter	67	9.001	68	11.3	0.329	0.026	1.3599	
30 minute winter	69	9.003	70	18.1	0.395	0.034	2.1507	
30 minute winter	71	9.005	72	22.3	0.277	0.093	2.7509	
30 minute winter	73	9.007	74	25.4	0.198	0.316	3.6269	
60 minute winter	75	9.009	76	28.2	0.340	0.088	2.9422	

Jacques Calitz 24/05/2021

Page 33 Tylorstown Phase 4 Existing tip Reprofile

Results for 30 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event		US Node	Peak	Level (m)	Depth	Inflow	Node Vol (m³)	Flood (m³)	Status
15 minute winter	31		(mins) 11	325.889	(m) 0.135	(I/s) 18.2	0.5124	0.0000	OK
15 minute winter	32		12			37.5	0.8235	0.0000	OK
30 minute summe			21	325.238 323.306	0.188 0.061	61.1	0.0000	0.0000	OK
30 minute summe			19	293.246	0.001	6.5	0.2008	0.0000	OK
30 minute summe		000:50%	20	293.240	0.141	10.7	1.4107	0.0000	OK
30 minute winter	53		21	293.233	0.130	182.1	0.0000	0.0000	OK
30 minute summe			21	308.314	0.103	128.3	0.0000	0.0000	OK
15 minute winter	39		11	310.432	0.084	15.5	0.4398	0.0000	OK
30 minute winter	56		22	267.707	0.130	328.2	0.4338	0.0000	OK
30 minute winter		020:50%	22	267.385	0.205	331.4	4.6711	0.0000	OK
15 minute winter	1		10	308.435	0.099	6.2	0.1274	0.0000	OK
15 minute winter		000:50%	11	308.348	0.120	10.3	0.0000	0.0000	OK
30 minute winter	8		23	306.463	0.066	47.5	0.0000	0.0000	OK
30 minute winter	17		24	290.259	0.076	99.9	0.0000	0.0000	OK
30 minute winter	22		23	286.121	0.121	127.2	0.0670	0.0000	OK
15 minute winter	10		10	292.219	0.100	6.5	0.1357	0.0000	OK
15 minute winter		000:50%	11	292.113	0.119	10.0	0.0000	0.0000	OK
15 minute winter	19		10	300.790	0.021	9.0	0.0276	0.0000	OK
15 minute winter		000:50%	11	297.493	0.023	10.6	0.0021	0.0000	OK
15 minute winter	20		12	294.364	0.193	18.2	0.2185	0.0000	OK
15 minute winter		001:50%	11	291.793	0.035	20.4	0.0138	0.0000	OK
30 minute winter	26		21	278.587	0.500	144.6	0.5565	2.5755	FLOOD
15 minute winter	33		12	324.782	0.218	48.9	0.7605	0.0000	OK
15 minute winter	21	_	13	289.668	0.323	28.1	0.3900	0.0000	OK
Link Event	US	Link	DS	Outfl		-	low/Cap	Link	Discharge
(Outflow)	Node	!	Node	e (I/s	s) (r	n/s)	•	Vol (m³)	Discharge Vol (m³)
(Outflow) 15 minute winter	Node 31	4.000	Node 32	e (I/s 1	s) (r 7.3	n/s) 0.345	0.079	Vol (m³) 2.4489	_
(Outflow) 15 minute winter 15 minute winter	Node 31 32	4.000 4.001	Node 32 33	e (I/s 1 3	5) (r 7.3 3.9	m/s) 0.345 0.419	0.079 0.192	Vol (m³) 2.4489 4.0782	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer	Node 31 32 37	4.000 4.001 4.006	Node 32 33 38	e (I/s 1 3 6	7.3 3.9 1.1	n/s) 0.345 0.419 1.782	0.079 0.192 0.015	Vol (m³) 2.4489 4.0782 0.1429	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter	Node 31 32 37 48	4.000 4.001 4.006 6.000	Node 32 33 38 6.000:5	e (I/s 1 3 6	7.3 3.9 1.1 6.2	n/s) 0.345 0.419 1.782 0.183	0.079 0.192 0.015 0.076	Vol (m³) 2.4489 4.0782 0.1429 0.5344	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter	Node 31 32 37 48 48	4.000 4.001 4.006 6.000 6.000	Node 32 33 38 6.000:5 49	e (I/s 1 3 6	7.3 3.9 1.1 6.2 9.9	n/s) 0.345 0.419 1.782 0.183 0.226	0.079 0.192 0.015 0.076 0.122	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53	4.000 4.001 4.006 6.000 6.000 4.010	Node 32 33 38 6.000:5 49	e (I/s 1 3 6 0%	7.3 3.9 1.1 6.2 9.9	m/s) 0.345 0.419 1.782 0.183 0.226 2.512	0.079 0.192 0.015 0.076 0.122 0.044	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46	4.000 4.001 4.006 6.000 6.000 4.010 4.008	Node 32 33 38 6.000:5 49 54 47	e (I/s 1 3 6 0%	7.3 3.9 1.1 6.2 9.9 1.9 8.0	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352	0.079 0.192 0.015 0.076 0.122 0.044 0.028	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter	Node 31 32 37 48 48 53 46 39	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000	Node 32 33 38 6.000:5 49 54 47 40	e (I/s 1 3 6 0% 18 12	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute summer 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5	e (I/s 1 3 6 0% 18 12 1 0% 32	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352	0.079 0.192 0.015 0.076 0.122 0.044 0.028	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77	e (I/s 1 3 6 0% 18 12 1 0% 32	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57	e (I/s 1 3 6 0% 18 12 1 0% 32	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute summer 15 minute summer 15 minute summer	Node 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (I/s 1 3 6 0% 18 12 1 0% 32	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (1/s 1 3 6 0% 18 12 1 0% 32 0% 1	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56 1 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2	e (1/s 1 3 6 0% 18 12 1 0% 32 0% 14	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56 1 1 8 17	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9	e (1/s 1 3 6 0% 18 12 1 0% 32 0% 1 4 10	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56 1 1 8 17 22	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23	e (I/s 1 3 6 0% 18 12 1 0% 32 0% 1 4 10 12	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute summer 15 minute winter 30 minute winter 15 minute summer 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (1/s 1 3 6 0% 18 12 1 0% 32 0% 1 4 10 12	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (I/s 1 3 6 0% 18 12 1 0% 33 0% 1 4 10 12	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3 9.9	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272 0.289	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036 0.056	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998 0.4341	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	e (1/s 1 3 6 0% 18 12 1 0% 32 33 0% 1 4 10 12 0%	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3 9.9 8.9	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272 0.289 0.749	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036 0.056 0.003	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998 0.4341 0.2053	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56 1 1 8 17 22 10 10 19	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20	e (1/s 1 3 6 0% 18 12 1 0% 32 33 0% 1 4 10 12 0%	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3 9.9 8.9	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272 0.289 0.749 0.164	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036 0.056 0.003 0.003	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998 0.4341 0.2053 1.5710	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000	Node 32 33 38 6.000:56 49 54 47 40 1.020:56 77 57 1.000:56 2 9 18 23 2.000:56 11 3.000:56 20 3.001:56	1 (1/s 1 3 6 0% 18 12 1 0% 32 33 0% 1 4 10 12 0% 0% 1	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3 9.9 8.9 0.5 6.1	m/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272 0.289 0.749 0.164 0.872	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036 0.003 0.003 0.003	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998 0.4341 0.2053 1.5710 0.2586	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 20 20	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5 21	e (1/s 1 3 6 0% 18 12 1 0% 32 33 0% 1 4 10 12 0% 0% 1 2	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3 9.9 8.9 0.5 6.1	n/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272 0.289 0.749 0.164 0.872 0.194	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036 0.056 0.003 0.005 0.005 0.006	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998 0.4341 0.2053 1.5710 0.2586 2.7251	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20 26	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.001 3.001 1.015	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5 21 27	e (I/s 1 3 6 0% 18 12 1 0% 32 0% 1 4 10 12 0% 0% 1 0% 1 12 13	7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3 9.9 8.9 0.5 6.1 0.3 5.5	n/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272 0.289 0.749 0.164 0.872 0.194 0.388	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036 0.056 0.003 0.005 0.006 0.0057	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998 0.4341 0.2053 1.5710 0.2586 2.7251 9.6779	Vol (m³)
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 20 20	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5 21	e (I/s 1 3 6 0% 18 12 1 0% 32 33 0% 1 4 10 12 0% 0% 1 10 12 13 4	5) (r 7.3 3.9 1.1 6.2 9.9 1.9 8.0 4.9 8.3 0.0 0.7 6.0 0.2 7.5 0.0 6.8 6.3 9.9 8.9 0.5 6.1 0.3 5.5 5.9	n/s) 0.345 0.419 1.782 0.183 0.226 2.512 2.352 0.319 1.394 0.653 0.260 0.293 1.383 2.162 0.368 0.272 0.289 0.749 0.164 0.872 0.194	0.079 0.192 0.015 0.076 0.122 0.044 0.028 0.080 0.166 0.168 0.034 0.058 0.018 0.023 0.055 0.036 0.056 0.003 0.005 0.005 0.006	Vol (m³) 2.4489 4.0782 0.1429 0.5344 0.5883 0.3168 0.1974 0.9607 1.8283 4.2361 0.2597 0.3813 0.0756 0.1014 9.6687 0.2998 0.4341 0.2053 1.5710 0.2586 2.7251	Vol (m³)

Jacques Calitz 24/05/2021 Page 34 Tylorstown Phase 4 Existing tip Reprofile

Results for 30 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	3.002:50%	12	287.721	0.048	29.0	0.2394	0.0000	OK
30 minute winter	79	27	259.136	0.041	46.0	0.0000	0.0000	OK
30 minute summer	35	21	324.011	0.237	63.3	0.6191	0.0000	OK
30 minute winter	78	27	266.152	0.038	46.1	0.0000	0.0000	OK
30 minute winter	66	20	282.292	0.076	8.8	0.1920	0.0000	OK
30 minute winter	72	24	270.032	0.308	41.7	0.6312	0.0000	OK
30 minute winter	76	27	267.305	0.313	46.2	0.2367	0.0000	OK
15 minute winter	41	12	309.928	0.192	42.8	0.5862	0.0000	OK
15 minute winter	43	13	309.266	0.230	60.7	0.5764	0.0000	OK
30 minute summer	50	20	292.865	0.264	37.5	0.3126	0.0000	OK
30 minute summer	6.002:50%	20	292.842	0.251	39.7	0.6116	0.0000	OK
30 minute summer	3	19	308.044	0.174	27.7	0.2870	0.0000	OK
15 minute winter	1.002:50%	12	307.880	0.186	33.0	0.0000	0.0000	OK
30 minute winter	5	22	307.633	0.243	45.2	0.4706	0.0000	OK
15 minute winter	12	12	291.754	0.171	26.5	0.2311	0.0000	OK
15 minute winter	2.002:50%	12	291.621	0.179	30.0	0.0000	0.0000	OK
30 minute winter	14	22	291.215	0.205	41.6	0.3724	0.0000	OK
30 minute winter	2.004:50%	23	291.061	0.212	46.5	2.5102	0.0000	OK
30 minute winter	68	23	278.531	0.266	23.3	0.6313	0.0000	OK
30 minute winter	70	24	272.682	0.288	33.1	0.5166	0.0000	OK
30 minute winter	74	26	269.590	0.309	44.6	0.4819	0.0000	OK
30 minute winter	24	24	282.447	0.397	136.8	0.3806	0.0000	OK
60 minute winter	28	34	273.692	0.500	148.3	0.5470	6.6819	FLOOD
30 minute winter	1.017:50%	21	271.961	0.118	139.3	0.0000	0.0000	OK
60 minute winter	80	43	250.663	0.043	46.0	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	21	3.002	22	29.0	0.777	0.011	0.7643	
60 minute winter	79	9.012	80	46.0	1.895	0.008	0.3913	
30 minute summer	35	4.004	36	61.4	0.491	0.355	4.1808	
30 minute winter	78	9.011	79	46.0	2.039	0.007	0.2353	
30 minute winter	66	9.000	67	8.7	0.349	0.017	1.2841	
30 minute winter	72	9.006	73	41.3	0.303	0.210	4.6335	
30 minute winter	76	9.010	78	46.1	0.800	0.156	1.5229	
15 minute winter	41	5.002	42	40.6	0.426	0.202	3.8456	
15 minute winter	43	5.004	44	58.2	0.522	0.327	3.5449	
30 minute summer	50	6.002	6.002:50%	36.5	0.279	0.668	1.4091	
30 minute summer	50	6.002	51	39.5	0.404	0.723	1.0594	
30 minute summer	3	1.002	1.002:50%	27.6	0.430	0.155	1.1345	
15 minute winter	3	1.002	4	32.8	0.365	0.184	1.6073	
30 minute winter	5	1.004	6	44.6	0.488	0.294	2.9706	
15 minute winter	12	2.002	2.002:50%	26.2	0.432	0.147	0.8640	
15 minute winter	12	2.002	13	29.9	0.421	0.168	1.0361	
30 minute winter	14	2.004	2.004:50%	41.4	0.483	0.241	1.4902	
30 minute winter	14	2.004	15	45.1	0.502	0.262	1.5469	
30 minute winter	68	9.002	69	22.5	0.388	0.039	2.8394	
30 minute winter	70	9.004	71	33.0	0.367	0.063	2.6428	
30 minute winter	74	9.008	75	44.5	0.407	0.117	3.5492	
30 minute winter	24	1.013	25	137.1	0.391	0.058	10.4418	
120 minute summer	28	1.017	1.017:50%	135.7	1.586	0.052	1.0424	
30 minute winter	28	1.017	29	139.3	0.403	0.053	5.0900	
60 minute winter	80	9.013	81	46.0	1.818	0.009	0.4031	

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz

Tylorstown Phase 4
Existing tip
Reprofile

Page 35

Results for 30 year Critical Storm Duration. Lowest mass balance: 97.13%

24/05/2021

Node Event	U: No		Peak mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	81	ue (i	43	243.552		46.0	0.0000	0.0000	ОК
60 minute winter	81_0	ПТ	43	236.435		46.1	0.0000	0.0000	OK
30 minute winter	58	01	22	266.419		341.1	0.3985	0.0000	OK
30 minute winter	1.022	·50%	22	265.692		344.3	0.8615	0.0000	OK
30 minute winter	61	.5070	22	263.562		369.0	0.1557	0.0000	OK
30 minute winter	23		24	284.522		128.8	0.3577	0.0000	OK
30 minute winter	63		22	261.046		385.9	0.6304	0.0000	OK
30 minute winter	1.025	.50%	22	259.670		412.0	3.1074	0.0000	OK
30 minute winter	64	.5070	22	258.295		417.1	0.3844	0.0000	OK
30 minute winter	1.026	.50%	22	257.232		447.4	0.0000	0.0000	OK
30 minute winter	38		22	322.230		61.0	0.0000	0.0000	OK
30 minute summer	47		22	307.102		128.0	0.0000	0.0000	OK
15 minute winter	62		10	266.926		5.8	0.0763	0.0000	OK
30 minute winter	54		22	290.935		181.9	0.0000	0.0000	OK
30 minute winter	9		23	306.186		47.5	0.0000	0.0000	OK
30 minute winter	18		24	289.592		100.0	0.0000	0.0000	OK
30 minute winter	65		22	256.160		459.5	0.6467	0.0000	OK
30 minute winter	1.027	:50%	22	254.452		469.4	0.0000	0.0000	OK
30 minute winter	65_0		22	252.742		467.2	0.0000	0.0000	OK
30 minute winter	30		21	268.687		140.6	0.0000	0.0000	FLOOD RISK
30 minute winter	55		22	269.789		182.1	0.0000	0.0000	OK
15 minute summer	77		1	266.900		0.0	0.0000	0.0000	OK
30 minute summer	34		20	324.396		56.3	0.6285	0.0000	OK
15 minute winter	60		10	270.207		15.3	0.1819	0.0000	OK
15 minute winter	7.000	:50%	11	266.97		22.4	0.0000	0.0000	OK
25 milate winter	7.000	.5070		200.57	0.000		0.0000	0.0000	O.K
Link Event	US	Link			Outflow	Velocity	Flow/Cap		Discharge
(Outflow)	Node		N	ode	(I/s)	(m/s)		Vol (m	³) Vol (m³)
		Link 9.014		ode		-	Flow/Cap 0.009	Vol (m	³) Vol (m³)
(Outflow)	Node		N (ode	(I/s)	(m/s)		Vol (m ⁵ 0.416	3) Vol (m³) 2 89.9
(Outflow) 60 minute winter	Node 81	9.014	N (ode DUT	(I/s) 46.1 340.6 343.8	(m/s) 1.833	0.009	Vol (m ³ 0.416 1.518	Nol (m³) 2 89.9
(Outflow) 60 minute winter 30 minute winter	Node 81 58	9.014	81_0 1.02	ode DUT	(I/s) 46.1 340.6	(m/s) 1.833 1.589	0.009 0.145	Vol (m ³ 0.416 1.518 3.836	Vol (m³) 2 89.9 2
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23	9.014 1.022 1.022 1.024 1.012	1.02 59 63 24	ode OUT 2:50%	(I/s) 46.1 340.6 343.8	(m/s) 1.833 1.589 0.695	0.009 0.145 0.146	Vol (m ³ 0.416 1.518 3.836 4.528	³) Vol (m ³) 2 89.9 2 7
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61	9.014 1.022 1.022 1.024	1.02 59 63 24	ode DUT	(I/s) 46.1 340.6 343.8 368.2	(m/s) 1.833 1.589 0.695 1.985	0.009 0.145 0.146 0.119	Vol (m ² 0.416 1.518 3.836 4.528 6.526	³) Vol (m ³) 2 89.9 2 7 1
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23	9.014 1.022 1.022 1.024 1.012	1.02 59 63 24	ode OUT 2:50%	(I/s) 46.1 340.6 343.8 368.2 128.7	(m/s) 1.833 1.589 0.695 1.985 0.491	0.009 0.145 0.146 0.119 0.054	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379	³) Vol (m ³) 2 89.9 2 7 1 8 7
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	1.02 59 63 24 1.02 64	ode OUT 2:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020	0.009 0.145 0.146 0.119 0.054 0.120	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488	³) Vol (m ³) 2 89.9 2 7 1 8 7 5
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	1.02 59 63 24 1.02 64 1.02 65	ode OUT 2:50% 5:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052	0.009 0.145 0.146 0.119 0.054 0.120 0.127	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232	Nol (m ³) 2 89.9 2 7 1 8 7 5 0
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007	1.02 59 63 24 1.02 64 1.02 65 46	ode OUT 2:50% 5:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278	³) Vol (m ³) 2 89.9 2 7 1 8 7 5 0 5
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009	1.02 59 63 24 1.02 64 1.02 65 46 53	ode OUT 2:50% 5:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.146	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566	Vol (m ³) 2 89.9 2 7 1 8 7 5 0 5 4
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	58 58 61 23 63 64 64 38 47 62	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63	ode OUT 2:50% 5:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.0146 0.012 0.027 0.010	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036	yol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009	1.02 59 63 24 1.02 64 1.02 65 46 53	ode OUT 2:50% 5:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.146 0.012 0.027	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036	yol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	58 58 61 23 63 64 64 38 47 62	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63	ode OUT 2:50% 5:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.0146 0.012 0.027 0.010	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483	yol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 38 47 62 54 9 18	9.014 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22	ode OUT 2:50% 5:50% 6:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4 100.1	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257 1.545	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.146 0.012 0.027 0.010 0.036 0.010 0.020	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596	Vol (m ³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0 7 1
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22	ode OUT 2:50% 5:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.146 0.012 0.027 0.010 0.036 0.010	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596	Vol (m ³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0 7 1
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 38 47 62 54 9 18	9.014 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22	ode OUT 2:50% 5:50% 6:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4 100.1	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257 1.545	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.146 0.012 0.027 0.010 0.036 0.010 0.020	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596 3.392	Nol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0 7 1 0
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4 100.1 457.8 467.2	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257 1.545 2.134 2.162	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.012 0.027 0.010 0.036 0.010 0.020 0.144 0.147	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596 3.392 3.415	7 Vol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0 7 1 0 9 1045.5
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4 100.1 457.8	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257 1.545 2.134	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.0146 0.012 0.027 0.010 0.036 0.010 0.020 0.144 0.147	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596 3.392 3.415	yol (m³) 2 89.9 2 89.9 2 7 1 88 7 5 0 5 4 7 9 0 7 1 0 9 1045.5
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0	ode OUT 2:50% 5:50% 6:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4 100.1 457.8 467.2 140.6 182.1	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257 1.545 2.134 2.162 1.055 1.599	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.146 0.012 0.027 0.010 0.036 0.010 0.020 0.144 0.147 0.087 0.037	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596 3.392 3.415 0.982 0.697	yol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0 7 1 0 9 1045.5
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0 56 56	ode OUT 2:50% 5:50% 6:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4 100.1 457.8 467.2	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257 1.545 2.134 2.162	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.0146 0.012 0.027 0.010 0.036 0.010 0.020 0.144 0.147	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596 3.392 3.415 0.982 0.697 0.054	Vol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0 7 1 0 9 1045.5
(Outflow) 60 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 64 62 54 9 18 65 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000	1.02 59 63 24 1.02 64 1.02 65 46 53 63 55 17 22 1.02 65_0 56 56 78 35	ode OUT 2:50% 5:50% 6:50%	(I/s) 46.1 340.6 343.8 368.2 128.7 385.0 408.9 415.8 446.3 61.0 128.2 5.7 182.1 47.4 100.1 457.8 467.2 140.6 182.1 0.0	(m/s) 1.833 1.589 0.695 1.985 0.491 2.020 2.052 1.985 2.086 1.421 1.977 1.480 2.755 1.257 1.545 2.134 2.162 1.055 1.599 0.000	0.009 0.145 0.146 0.119 0.054 0.120 0.127 0.136 0.012 0.027 0.010 0.036 0.010 0.020 0.144 0.147 0.087 0.037 0.000	Vol (m ² 0.416 1.518 3.836 4.528 6.526 2.379 2.488 2.232 2.278 1.566 2.729 0.036 3.483 1.731 0.596 3.392 3.415 0.982 0.697 0.054 3.410	yol (m³) 2 89.9 2 7 1 8 7 5 0 5 4 7 9 0 7 1 0 9 1045.5 9 9 2 2

US

Node

40

Node Event

15 minute winter

30 minute winter

30 minute winter

30 minute winter

30 minute winter

30 minute winter

30 minute summer

30 minute summer

29

57

57

59

59

45

36

1.018

1.021

1.021

1.023

1.023

5.006

4.005

30

58

61

46

37

1.021:50%

1.023:50%

File: Proposed model FSR - opt Network: Storm Network **Jacques Calitz**

Inflow

(I/s)

30.1

Node

Vol (m³)

0.5518

Flood

(m³)

0.0000

Page 36 Tylorstown Phase 4 Existing tip Reprofile

Status

OK

Results for 30 year Critical Storm Duration. Lowest mass balance: 97.13%

Level

(m)

310.253

Peak (mins)

11

24/05/2021

Depth

(m)

0.174

15 illillute willter	40		11	310.233	0.174	30.1	0.5510	0.0000	UK
15 minute winter	42		12	309.498	0.251	54.3	0.7785	0.0000	OK
30 minute summe	er 44		20	308.961	0.243	69.3	0.8186	0.0000	OK
15 minute winter	2		11	308.264	0.144	16.8	0.2117	0.0000	OK
30 minute summe	er 1.0	01:50%	19	308.152	0.157	21.0	0.0000	0.0000	OK
15 minute winter	4		12	307.756	0.238	39.1	0.3999	0.0000	OK
30 minute winter	1.0	03:50%	22	307.696	0.242	41.8	3.0484	0.0000	OK
30 minute winter	6		22	307.343	0.185	48.3	0.2492	0.0000	OK
15 minute winter	11		11	292.013	0.144	16.7	0.2163	0.0000	OK
15 minute winter	2.0	01:50%	12	291.883	0.157	21.1	0.0000	0.0000	OK
15 minute winter	13		11	291.505	0.204	36.0	0.3317	0.0000	OK
30 minute winter	2.0	03:50%	22	291.349	0.193	40.4	5.3283	0.0000	OK
30 minute winter	15		23	290.901	0.212	49.2	0.3730	0.0000	OK
30 minute winter	2.0	05:50%	24	290.751	0.219			0.0000	OK
30 minute winter	25		23	280.358	0.500	139.5	0.5510	0.5177	FLOOD
60 minute winter	27		36	276.511	0.500	143.0	1.2410	2.5681	FLOOD
30 minute winter	1.0	16:50%	21	274.718	0.116	138.5		0.0000	OK
60 minute winter	29		33	270.995	0.500	143.9	0.6110	4.6147	FLOOD
30 minute winter	1.0	18:50%	21	269.458	0.117	140.6		0.0000	OK
30 minute winter			22	267.352				0.0000	OK
30 minute winter		21:50%	22	266.587		338.3	0.2482	0.0000	OK
30 minute winter	59		22	265.579		343.8		0.0000	OK
30 minute winter		23:50%	23	264.407				0.0000	OK
30 minute summe	4 -		21	308.703	0.280	67.4	0.0000	0.0000	OK
30 minute Summe				306.703	0.260	07.4	0.0000	0.0000	OK
30 minute summe			21	323.731				0.0000	OK
		Link		323.731	0.267	61.4			
30 minute summe	er 36	Link	21	323.731 Out	0.267 flow V e	61.4	0.0000	0.0000	OK
30 minute summe	er 36 US	Link 5.001	21 DS	323.731 Outtee (I)	0.267 flow V e	61.4	0.0000	0.0000 Link	OK Discharge
30 minute summe Link Event (Outflow)	us Node		21 DS Node	323.731 Outle (I)	0.267 flow Ve 's) (61.4 elocity m/s)	0.0000 Flow/Cap	0.0000 Link Vol (m³)	OK Discharge
30 minute summe Link Event (Outflow) 15 minute winter	US Node 40	5.001	DS Node	323.731 Out	0.267 flow Ve 's) (29.1	61.4 elocity m/s) 0.440	0.0000 Flow/Cap 0.154	0.0000 Link Vol (m³) 2.0444	OK Discharge
30 minute summe Link Event (Outflow) 15 minute winter 15 minute winter	US Node 40 42	5.001 5.003	21 DS Node 41 43	323.731 Out	0.267 flow Ve /s) (29.1 51.3	61.4 elocity m/s) 0.440 0.450	0.0000 Flow/Cap 0.154 0.377	0.0000 Link Vol (m³) 2.0444 4.1280	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer	US Node 40 42 44	5.001 5.003 5.005	21 DS Node 41 43 45	323.731 Outie (I)	0.267 flow Ve /s) (29.1 51.3 67.4	61.4 elocity m/s) 0.440 0.450 0.500	0.0000 Flow/Cap 0.154 0.377 0.379	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter	US Node 40 42 44 2	5.001 5.003 5.005 1.001	DS Node 41 43 45 1.001:5	323.731 Outi	0.267 Flow Ve 's) (29.1 51.3 67.4 16.7	61.4 elocity m/s) 0.440 0.450 0.500 0.370	0.0000 Flow/Cap 0.154 0.377 0.379 0.094	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer	US Node 40 42 44 2	5.001 5.003 5.005 1.001 1.001	DS Node 41 43 45 1.001:5	323.731 Out: (I/	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter	US Node 40 42 44 2 2 4	5.001 5.003 5.005 1.001 1.001 1.003	DS Node 41 43 45 1.001:5 3 1.003:5	323.731 Out (I) 0%	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9 38.8	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer	US Node 40 42 44 2 2 4 4	5.001 5.003 5.005 1.001 1.001 1.003 1.003	DS Node 41 43 45 1.001:5 3 1.003:5 5	323.731 Out (I) 0%	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.388	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter	US Node 40 42 44 2 2 4 4 6	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005	21 DS Node 41 43 45 1.001:5 3 1.003:5 5 7	323.731 Outie (I) 0% 0%	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.338 0.526	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter	US Node 40 42 44 2 2 4 4 6 11	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001	DS Node 41 43 45 1.001:5 3 1.003:5 5 7 2.001:5	323.731 Out: (I) 0% 0%	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.338 0.526 0.370	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute winter	US Node 40 42 44 2 2 4 4 6 11 11 13 13 13	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003	DS Node 41 43 45 1.001:5 3 1.003:5 5 7 2.001:5	323.731 Outle (I/ 0% 0% 0%	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6 20.8 36.9 36.6	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.526 0.370 0.389 0.535 0.463	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117 0.208 0.206	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423 0.7677 1.0485 1.1583	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	US Node 40 42 44 2 2 4 4 6 11 11 13	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005 2.001 2.001 2.003	DS Node 41 43 45 1.001:5 3 1.003:5 5 7 2.001:5 12 2.003:5	323.731 Outle (I/ 0% 0% 0%	0.267 Flow Ve ('s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6 20.8 36.9	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.338 0.526 0.370 0.389 0.535	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117 0.208	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423 0.7677 1.0485	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	US Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005	DS Node 41 43 45 1.001:5 3 1.003:5 5 7 2.001:5 12 2.003:5	323.731 Outie (I) 0% 0% 0% 0%	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6 20.8 36.9 36.6 48.6 52.9	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.526 0.370 0.389 0.535 0.463 0.529 0.486	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117 0.208 0.206 0.263 0.286	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423 0.7677 1.0485 1.1583 1.3505 1.5938	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	US Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014	21 DS Node 41 43 45 1.001:5:3 1.003:5:5 7 2.001:5:12 2.003:5:14 2.005:5:16 26	323.731 Outie (I) 0% 0% 0% 0% 1	0.267 flow Ve /s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6 20.8 36.9 36.6 48.6 52.9 35.5	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.526 0.370 0.389 0.535 0.463 0.529 0.486 0.385	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117 0.208 0.206 0.263 0.286 0.060	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423 0.7677 1.0485 1.1583 1.3505 1.5938 9.1012	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	us Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016	21 DS Node 41 43 45 1.001:5 3 1.003:5 7 2.001:5 12 2.003:5 14 2.005:5 16 26 1.016:5	323.731 Out: (I) 0% 0% 0% 0% 1 0% 1	0.267 Flow Ve ('s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6 20.8 36.9 36.6 48.6 52.9 35.5	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.526 0.370 0.389 0.535 0.463 0.529 0.486 0.385 1.609	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117 0.208 0.206 0.263 0.286 0.060 0.051	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423 0.7677 1.0485 1.1583 1.3505 1.5938 9.1012 1.0368	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	us Node 40 42 44 2 2 4 4 6 11 13 13 15 15 25 27 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016	21 DS Node 41 43 45 1.001:5 3 1.003:5 7 2.001:5 12 2.003:5 14 2.005:5 16 26 1.016:5 28	323.731 Out: (I) 0% 0% 0% 0% 1 0% 1 1	0.267 flow Ve (s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6 20.8 36.9 36.6 48.6 52.9 35.5 35.7	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.526 0.370 0.389 0.535 0.463 0.529 0.486 0.385	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117 0.208 0.206 0.263 0.286 0.060 0.051 0.052	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423 0.7677 1.0485 1.1583 1.3505 1.5938 9.1012 1.0368 5.1216	OK Discharge
Link Event (Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	us Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016	21 DS Node 41 43 45 1.001:5 3 1.003:5 7 2.001:5 12 2.003:5 14 2.005:5 16 26 1.016:5	323.731 Out: (I) 0% 0% 0% 0% 1 0% 1 1	0.267 Flow Ve ('s) (29.1 51.3 67.4 16.7 20.9 38.8 39.8 47.7 16.6 20.8 36.9 36.6 48.6 52.9 35.5	61.4 elocity m/s) 0.440 0.450 0.500 0.370 0.382 0.383 0.526 0.370 0.389 0.535 0.463 0.529 0.486 0.385 1.609	0.0000 Flow/Cap 0.154 0.377 0.379 0.094 0.118 0.363 0.373 0.182 0.093 0.117 0.208 0.206 0.263 0.286 0.060 0.051	0.0000 Link Vol (m³) 2.0444 4.1280 4.0589 0.5649 0.6854 1.9690 2.0901 2.4606 0.6423 0.7677 1.0485 1.1583 1.3505 1.5938 9.1012 1.0368	OK Discharge

140.6

334.3

338.0

343.3

347.2

67.4

61.1

0.773

1.488

0.675

1.861

1.874

0.759

0.762

0.052

0.155

0.156

0.117

0.119

0.381

0.295

4.1319

2.0933

5.0876

1.6948

1.7017

0.3902

0.4128

Jacques Calitz 24/05/2021 Page 37 Tylorstown Phase 4 Existing tip Reprofile

Results for 30 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	52	20	292.486	0.264	56.5	0.0000	0.0000	OK
30 minute winter	7	23	306.821	0.242	47.7	0.0000	0.0000	OK
30 minute winter	16	24	290.623	0.248	52.9	0.0000	0.0000	OK
30 minute summer	49	19	293.210	0.157	27.9	0.7076	0.0000	OK
30 minute summer	6.001:50%	19	292.994	0.167	32.7	0.0000	0.0000	OK
30 minute summer	51	19	292.774	0.193	53.4	0.7080	0.0000	OK
30 minute summer	6.003:50%	20	292.599	0.197	56.7	0.0000	0.0000	OK
30 minute winter	67	22	280.268	0.208	16.6	0.4719	0.0000	OK
30 minute winter	69	24	275.220	0.280	29.1	0.6058	0.0000	OK
30 minute winter	71	24	270.540	0.300	37.1	0.5381	0.0000	OK
30 minute winter	73	25	269.663	0.328	43.5	0.5102	0.0000	OK
30 minute winter	75	26	268.261	0.311	45.7	0.3604	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute summer	52	6.004	53	56.8	0.715	0.332	0.3649	
30 minute winter	7	1.006	8	47.5	0.714	0.266	0.2135	
30 minute winter	16	2.006	17	53.0	0.774	0.246	0.1974	
30 minute summer	49	6.001	6.001:50%	27.6	0.531	0.117	0.6729	
30 minute summer	49	6.001	50	32.6	0.353	0.138	1.2479	
30 minute summer	51	6.003	6.003:50%	52.9	0.697	0.203	0.6351	
30 minute summer	51	6.003	52	56.5	0.535	0.217	0.9068	
30 minute winter	67	9.001	68	15.5	0.332	0.035	2.3612	
30 minute winter	69	9.003	70	28.7	0.390	0.054	2.7087	
30 minute winter	71	9.005	72	37.0	0.319	0.153	3.5083	
30 minute winter	73	9.007	74	42.7	0.240	0.530	4.7089	
30 minute winter	75	9.009	76	45.4	0.394	0.141	3.6973	

Jacques Calitz 24/05/2021 Page 38 Tylorstown Phase 4 Existing tip Reprofile

Results for 100 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event		US	Peak	Level	Depth	Inflow	Node	Flood	Status
	_	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	3		11	325.903	0.149	23.4	0.5647	0.0000	OK
30 minute summe			19	325.259	0.209	48.0	0.9127	0.0000	OK
30 minute summe		7	21	323.317	0.072	81.8	0.0000	0.0000	OK
30 minute summe			19	293.263	0.158	8.5	0.2255	0.0000	OK
30 minute summe		.000:50%	20	293.253	0.174	14.0	1.7480	0.0000	OK
30 minute summe			21	292.157	0.127	243.8	0.0000	0.0000	OK
30 minute summe			21	308.329	0.099	171.7	0.0000	0.0000	OK
15 minute winter		9	10	310.446	0.150	20.0	0.4848	0.0000	OK
30 minute winter	5	6	21	267.726	0.223	389.7	0.3254	0.0000	OK
30 minute summe	er 1	.020:50%	22	267.405	0.224	393.0	5.6004	0.0000	OK
15 minute winter	1		10	308.445	0.109	8.0	0.1404	0.0000	OK
15 minute winter		.000:50%	11	308.360	0.132	13.2	0.0000	0.0000	OK
30 minute winter	8		22	306.473	0.076	60.2	0.0000	0.0000	OK
30 minute winter	1		23	290.270	0.087	128.9	0.0000	0.0000	OK
30 minute winter		2	22	286.138	0.138	164.5	0.0768	0.0000	OK
15 minute winter	1	0	10	292.229	0.110	8.4	0.1496	0.0000	OK
15 minute winter		.000:50%	11	292.125	0.131	13.0	0.0000	0.0000	OK
15 minute winter		9	10	300.793	0.024	11.6	0.0321	0.0000	OK
15 minute winter		.000:50%	11	297.497	0.027	13.7	0.0028	0.0000	OK
15 minute winter	2	0	12	294.421	0.250	23.5	0.2838	0.0000	OK
30 minute summe		.001:50%	19	291.798	0.039	25.0	0.0176	0.0000	OK
60 minute winter	2		32	278.587	0.500	148.0	0.5565	8.7026	FLOOD
15 minute winter	3		12	324.806	0.241	64.1	0.8424	0.0000	OK
30 minute summe	er 2	1	20	289.755	0.410	34.4	0.4949	Λ $\Lambda \Lambda \Lambda \Lambda \Lambda$	OK
30 mmate 3amme	-1 2	_	20	209.733	0.410	34.4	0.4343	0.0000	OK
Link Event	US		DS	Outf			low/Cap	Link	Discharge
		Link		Outf	low Ve		low/Cap		
Link Event	US	Link	DS	Outf	low Ve s) (r	locity F	low/Cap	Link	Discharge
Link Event (Outflow)	US Nod	Link e	DS Node	Outf e (I/s	low Ve s) (1 22.4	locity F n/s)	low/Cap	Link Vol (m³)	Discharge
Link Event (Outflow) 15 minute winter	US Nod 31	Link e 4.000	DS Node	Outf e (I/s 2	low Ve s) (1 22.4 14.6	locity F m/s) 0.365	0.102	Link Vol (m³) 3.0023	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer	US Nod 31 32	Link e 4.000 4.001	DS Node 32 33	Outf e (I/s 2 4	low Ve s) (1 22.4 14.6 31.8	locity F m/s) 0.365 0.447	0.102 0.252	Link Vol (m³) 3.0023 4.9544	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer	US Nod 31 32 37	Link e 4.000 4.001 4.006	DS Node 32 33 38	Outf 2 (I/s 2 4 8	low Ve s) (1 22.4 14.6 31.8 8.1	locity F m/s) 0.365 0.447 1.957	0.102 0.252 0.020	Link Vol (m³) 3.0023 4.9544 0.1742	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer	US Nod 31 32 37 48	Link e 4.000 4.001 4.006 6.000	DS Node 32 33 38 6.000:5	Outf e (I/s 2 4 8 0%	low Ve s) (1 22.4 44.6 31.8 8.1 13.2	locity F m/s) 0.365 0.447 1.957 0.189	0.102 0.252 0.020 0.099	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer	US Nod 31 32 37 48 48	4.000 4.001 4.006 6.000 6.000	DS Node 32 33 38 6.000:5 49	Outf e (I/s 2 4 8 0% 1	low Ve s) (1 22.4 14.6 31.8 8.1 13.2	locity F m/s) 0.365 0.447 1.957 0.189 0.249	0.102 0.252 0.020 0.099 0.162	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer	US Nod 31 32 37 48 48 53	4.000 4.001 4.006 6.000 6.000 4.010	DS Node 32 33 38 6.000:5 49 54	Outf e (I/s 2 4 8 0% 1 24 17	low Ve (1) 22.4 14.6 131.8 13.2 13.1 171.1	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736	0.102 0.252 0.020 0.099 0.162 0.059	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer	US Nod 31 32 37 48 48 53 46	4.000 4.001 4.006 6.000 6.000 4.010 4.008	DS Node 32 33 38 6.000:5 49 54 47	Outf 2 (I/s 2 4 8 0% 1 24 17	low Ve (1) 22.4 14.6 13.1 13.2 13.1 171.1 19.3	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568	0.102 0.252 0.020 0.099 0.162 0.059 0.037	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer	US Nod 31 32 37 48 48 53 46 39	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000	DS Node 32 33 38 6.000:5 49 54 47 40	Outf 2 (I/s 2 4 8 0% 1 24 17	low Ve (1) 22.4 14.6 13.1 13.2 13.1 171.1 19.3	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653	Discharge
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter	US Nod 31 32 37 48 48 53 46 39 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5	Outf 2 4 8 0% 1 24 17 1 0% 38	low Ve (1) 22.4 14.6 131.8 1.3.2 13.1 171.1 199.3 139.4 0.0	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 15 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77	Outfi e (I/s 2 4 8 0% 1 24 17 1 0% 38	low Ve (1) 22.4 14.6 13.8 1.3.2 13.1 171.1 19.3 139.4 0.0 02.9	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute summer 30 minute summer	US Nod 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57	Outfine (I/s) 2 4 8 0% 1 24 17 1 0% 38	low Ve (1) (22.4 14.6 13.8 13.2 13.1 171.1 19.3 19.4 0.0 02.9 7.8	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Nod 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	Outf (I/s) 2 4 8 0% 1 24 17 1 0% 38 0%	low Ve (1) 22.4 14.6 13.8 13.2 13.1 171.1 19.3 189.4 0.0 192.9 7.8 13.2	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer	US Nod 31 32 37 48 48 53 46 39 56 56 56 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2	Outf 2 (1/3 2 4 8 0% 1 24 17 1 0% 38 0% 1	low Ve (1) 22.4 44.6 31.8 8.1 13.2 13.1 71.1 19.3 89.4 0.0 02.9 7.8 13.2 50.2	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 30 minute summer 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23	Outf (1/3) 24 48 0% 1 24 17 1 0% 38 0% 1 6 12 16	low Ve (1) 22.4 14.6 131.8 1.3.2 13.1 171.1 19.3 139.4 0.0 102.9 17.8 13.2 13.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.3.2 13.2 1	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338 0.451	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074 0.072 0.030 0.071	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207 9.9908	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 30 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56 56 1 1 8 17	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18	Outf (1/3) 24 48 0% 1 24 17 1 0% 38 0% 1 6 12 16	low Ve (1) 22.4 14.6 131.8 1.3.2 13.1 171.1 19.3 139.4 0.0 102.9 17.8 13.2 13.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.2 13.3.3.2 13.2 1	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074 0.074 0.022 0.030	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 30 minute summer 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23	Outfi e (I/s 2 4 8 0% 1 24 17 1 0% 38 0% 1 6 12 16	low Ve (1) 22.4 14.6 13.8 8.1 13.2 13.1 71.1 19.3 139.4 0.0 192.9 7.8 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338 0.451	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074 0.072 0.030 0.071	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207 9.9908	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	Outf (I/s) 2 4 8 0% 1 24 17 1 0% 38 0% 1 6 12 16 0%	low Ve (1) 22.4 14.6 81.8 8.1 13.2 13.1 71.1 19.3 19.4 0.0 19.2.9 7.8 13.2 15.0.2 18.8 15.8 18.2 12.9	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338 0.451 0.289	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074 0.022 0.030 0.071 0.046	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207 9.9908 0.3636	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	Outf (1/3) 24 48 0% 11 24 17 10 0% 38 0% 11 60 12 16 0% 11 0% 11 0% 11 0% 11 0% 11 0% 11 0% 11 0% 11 0% 11 0% 11 0% 11 0% 11 0%	low Ve (1) 22.4 14.6 13.8 1.3.2 13.1 171.1 19.3 19.4 0.0 192.9 17.8 13.2 150.2 12.8 18.2 12.9 11.5	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338 0.451 0.289 0.308	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074 0.022 0.030 0.071 0.046 0.072	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207 9.9908 0.3636 0.5268	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	Outf (1/3) 24 48 0% 11 24 17 10 0% 38 0% 11 60 12 16 0% 11 0% 11 11 11 11 11 11 11 11 11 11 11 11 11	low Ve (122.4 14.6 131.8 1.3.2 13.1 171.1 1.9.3 139.4 10.0 10.2.9 17.8 13.2 13.8 13.2 13.1 13.2 13.3 13.3 13.3 13.3 13.3	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338 0.451 0.289 0.308 0.821	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.044 0.074 0.022 0.030 0.071 0.046 0.072 0.003	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207 9.9908 0.3636 0.5268 0.2419	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	US Nod 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	Outf (I/s (I/s 2 4 8 0% 1 24 17 1 0% 38 0% 1 6 12 16 0% 1 0% 1 0% 1 0% 1 0% 1	low Ve (1) 22.4 14.6 131.8 1.3.2 13.1 171.1 19.3 139.4 10.0 102.9 17.8 13.2 150.2 128.8 153.8 18.2 12.9 11.5 13.5 19.7	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338 0.451 0.289 0.308 0.821 0.171	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074 0.022 0.030 0.071 0.046 0.072 0.003 0.004	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207 9.9908 0.3636 0.5268 0.2419 2.2757	Discharge Vol (m³)
Link Event (Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	US Nod 31 32 37 48 48 53 46 56 56 1 1 8 17 22 10 10 19 19 20	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001	DS Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	Outfile (I/s) 2 4 8 0% 1 24 17 1 0% 38 0% 1 6 0% 1 0% 1 0% 1 0% 1 0% 1 0% 1 0%	low Ve (1) 22.4 14.6 13.8 8.1 13.2 13.1 71.1 19.3 19.4 0.0 192.9 7.8 13.2 15.2 15.2 15.5 15.5 19.7 15.0	locity F m/s) 0.365 0.447 1.957 0.189 0.249 2.736 2.568 0.340 1.457 0.736 0.276 0.312 1.496 2.338 0.451 0.289 0.308 0.821 0.171 0.939	0.102 0.252 0.020 0.099 0.162 0.059 0.037 0.104 0.197 0.199 0.044 0.074 0.022 0.030 0.071 0.046 0.072 0.003 0.004 0.006	Link Vol (m³) 3.0023 4.9544 0.1742 0.6661 0.7383 0.3887 0.2413 1.1653 2.0674 4.4166 0.3143 0.4622 0.0887 0.1207 9.9908 0.3636 0.5268 0.2419 2.2757 0.2952	Discharge Vol (m³)

60.8

31.1

0.529

0.968

0.366

0.012

5.0449

0.4622

4.002 34

3.002 3.002:50%

33

15 minute winter

30 minute summer 21

File: Proposed model FSR - opt

Network: Storm Network Jacques Calitz 24/05/2021 Page 39 Tylorstown Phase 4 Existing tip Reprofile

Results for 100 year Critical Storm Duration. Lowest mass balance: 97.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute winter	3.002:50%	21	287.729	0.056	37.9	0.3253	0.0000	OK
60 minute winter	79	41	259.144	0.049	62.9	0.0000	0.0000	OK
30 minute summer	35	21	324.040	0.266	84.5	0.6935	0.0000	OK
60 minute winter	78	41	266.159	0.045	62.9	0.0000	0.0000	OK
30 minute winter	66	21	282.300	0.084	11.5	0.2122	0.0000	OK
30 minute winter	72	23	270.055	0.331	58.1	0.6776	0.0000	OK
60 minute winter	76	41	267.327	0.335	63.0	0.2535	0.0000	OK
30 minute summer	41	19	309.949	0.213	54.9	0.6484	0.0000	OK
30 minute summer	43	20	309.293	0.257	79.7	0.6429	0.0000	OK
30 minute summer	50	20	292.891	0.290	49.5	0.3433	0.0000	OK
30 minute summer	6.002:50%	20	292.867	0.276	52.6	0.7373	0.0000	OK
30 minute summer	3	19	308.063	0.193	36.2	0.3177	0.0000	OK
30 minute summer	1.002:50%	20	307.899	0.205	43.3	0.0000	0.0000	OK
30 minute winter	5	21	307.652	0.262	55.9	0.5067	0.0000	OK
30 minute summer	12	19	291.772	0.189	34.4	0.2554	0.0000	OK
15 minute winter	2.002:50%	12	291.640	0.198	38.8	0.0000	0.0000	OK
30 minute winter	14	21	291.238	0.228	55.1	0.4127	0.0000	OK
30 minute winter	2.004:50%	23	291.084	0.235	61.2	3.0850	0.0000	OK
30 minute winter	68	23	278.548	0.282	30.4	0.6706	0.0000	OK
30 minute winter	70	23	272.701	0.308	44.9	0.5509	0.0000	OK
60 minute winter	74	40	269.609	0.328	58.5	0.5116	0.0000	OK
30 minute winter	24	20	282.453	0.403	147.7	0.3861	0.0000	OK
60 minute winter	28	30	273.692	0.500	151.0	0.5470	13.5090	FLOOD
30 minute winter	1.017:50%	20	271.962	0.118	140.4	0.0000	0.0000	OK
60 minute winter	80	41	250.671	0.051	62.9	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute winter	21	3.002	22	37.9	0.641	0.014	1.0073	
60 minute winter	79	9.012	80	62.9	2.103	0.011	0.4816	
30 minute summer	35	4.004	36	83.1	0.526	0.480	5.2345	
60 minute winter	78	9.011	79	62.9	2.264	0.010	0.2895	
30 minute winter	66	9.000	67	11.4	0.358	0.022	1.9765	
30 minute winter	72	9.006	73	57.6	0.354	0.293	5.4583	
60 minute winter	76	9.010	78	62.9	0.862	0.213	1.9299	
30 minute summer	41	5.002	42	53.1	0.452	0.265	4.6390	
30 minute summer	43	5.004	44	77.9	0.556	0.437	4.4471	
30 minute summer	50	6.002	6.002:50%	48.5	0.305	0.888	1.6993	
30 minute summer	50	6.002	51	52.3	0.439	0.958	1.2874	
30 minute summer	3	1.002	1.002:50%	36.2	0.460	0.203	1.3923	
30 minute summer	3	1.002	4	42.6	0.391	0.240	1.9602	
30 minute winter	5	1.004	6	55.5	0.515	0.365	3.4852	
30 minute summer	12	2.002	2.002:50%	34.2	0.460	0.192	1.0512	
15 minute winter	12	2.002	13	38.8	0.451	0.218	1.2408	
30 minute winter	14	2.004	2.004:50%	54.5	0.517	0.317	1.8284	
30 minute winter	14	2.004	15	59.4	0.537	0.345	1.9017	
30 minute winter	68	9.002	69	30.0	0.395	0.052	3.2510	
30 minute winter	70	9.004	71	44.7	0.423	0.086	3.0651	
60 minute winter	74	9.008	75	58.3	0.457	0.154	4.1062	
30 minute winter	24	1.013	25	147.9	0.416	0.063	10.5058	
15 minute summer	28	1.017	1.017:50%	135.8	1.590	0.052	1.0451	
30 minute winter	28	1.017	29	140.4	0.406	0.053	5.0930	
60 minute winter	80	9.013	81	62.8	2.016	0.012	0.4961	

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz Page 40 Tylorstown Phase 4 Existing tip Reprofile

Results for 100 year Critical Storm Duration. Lowest mass balance: 97.13%

24/05/2021

Node Event		US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter			42	243.559	0.052	62.8	0.0000	0.0000	ОК
60 minute winter		OUT	42	236.443	0.050	62.8	0.0000	0.0000	OK
30 minute winter		_	19	266.422	0.500	359.0	0.4010	3.4530	FLOOD
30 minute winter		022:50%	20	265.694	0.193	353.4	0.8869	0.0000	OK
30 minute winter			20	263.566	0.174	386.4	0.1597	0.0000	OK
30 minute winter			20	284.526	0.500	167.1	0.3605	10.8929	FLOOD
30 minute winter			20	261.053	0.178	416.1	0.6577	0.0000	OK
30 minute winter		025:50%	20	259.680	0.186	453.3	3.4710	0.0000	OK
30 minute winter			20	258.307	0.195	467.2	0.4090	0.0000	OK
30 minute winter		026:50%	20	257.246	0.204	510.0	0.0000	0.0000	OK
30 minute summe			21	322.240	0.061	81.8	0.0000	0.0000	OK
30 minute summe			22	307.115	0.094	171.1	0.0000	0.0000	ОК
15 minute winter			10	266.931	0.050	7.4	0.0837	0.0000	OK
30 minute summe			21	290.951	0.113	243.1	0.0000	0.0000	OK
30 minute winter			22	306.193	0.053	60.2	0.0000	0.0000	ОК
30 minute winter	18		23	289.602	0.078	128.8	0.0000	0.0000	ОК
30 minute winter	65		20	256.175	0.204	532.3	0.7004	0.0000	ОК
30 minute winter	1.0	027:50%	20	254.470	0.209	551.6	0.0000	0.0000	ОК
30 minute winter	65	_OUT	20	252.759	0.208	551.2	0.0000	0.0000	ОК
30 minute winter	30		19	268.687	0.919	142.1	0.0000	0.2567	FLOOD
30 minute winter	55		22	269.804	0.110	241.7	0.0000	0.0000	ОК
15 minute summe	er 77		1	266.900	0.000	0.0	0.0000	0.0000	ОК
30 minute summe	er 34		20	324.422	0.242	75.4	0.7016	0.0000	ОК
15 minute winter	60		10	270.211	0.071	17.9	0.1930	0.0000	OK
30 minute summe	er 7.0	000:50%	18	266.977	0.086	27.2	0.0000	0.0000	OK
Link Event	US	Link	DS	S Ou	tflow V	elocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node		DS Noc			elocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
				le (-	Flow/Cap 0.012		_
(Outflow)	Node		Noc	le () JT	/s)	(m/s)	-	Vol (m³)	Vol (m³)
(Outflow) 60 minute winter	Node 81	9.014	Nod 81_OU	le (I JT 50% :	/ s) 62.8	(m/s) 2.032	0.012	Vol (m³) 0.5123	Vol (m³)
(Outflow) 60 minute winter 15 minute winter	Node 81 58	9.014 1.022	Noc 81_OU 1.022:	le (1 JT 50% 3	1 /s) 62.8 349.0	(m/s) 2.032 1.606	0.012	Vol (m³) 0.5123 1.5441	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter	Node 81 58 58	9.014 1.022 1.022	Noc 81_OU 1.022: 59	le (1 JT 50% :	62.8 62.8 349.0 353.4	(m/s) 2.032 1.606 0.707	0.012 0.148 0.150	Vol (m³) 0.5123 1.5441 3.8748	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61	9.014 1.022 1.022 1.024	Noc 81_OU 1.022: 59 63	JT 50% 3	62.8 62.8 349.0 353.4 386.5	(m/s) 2.032 1.606 0.707 1.996	0.012 0.148 0.150 0.125	Vol (m³) 0.5123 1.5441 3.8748 4.7350	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter	Node 81 58 58 61 23 63 63	9.014 1.022 1.022 1.024 1.012	Noc 81_OU 1.022: 59 63 24 1.025: 64	JE (I	62.8 62.8 349.0 353.4 386.5 135.5 416.7 453.5	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105	0.012 0.148 0.150 0.125 0.057	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025	Noc 81_OL 1.022: 59 63 24 1.025: 64 1.026:	JT (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	62.8 62.8 349.0 353.4 386.5 135.5 416.7 453.5	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	Noc 81_OU 1.022: 59 63 24 1.025: 64 1.026: 65	JT (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 63 64 64 38	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007	Noc 81_OU 1.022: 59 63 24 1.025: 64 1.026: 65 46	JE (I) 50% 3 50% 4 50% 4	62.8 649.0 653.4 686.5 135.5 416.7 453.5 467.2 510.0 81.3	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 63 64 64 38 47	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009	Noc 81_OL 1.022: 59 63 24 1.025: 64 1.026: 65 46 53	JE (I) 50% 3 50% 4 50% 4	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter	Node 81 58 58 61 23 63 63 64 64 38 47 62	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63	JE (I) 50% : 50% : 50% : 50% : 50% :	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55	JE (I) 50% : 50% : 50% : 50% : 50% :	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 15 minute summer 15 minute summer 30 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17	JE (I	62.8 62.8 349.0 353.4 386.5 135.5 146.7 153.5 167.2 100 81.3 170.6 7.3 242.2 60.1	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute summer 15 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22	JT (1) (1) (2) (3) (3) (4) (5) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18 65	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027	Noc 81_OL 1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027:	JE (I) 50% 3 50% 4 50% 4 50% 4	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8 532.0	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669 2.216	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026 0.168	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141 3.7955	Vol (m³) 117.2
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute summer 15 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22	JE (I) 50% 3 50% 4 50% 4 50% 4	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141	Vol (m³)
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18 65	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027	Noc 81_OL 1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027:	JE (I) 50% 3 50% 4 50% 4 50% 4 50% 5 50% 5 50% 5 50% 5	62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8 532.0	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669 2.216	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026 0.168	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141 3.7955	Vol (m³) 117.2
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OU	Sow (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	62.8 62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8 532.0 551.2	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669 2.216 2.267	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026 0.168 0.174	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141 3.7955 3.8435	Vol (m³) 117.2
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_0L	Sow (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	62.8 62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8 532.0 551.2	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669 2.216 2.267	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026 0.168 0.174	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141 3.7955 3.8435	Vol (m³) 117.2
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OL	Sow (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	62.8 62.8 349.0 353.4 386.5 135.5 146.7 153.5 167.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8 532.0 551.2 141.0 241.7	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669 2.216 2.267 1.086 1.738	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026 0.168 0.174 0.087 0.049	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141 3.7955 3.8435 1.0576 0.8105	Vol (m³) 117.2
(Outflow) 60 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18 65 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OL	JE (I) 50% : : : : : : : : : : : : : : : : : : :	62.8 62.8 349.0 353.4 386.5 135.5 416.7 453.5 467.2 510.0 81.3 170.6 7.3 242.2 60.1 128.8 532.0 551.2 141.0 241.7 0.0	(m/s) 2.032 1.606 0.707 1.996 0.508 2.055 2.105 2.042 2.157 1.554 2.160 1.574 3.001 1.358 1.669 2.216 2.267 1.086 1.738 0.000	0.012 0.148 0.150 0.125 0.057 0.130 0.141 0.153 0.167 0.017 0.036 0.013 0.048 0.013 0.026 0.168 0.174 0.087 0.049 0.000	Vol (m³) 0.5123 1.5441 3.8748 4.7350 6.6478 2.5393 2.6911 2.4375 2.5183 1.9158 3.3498 0.0444 4.2543 2.0501 0.7141 3.7955 3.8435 1.0576 0.8105 0.0715	Vol (m³) 117.2

US

Node

Peak

(mins)

Node Event

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz

Inflow

(I/s)

Node

Vol (m³)

Flood

(m³)

Page 41 Tylorstown Phase 4 Existing tip Reprofile

Status

Results for 100 year Critical Storm Duration. Lowest mass balance: 97.13%

Level

(m)

24/05/2021

Depth

(m)

	NO	ue	(mins)	(m)	(m)	(1/5)	voi (m²)	(m ⁻)	
15 minute winter	40		11	310.27	0.191	38.9	0.6082	0.0000	OK
15 minute winter	42		12	309.52	.4 0.277	70.9	0.8593	0.0000	OK
30 minute summer	44		21	308.99	0.272	92.5	0.9166	0.0000	OK
15 minute winter	2		11	308.27	9 0.159	21.7	0.2332	0.0000	OK
30 minute summer	1.001	:50%	19	308.16	8 0.173	27.3	0.0000	0.0000	OK
30 minute summer	4		20	307.78	0.263	51.6	0.4420	0.0000	OK
30 minute winter	1.003	:50%	23	307.71	.3 0.259	55.1	4.4885	0.0000	PONDING
30 minute winter	6		21	307.36	0.202	61.1	0.2727	0.0000	OK
15 minute winter	11		11	292.02	7 0.158	21.6	0.2383	0.0000	OK
30 minute summer	2.001	2.001:50%		291.89	9 0.173	27.3	0.0000	0.0000	OK
15 minute winter	13		11	291.52	3 0.222	46.6	0.3617	0.0000	OK
30 minute winter	2.003:50%		22	291.37	0.214	52.8	6.5454	0.0000	OK
30 minute winter	15		23	290.92	4 0.235	64.5	0.4136	0.0000	OK
30 minute winter	2.005:50%		23	290.77	5 0.243	71.1	3.5254	0.0000	OK
60 minute winter	25		33	280.35	0.500	152.8	0.5510	9.8876	FLOOD
60 minute winter	27		31	276.51	.1 0.500	149.9	1.2410	9.2873	FLOOD
30 minute winter	1.016:50%		20	274.71	.8 0.117	139.3	0.0000	0.0000	OK
60 minute winter	29		30	270.99	5 0.500	146.6	0.6110	9.0213	FLOOD
30 minute winter	1.018:50%		20	269.45	9 0.117	142.1	0.0000	0.0000	OK
30 minute winter	57		19	267.35	0.500	397.1	0.4890	13.7183	FLOOD
30 minute winter	1.021:50%		20	266.59	0.202	353.4	0.2602	0.0000	OK
30 minute winter	59		19	265.58	0.500	353.4	0.0000	1.4862	FLOOD
30 minute winter	1.023	:50%	21	264.40	0.172	355.0	1.6221	0.0000	OK
30 minute summer	45		21	308.73	6 0.313	91.1	0.0000	0.0000	OK
30 minute summer	36		21	323.76	0.298	83.1	0.0000	0.0000	OK
Carlo Consult									
Link Event	US	Link	D	S	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	US Node	Link	D No		Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
		Link 5.001				-	Flow/Cap 0.200		_
(Outflow)	Node		No		(I/s)	(m/s)	•	Vol (m³)	_
(Outflow) 15 minute winter	Node 40	5.001	No 41		(I/s) 37.7	(m/s) 0.467	0.200	Vol (m³) 2.4977	_
(Outflow) 15 minute winter 15 minute winter	Node 40 42	5.001 5.003	No 41 43	de	(I/s) 37.7 67.9	(m/s) 0.467 0.482	0.200 0.499	Vol (m³) 2.4977 5.0997	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer	Node 40 42 44	5.001 5.003 5.005	No 41 43 45	de	(I/s) 37.7 67.9 91.1	(m/s) 0.467 0.482 0.536	0.200 0.499 0.513	Vol (m³) 2.4977 5.0997 5.0783	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter	Node 40 42 44 2	5.001 5.003 5.005 1.001	No 41 43 45 1.001	de .:50%	(I/s) 37.7 67.9 91.1 21.7	(m/s) 0.467 0.482 0.536 0.395	0.200 0.499 0.513 0.122	Vol (m³) 2.4977 5.0997 5.0783 0.6868	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer	Node 40 42 44 2 2	5.001 5.003 5.005 1.001 1.001	No 41 43 45 1.001 3	de .:50%	(I/s) 37.7 67.9 91.1 21.7 27.3	(m/s) 0.467 0.482 0.536 0.395 0.408	0.200 0.499 0.513 0.122 0.153	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer	Node 40 42 44 2 2 4	5.001 5.003 5.005 1.001 1.001 1.003	No 41 43 45 1.001 3 1.003	de .:50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382	0.200 0.499 0.513 0.122 0.153 0.473	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4	5.001 5.003 5.005 1.001 1.001 1.003 1.003	No 41 43 45 1.001 3 1.003 5	:50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359	0.200 0.499 0.513 0.122 0.153 0.473 0.450	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4 6	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005	No 41 43 45 1.001 3 1.003 5 7	:50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter	Node 40 42 44 2 2 4 4 6 11	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005 2.001	No 41 43 45 1.001 3 1.003 5 7 2.001	:50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer	Node 40 42 44 2 2 4 4 6 11 11	5.001 5.003 5.005 1.001 1.001 1.003 1.003 2.001 2.001	No 41 43 45 1.001 3 1.003 5 7 2.001 12	:50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute summer	Node 40 42 44 2 2 4 4 6 11 11 13	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005 2.001 2.001 2.003	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003	:50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14	:50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570 0.495	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.003	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005	:50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.415 0.570 0.495 0.568	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005	:50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.415 0.570 0.495 0.568 0.520	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26	:50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.415 0.570 0.495 0.568 0.520 0.385	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 13 13 15 15 25 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016	:50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.415 0.570 0.495 0.568 0.520 0.385 1.610	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28	:50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8 139.3	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.415 0.570 0.495 0.568 0.520 0.385 1.610 0.405	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051 0.052	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397 5.1238	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.003 2.005 1.014 1.016 1.016 1.018	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018	:50% ::50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8 139.3 135.7	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570 0.495 0.568 0.520 0.385 1.610 0.405 1.617	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051 0.052	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397 5.1238 0.8404	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.018 1.018	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30	:50% ::50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8 139.3 135.7 142.1	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570 0.495 0.568 0.520 0.385 1.610 0.405 1.617 0.774	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051 0.052 0.050 0.053	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397 5.1238 0.8404 4.1378	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.018 1.018 1.021	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021	:50% ::50% ::50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8 139.3 135.7 142.1 348.1	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570 0.495 0.568 0.520 0.385 1.610 0.405 1.617 0.774 1.505	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051 0.052 0.050 0.053 0.161	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397 5.1238 0.8404 4.1378 2.1561	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57 57	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021 58	:50% ::50% ::50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8 139.3 135.7 142.1 348.1 353.4	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570 0.495 0.568 0.520 0.385 1.610 0.405 1.617 0.774 1.505 0.694	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051 0.052 0.050 0.053 0.161 0.163	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397 5.1238 0.8404 4.1378 2.1561 5.1619	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 27 27 29 29 57 57 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021 1.023	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021 58 1.023	:50% ::50% ::50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8 139.3 135.7 142.1 348.1 353.4 349.6	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570 0.495 0.568 0.520 0.385 1.610 0.405 1.617 0.774 1.505 0.694 1.874	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051 0.052 0.050 0.053 0.161 0.163 0.119	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397 5.1238 0.8404 4.1378 2.1561 5.1619 1.7171	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 27 27 29 29 57 57 59 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021 1.023 1.023	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021 58 1.023 61	:50% ::50% ::50% ::50% ::50% ::50%	(I/s) 37.7 67.9 91.1 21.7 27.3 50.5 48.1 60.7 21.5 27.1 47.9 48.2 64.1 70.0 135.5 135.8 139.3 135.7 142.1 348.1 353.4 349.6 354.7	(m/s) 0.467 0.482 0.536 0.395 0.408 0.382 0.359 0.559 0.395 0.415 0.570 0.495 0.568 0.520 0.385 1.610 0.405 1.617 0.774 1.505 0.694 1.874 1.886	0.200 0.499 0.513 0.122 0.153 0.473 0.450 0.231 0.121 0.153 0.269 0.271 0.347 0.379 0.060 0.051 0.052 0.050 0.053 0.161 0.163 0.119 0.121	Vol (m³) 2.4977 5.0997 5.0783 0.6868 0.8383 2.4082 2.4062 2.9419 0.7820 0.9379 1.2727 1.4200 1.6662 1.9672 9.1012 1.0397 5.1238 0.8404 4.1378 2.1561 5.1619 1.7171 1.7427	_

File: Proposed model FSR - opt Network: Storm Network

Jacques Calitz 24/05/2021 Page 42 Tylorstown Phase 4 Existing tip Reprofile

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	52	20	292.515	0.293	75.1	0.0000	0.0000	OK
30 minute winter	7	22	306.844	0.265	60.7	0.0000	0.0000	OK
30 minute winter	16	24	290.651	0.276	70.0	0.0000	0.0000	OK
30 minute summer	49	19	293.227	0.174	36.9	0.7860	0.0000	OK
30 minute summer	6.001:50%	19	293.012	0.185	43.2	0.0000	0.0000	OK
30 minute summer	51	19	292.796	0.215	71.0	0.7886	0.0000	OK
30 minute summer	6.003:50%	19	292.621	0.219	75.5	0.0000	0.0000	OK
30 minute winter	67	22	280.322	0.262	21.7	0.5938	0.0000	OK
30 minute winter	69	23	275.238	0.298	38.6	0.6443	0.0000	OK
30 minute winter	71	23	270.560	0.320	51.1	0.5753	0.0000	OK
30 minute winter	73	23	269.685	0.350	61.0	0.5450	1.0783	FLOOD
60 minute winter	75	40	268.282	0.332	61.3	0.3848	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute summer	52	6.004	53	75.2	0.772	0.439	0.4468	
30 minute winter	7	1.006	8	60.2	0.760	0.337	0.2538	
30 minute winter	16	2.006	17	70.0	0.831	0.325	0.2428	
30 minute summer	49	6.001	6.001:50%	36.6	0.570	0.155	0.8300	
30 minute summer	49	6.001	50	43.1	0.383	0.183	1.5218	
30 minute summer	51	6.003	6.003:50%	70.5	0.749	0.271	0.7882	
30 minute summer	51	6.003	52	75.1	0.575	0.288	1.1176	
30 minute winter	67	9.001	68	20.3	0.344	0.046	2.6921	
30 minute winter	69	9.003	70	38.5	0.402	0.072	3.1215	
30 minute winter	71	9.005	72	50.8	0.368	0.211	4.1424	
30 minute winter	73	9.007	74	54.5	0.268	0.677	5.3806	
60 minute winter	75	9.009	76	61.1	0.448	0.190	4.3268	

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz Page 43 Tylorstown Phase 4 Existing tip Reprofile

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 97.13%

24/05/2021

Node Event		US lode	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	31	loue	11	325.923	0.169	32.8	0.6415	0.0000	OK
30 minute summe			19	325.288	0.238	67.4	1.0412	0.0000	OK
30 minute summe			21	323.333	0.088	118.7	0.0000	0.0000	OK
30 minute summe			19	293.288	0.183	11.9	0.2608	0.0000	OK
30 minute summe		00:50%	20	293.278	0.199	19.7	2.2830	0.0000	OK
30 minute summe		70.5070	21	292.183	0.153	343.6	0.0000	0.0000	OK
30 minute summe			21	308.349	0.119	240.7	0.0000	0.0000	OK
15 minute winter	39		10	310.466	0.170	28.0	0.5511	0.0000	OK
30 minute summe			21	267.755	0.252	494.2	0.3680	0.0000	OK
30 minute summe		20:50%	21	267.434	0.253	498.9	7.1477	0.0000	OK
15 minute winter	1		10	308.459	0.123	11.2	0.1594	0.0000	OK
15 minute winter		00:50%	11	308.378	0.150	18.6	0.0000	0.0000	OK
30 minute winter	8		20	306.480	0.083	71.4	0.0000	0.0000	OK
30 minute winter	17		23	290.284	0.101	166.7	0.0000	0.0000	OK
30 minute winter	22		22	286.161	0.161	219.2	0.0892	0.0000	OK
15 minute winter	10		10	292.244	0.125	11.7	0.1696	0.0000	OK
15 minute winter		00:50%	11	292.142	0.148	18.0	0.0000	0.0000	OK
15 minute winter	19		10	300.799	0.030	16.3	0.0392	0.0000	OK
15 minute winter		00:50%	10	297.502	0.032	19.2	0.0042	0.0000	OK
30 minute summe			20	294.535	0.363	32.3	0.4122	0.0000	OK
30 minute summe		01:50%	19	291.804	0.046	32.5	0.0237	0.0000	OK
120 minute winter			56	278.587	0.500	147.7	0.5565	17.5298	FLOOD
15 minute winter	33		12	324.840	0.276	91.4	0.9619	0.0000	OK
15 minute winter	21		11	289.773	0.428	46.0	0.5156	0.0000	OK
Link Event	US	Link	DS	Outl		•	low/Cap	Link	Discharge
(Outflow)	Node		Node	e (I <i>/</i>	's) (m/s)		Vol (m³)	Discharge Vol (m³)
(Outflow) 15 minute winter	Node 31	4.000	Node 32	e (I <i>)</i>	's) (31.4	m/s) 0.393	0.143	Vol (m³) 3.9195	_
(Outflow) 15 minute winter 30 minute summer	Node 31 32	4.000 4.001	Node 32 33	e (I/	's) (31.4 63.4	m/s) 0.393 0.487	0.143 0.358	Vol (m³) 3.9195 6.4762	_
(Outflow) 15 minute winter 30 minute summer 30 minute summer	Node 31 32 37	4.000 4.001 4.006	Node 32 33 38	e (I/ : 1	's) (31.4 63.4 18.7	m/s) 0.393 0.487 2.197	0.143 0.358 0.030	Vol (m³) 3.9195 6.4762 0.2254	_
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter	Node 31 32 37 48	4.000 4.001 4.006 6.000	Node 32 33 38 6.000:5	e (I)	(s) (31.4 63.4 18.7 11.3	m/s) 0.393 0.487 2.197 0.198	0.143 0.358 0.030 0.138	Vol (m³) 3.9195 6.4762 0.2254 0.8835	_
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer	Node 31 32 37 48 48	4.000 4.001 4.006 6.000 6.000	Node 32 33 38 6.000:5	e (I/	's) (31.4 63.4 18.7 11.3 19.2	m/s) 0.393 0.487 2.197 0.198 0.274	0.143 0.358 0.030 0.138 0.235	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680	_
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer	Node 31 32 37 48 48 53	4.000 4.001 4.006 6.000 6.000 4.010	Node 32 33 38 6.000:5 49 54	e (I) 1 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7	m/s) 0.393 0.487 2.197 0.198 0.274 3.018	0.143 0.358 0.030 0.138 0.235 0.083	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981	_
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer	Node 31 32 37 48 48 53 46	4.000 4.001 4.006 6.000 6.000 4.010 4.008	Node 32 33 38 6.000:5 49 54 47	e (I/ 1 50% 3	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837	0.143 0.358 0.030 0.138 0.235 0.083 0.053	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070	_
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 31 32 37 48 48 53 46 39	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000	Node 32 33 38 6.000:5 49 54 47 40	e (I/ 1 50% 3	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034	_
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute summer	Node 31 32 37 48 48 53 46 39 56	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5	e (I/ 1 50% 3	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837	0.143 0.358 0.030 0.138 0.235 0.083 0.053	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer	Node 31 32 37 48 48 53 46 39 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir	Node 32 33 38 6.000:5 49 54 47 40 1.020:5	e (I/ 1 50% 3 2 50% 4	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515	_
(Outflow) 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer	Node 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57	e (I/ 50% 3. 2. 50% 4.	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 31 32 37 48 48 53 46 39 56 56 56	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (1/ 50% 3- 50% 4- 50% 4-	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute summer 15 minute summer	Node 31 32 37 48 48 53 46 39 56 56 56 1	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (1/ 50% 3- 50% 4: 50% 4:	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56 1 1	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5	e (I/ 50% 3. 2. 50% 4. 4.	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 56 1 1 8	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9	e (I/ 50% 3. 2. 50% 4. 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23	e (1/ 50% 3. 2. 50% 4. 4. 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (1/ 50% 3- 50% 4- 50% 1- 2- 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 31 32 37 48 48 48 53 46 39 56 56 1 1 8 17 22 10 10	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5	e (1/ 50% 3- 50% 4- 50% 4- 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5 18.0	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313 0.334	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064 0.101	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667 0.6790	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	e (1/ 50% 3. 2. 50% 4. 50% 4. 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5 18.0 16.2	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313 0.334 0.927	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064 0.101 0.005	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667 0.6790 0.3010	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5	1 1 50% 3. 2. 50% 4. 4. 50% 1. 2 50% 50% 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5 18.0 16.2	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313 0.334 0.927 0.171	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064 0.101 0.005 0.005	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667 0.6790 0.3010 3.9841	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter	Node 31 32 37 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20	4.000 4.001 4.006 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	1 1 50% 3. 2. 50% 4. 50% 4. 50% 50% 50% 50% 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5 18.0 16.2 18.8 25.2	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313 0.334 0.927 0.171 1.029	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064 0.101 0.005 0.005 0.005	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667 0.6790 0.3010 3.9841 0.3482	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute summer 30 minute summer	Node 31 32 37 48 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	1 1 50% 3 2 50% 4 50% 50% 50% 50% 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5 18.0 16.2 18.8 25.2 32.4	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313 0.334 0.927 0.171 1.029 0.187	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064 0.101 0.005 0.005 0.008	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667 0.6790 0.3010 3.9841 0.3482 4.2384	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 31 32 37 48 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20 26	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001 1.015	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5 21 27	e (1/ 50% 1 50% 3 2 50% 4 50% 1 2 50%	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5 18.0 16.2 18.8 25.2 32.4 35.5	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313 0.334 0.927 0.171 1.029 0.187 0.388	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064 0.101 0.005 0.005 0.008 0.010 0.057	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667 0.6790 0.3010 3.9841 0.3482 4.2384 9.6779	Vol (m³)
(Outflow) 15 minute winter 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 30 minute summer 30 minute summer	Node 31 32 37 48 48 48 53 46 39 56 56 1 1 8 17 22 10 10 19 19 20 20	4.000 4.001 4.006 6.000 6.000 4.010 4.008 5.000 1.020 Weir 1.020 1.000 1.007 1.009 1.011 2.000 2.000 3.000 3.000 3.001 3.001	Node 32 33 38 6.000:5 49 54 47 40 1.020:5 77 57 1.000:5 2 9 18 23 2.000:5 11 3.000:5 20 3.001:5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(s) (31.4 63.4 18.7 11.3 19.2 43.7 40.4 27.2 93.4 0.7 96.7 11.0 18.6 71.4 66.9 18.2 11.5 18.0 16.2 18.8 25.2 32.4	m/s) 0.393 0.487 2.197 0.198 0.274 3.018 2.837 0.368 1.560 0.878 0.300 0.340 1.580 2.529 0.569 0.313 0.334 0.927 0.171 1.029 0.187	0.143 0.358 0.030 0.138 0.235 0.083 0.053 0.146 0.250 0.252 0.062 0.105 0.026 0.038 0.095 0.064 0.101 0.005 0.005 0.008	Vol (m³) 3.9195 6.4762 0.2254 0.8835 0.9680 0.4981 0.3070 1.5034 2.4515 4.6079 0.4052 0.5977 0.0996 0.1446 10.2771 0.4667 0.6790 0.3010 3.9841 0.3482 4.2384	Vol (m³)

File: Proposed model FSR - opt Network: Storm Network Tylorstov Jacques Calitz Existing t

24/05/2021

Tylorstown Phase 4
Existing tip
Reprofile

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	3.002:50%	19	287.744	0.072	58.2	0.5303	0.0000	OK
60 minute summer	79	36	259.148	0.053	74.0	0.0000	0.0000	OK
30 minute summer	35	20	324.079	0.305	122.0	0.7968	0.0000	OK
60 minute summer	78	36	266.164	0.049	74.1	0.0000	0.0000	OK
30 minute winter	66	21	282.312	0.095	16.1	0.2407	0.0000	OK
30 minute winter	72	20	270.074	0.350	86.6	0.7175	3.3536	FLOOD
60 minute summer	76	35	267.341	0.349	75.1	0.2642	0.0000	OK
15 minute winter	41	11	309.979	0.243	77.9	0.7401	0.0000	OK
30 minute summer	43	20	309.330	0.294	114.6	0.7364	0.0000	OK
30 minute summer	50	19	292.928	0.327	70.2	0.3876	0.0000	OK
30 minute summer	6.002:50%	20	292.901	0.310	75.1	0.9341	0.0000	OK
30 minute summer	3	19	308.089	0.219	51.0	0.3614	0.0000	OK
30 minute summer	1.002:50%	19	307.927	0.233	61.0	0.0000	0.0000	OK
30 minute summer	5	19	307.661	0.271	63.0	0.5251	0.0000	OK
30 minute summer	12	19	291.798	0.215	48.3	0.2906	0.0000	OK
30 minute summer	2.002:50%	19	291.667	0.225	55.3	0.0000	0.0000	OK
30 minute winter	14	21	291.269	0.259	77.9	0.4691	0.0000	OK
30 minute winter	2.004:50%	23	291.117	0.267	86.2	3.9969	0.0000	OK
30 minute winter	68	22	278.571	0.306	44.9	0.7274	0.0000	OK
30 minute winter	70	22	272.730	0.337	67.4	0.6035	0.0000	OK
60 minute summer	74	34	269.615	0.334	63.9	0.5216	0.0000	OK
30 minute summer	24	18	282.455	0.405	152.9	0.3883	0.0000	OK
120 minute winter	28	54	273.692	0.500	150.8	0.5470	26.3196	FLOOD
30 minute winter	1.017:50%	20	271.963	0.119	142.3	0.0000	0.0000	OK
60 minute summer	80	37	250.676	0.056	73.8	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute summer	21	3.002	22	58.3	0.744	0.022	1.2382	
60 minute summer	79	9.012	80	73.8	2.218	0.013	0.5370	
30 minute summer	35	4.004	36	120.3	0.575	0.695	6.8992	
60 minute summer	78	9.011	79	74.0	2.390	0.011	0.3226	
30 minute winter	66	9.000	67	16.0	0.356	0.031	2.3534	
30 minute winter	72	9.006	73	73.8	0.421	0.376	5.7765	
60 minute summer	76	9.010	78	74.1	0.896	0.251	2.1868	
15 minute winter	41	5.002	42	75.6	0.492	0.377	6.0467	
30 minute summer	43	5.004	44	111.8	0.607	0.628	5.8562	
30 minute summer	50	6.002	6.002:50%	69.3	0.342	1.270	2.1541	
30 minute summer	50	6.002	51	74.5	0.491	1.364	1.6562	
30 minute summer	3	1.002	1.002:50%	51.0	0.501	0.287	1.8059	
30 minute summer	3	1.002	4	60.3	0.427	0.339	2.5224	
30 minute summer	5	1.004	6	62.5	0.529	0.411	3.8120	
30 minute summer	12	2.002	2.002:50%	48.3	0.500	0.272	1.3642	
30 minute summer	12	2.002	13	54.8	0.501	0.308	1.5781	
30 minute winter	14	2.004	2.004:50%	76.6	0.563	0.446	2.3758	
30 minute winter	14	2.004	15	83.8	0.585	0.488	2.4670	
30 minute winter	68	9.002	69	44.4	0.422	0.077	3.9253	
30 minute winter	70	9.004	71	66.8	0.510	0.128	3.7356	
30 minute winter	74	9.008	75	63.4	0.465	0.167	4.3872	
30 minute summer	24	1.013	25	152.3	0.426	0.065	10.5314	
30 minute winter	28	1.017	1.017:50%	135.9	1.600	0.052	1.0529	
30 minute winter	28	1.017	29	142.2	0.411	0.054	5.0980	
60 minute summer	80	9.013	81	74.0	2.125	0.014	0.5544	

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz

24/05/2021

Page 45 Tylorstown Phase 4 Existing tip Reprofile

Node Event	_	US	Peak	Level	Depth	Inflow	Node	Flood	Status
		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute summ			37	243.564	0.057	74.0	0.0000	0.0000	OK
60 minute summ	_	_OUT	37	236.448	0.055	74.1	0.0000	0.0000	OK
60 minute winter			30	266.422	0.500	360.7	0.4010	9.2480	FLOOD
30 minute winter		22:50%	20	265.695	0.194	355.4	0.8922	0.0000	OK
30 minute summ			19	263.570	0.178	401.3	0.1630	0.0000	OK
60 minute winter			30	284.526	0.500	202.5	0.3605	49.6369	FLOOD
30 minute summ			19	261.061	0.186	450.5	0.6865	0.0000	OK
30 minute summ		25:50%	19	259.690	0.196	499.6	3.8507	0.0000	OK
30 minute summ			19	258.318	0.206	522.5	0.4341	0.0000	OK
30 minute summ		26:50%	19	257.259	0.218	579.0	0.0000	0.0000	OK
30 minute summ			21	322.254	0.075	118.7	0.0000	0.0000	OK
30 minute summ			21	307.134	0.113	240.4	0.0000	0.0000	OK
15 minute winter			10	266.937	0.056	10.4	0.0951	0.0000	OK
30 minute summ			21	290.974	0.136	343.7	0.0000	0.0000	OK
30 minute winter			21	306.198	0.058	71.4	0.0000	0.0000	OK
30 minute winter			23	289.614	0.090	166.9	0.0000	0.0000	OK
30 minute summ			19	256.192	0.221	616.0	0.7565	0.0000	OK
30 minute summ		27:50%	19	254.488	0.227	648.4	0.0000	0.0000	OK
30 minute summ	_	_OUT	19	252.778	0.227	648.1	0.0000	0.0000	OK
30 minute winter			17	268.687	0.919	144.7	0.0000	1.5093	FLOOD
30 minute summ			21	269.827	0.133	344.1	0.0000	0.0000	OK
30 minute summ			21	266.905	0.005	0.7	0.0000	0.0000	OK
30 minute summ			20	324.457	0.277	108.5	0.8036	0.0000	OK
15 minute winter			10	270.218	0.078	22.7	0.2109	0.0000	OK
30 minute summ	er 7.0	00:50%	18	266.986	0.095	35.7	0.0000	0.0000	OK
Link Event	US	Link	DS	Ou	tflow V	elocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	DS Nod		tflow V I/s)	elocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
		Link 9.014		le (-	Flow/Cap 0.014		_
(Outflow)	Node		Nod	le (l/s)	(m/s)	-	Vol (m³)	Vol (m³)
(Outflow) 60 minute summer	Node 81	9.014	Nod 81_OU	le (JT 50%	I/s) 74.1	(m/s) 2.145	0.014	Vol (m³) 0.5728	Vol (m³)
(Outflow) 60 minute summer 15 minute summer	Node 81 58	9.014 1.022	Nod 81_OU 1.022:	le (JT 50%	1/s) 74.1 349.1	(m/s) 2.145 1.606	0.014	Vol (m³) 0.5728 1.5461	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter	Node 81 58 58	9.014 1.022 1.022	Nod 81_OU 1.022: 59	le (JT 50%	1/s) 74.1 349.1 355.4	(m/s) 2.145 1.606 0.710	0.014 0.148 0.151	Vol (m³) 0.5728 1.5461 3.8779	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer	Node 81 58 58 61	9.014 1.022 1.022 1.024	Nod 81_OU 1.022: 59 63	le (1/s) 74.1 349.1 355.4 401.4	(m/s) 2.145 1.606 0.710 2.005	0.014 0.148 0.151 0.129	Vol (m³) 0.5728 1.5461 3.8779 4.9387	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer	Node 81 58 58 61 23	9.014 1.022 1.022 1.024 1.012	Nod 81_OL 1.022: 59 63 24	JE (74.1 74.1 349.1 355.4 401.4 135.5	(m/s) 2.145 1.606 0.710 2.005 0.508	0.014 0.148 0.151 0.129 0.057	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer	Node 81 58 58 61 23 63	9.014 1.022 1.022 1.024 1.012 1.025	Nod 81_OU 1.022: 59 63 24 1.025:	le (JT 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099	0.014 0.148 0.151 0.129 0.057 0.141	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer	Node 81 58 58 61 23 63 63	9.014 1.022 1.022 1.024 1.012 1.025 1.025	Nod 81_OU 1.022: 59 63 24 1.025: 64	Some (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152	0.014 0.148 0.151 0.129 0.057 0.141 0.156	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 63 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	Nod 81_OU 1.022: 59 63 24 1.025: 64 1.026:	le (JT 50% 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 63 64 64	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026	1.022: 59 63 24 1.025: 64 1.026:	le (JT 50% 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 63 64 64 38	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007	1.022: 59 63 24 1.025: 64 1.026: 65 46	le (JT 50% 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 63 64 64 38 47	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009	Nod 81_OL 1.022: 59 63 24 1.025: 64 1.026: 65 46 53	JE (74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute summer	Node 81 58 58 61 23 63 63 64 64 47 62	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63	JE (74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute summer 15 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55	JE (74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 64 64 38 47 62 54 9	9.014 1.022 1.022 1.024 1.012 1.025 1.025 1.026 4.007 4.009 8.000 4.011 1.008	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55	JT 50% 50% 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18	9.014 1.022 1.024 1.012 1.025 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22	le (IT 50% 50%	74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415 1.796	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015 0.034	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960 0.8701	Vol (m³)
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027	Nod 81_OL 1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027:	SO% 50% 50% 50% 50%	74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4 166.9 615.8	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415 1.796 2.296	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015 0.034 0.194	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960 0.8701 4.2401	Vol (m³) 132.7
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OL	SO% 50% 50% 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4 166.9 615.8 648.1	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415 1.796 2.296 2.373	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015 0.034 0.194 0.204	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960 0.8701 4.2401 4.3180	Vol (m³) 132.7
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OL	SO% 50% 50% 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4 166.9 615.8 648.1	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415 1.796 2.296 2.373	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015 0.034 0.194 0.204	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960 0.8701 4.2401 4.3180 1.1624	Vol (m³) 132.7
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012	Nod 81_OL 1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OL	le (IT 50% 50% 50%	74.1 74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4 166.9 615.8 648.1 141.0 343.9	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415 1.796 2.296 2.373 1.113 2.012	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015 0.034 0.194 0.204 0.087 0.087	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960 0.8701 4.2401 4.3180 1.1624 0.9921	Vol (m³) 132.7
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 64 64 38 47 62 54 9 18 65 65 65	9.014 1.022 1.024 1.012 1.025 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OL	le (JT 50% 50% 50%	74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4 166.9 615.8 648.1 141.0 343.9 0.7 105.2	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415 1.796 2.296 2.373 1.113 2.012 0.047 0.622	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015 0.034 0.194 0.204 0.087 0.069 0.000	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960 0.8701 4.2401 4.3180 1.1624 0.9921 0.1104 5.6269	Vol (m³) 132.7
(Outflow) 60 minute summer 15 minute summer 30 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 15 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 81 58 58 61 23 63 64 64 64 38 47 62 54 9 18 65 65 65	9.014 1.022 1.022 1.024 1.012 1.025 1.026 1.026 4.007 4.009 8.000 4.011 1.008 1.010 1.027 1.027 1.019 4.012 10.000 4.003	1.022: 59 63 24 1.025: 64 1.026: 65 46 53 63 55 17 22 1.027: 65_OL	le (JT 50% 50% 50%	74.1 349.1 355.4 401.4 135.5 451.3 499.8 522.6 578.9 118.6 240.0 10.3 344.1 71.4 166.9 615.8 648.1 141.0 343.9 0.7	(m/s) 2.145 1.606 0.710 2.005 0.508 2.099 2.152 2.098 2.222 1.768 2.383 1.715 3.317 1.415 1.796 2.296 2.373 1.113 2.012 0.047	0.014 0.148 0.151 0.129 0.057 0.141 0.156 0.171 0.189 0.024 0.051 0.018 0.069 0.015 0.034 0.194 0.204 0.087 0.069 0.000 0.534	Vol (m³) 0.5728 1.5461 3.8779 4.9387 6.7106 2.7052 2.9006 2.6536 2.7754 2.4505 4.2795 0.0573 5.4680 2.3960 0.8701 4.2401 4.3180 1.1624 0.9921 0.1104	Vol (m³) 132.7

US

Node

Peak

(mins)

Node Event

30 minute summer 36

File: Proposed model FSR - opt Network: Storm Network Jacques Calitz

Inflow

(I/s)

Node

Vol (m³)

Flood

(m³)

Page 46 Tylorstown Phase 4 Existing tip Reprofile

Status

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 97.13%

Level

(m)

24/05/2021

Depth

(m)

	INO	ue	(mins)	(m)	(m)	(1/5)	voi (m²)	(m²)	
15 minute winter	40		11	310.29	97 0.218	54.6	0.6916	0.0000	OK
15 minute winter	42		12	309.56	52 0.315	100.8	0.9769	0.0000	OK
30 minute summer	44		20	309.03	31 0.313	3 133.6	1.0535	0.0000	OK
15 minute winter	2		11	308.30	0.181		0.2652	0.0000	OK
30 minute summer	1.001	:50%	19	308.19	92 0.197	7 38.4	0.0000	0.0000	OK
15 minute winter	4		12	307.81	L6 0.298	72.0	0.5002	0.0000	OK
30 minute winter	1.003	:50%	25	307.72	22 0.268	3 77.7	11.5985	0.0000	PONDING
30 minute winter	6		19	307.37	73 0.215	71.9	0.2899	0.0000	OK
15 minute winter	11		11	292.04	19 0.180		0.2708	0.0000	OK
30 minute summer	2.001	:50%	19	291.92			0.0000	0.0000	OK
15 minute winter	13		11	291.55	0.250		0.4069	0.0000	OK
30 minute winter	2.003	:50%	22	291.39	99 0.244	73.4	8.4672	0.0000	OK
30 minute winter	15		22	290.95			0.4719	0.0000	OK
30 minute winter	2.005	:50%	23	290.81			4.6081	0.0000	OK
60 minute winter	25		29	280.35			0.5510	21.0249	FLOOD
120 minute winter	27		56	276.51	L1 0.500		1.2410	19.7604	FLOOD
30 minute winter	1.016	:50%	20	274.71			0.0000	0.0000	OK
120 minute winter	29		52	270.99		146.4	0.6110	18.0423	FLOOD
30 minute winter	1.018	:50%	20	269.46	50 0.119	9 144.7	0.0000	0.0000	OK
30 minute winter	57		17	267.35			0.4890	65.5220	FLOOD
30 minute winter	1.021	:50%	20	266.59			0.2619	0.0000	OK
60 minute winter	59		30	265.58			0.0000	3.7954	FLOOD
30 minute winter	1.023	:50%	20	264.40			1.6330	0.0000	OK
30 minute summer	45		20	308.77			0.0000	1.0186	FLOOD
30 minute summer	36		21	323.80	0.343	3 120.3	0.0000	0.0000	OK
Link Event	US	Link	D	S	Outflow	Velocity	Flow/Cap	Link	Discharge
Link Event (Outflow)	US Node	Link	D No		Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
		Link 5.001			Outflow (I/s) 53.1	Velocity (m/s) 0.507	Flow/Cap	Link Vol (m³) 3.2476	Discharge Vol (m³)
(Outflow)	Node		No		(I/s)	(m/s)		Vol (m³)	_
(Outflow) 15 minute winter	Node 40	5.001	No 41		(I/s) 53.1	(m/s) 0.507	0.282	Vol (m³) 3.2476	_
(Outflow) 15 minute winter 15 minute winter	Node 40 42	5.001 5.003	No 41 43	de	(I/s) 53.1 97.4	(m/s) 0.507 0.527	0.282 0.716	Vol (m³) 3.2476 6.6908	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer	Node 40 42 44	5.001 5.003 5.005	No 41 43 45	de	(I/s) 53.1 97.4 132.1	(m/s) 0.507 0.527 0.601	0.282 0.716 0.743	Vol (m³) 3.2476 6.6908 6.5143	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter	Node 40 42 44 2	5.001 5.003 5.005 1.001	No 41 43 45 1.001	de .:50%	(I/s) 53.1 97.4 132.1 30.5	(m/s) 0.507 0.527 0.601 0.431	0.282 0.716 0.743 0.172	Vol (m³) 3.2476 6.6908 6.5143 0.8900	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer	Node 40 42 44 2 2	5.001 5.003 5.005 1.001 1.001	No 41 43 45 1.001 3	de .:50%	53.1 97.4 132.1 30.5 38.4	(m/s) 0.507 0.527 0.601 0.431 0.444	0.282 0.716 0.743 0.172 0.216	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer	Node 40 42 44 2 2 4	5.001 5.003 5.005 1.001 1.001 1.003	No 41 43 45 1.001 3 1.003	de .:50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456	0.282 0.716 0.743 0.172 0.216 0.671	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4	5.001 5.003 5.005 1.001 1.001 1.003 1.003	No 41 43 45 1.001 3 1.003 5	:50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369	0.282 0.716 0.743 0.172 0.216 0.671 0.490	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4 6	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005	No 41 43 45 1.001 3 1.003 5 7	:50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter	Node 40 42 44 2 2 4 4 6 11	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001	No 41 43 45 1.001 3 1.003 5 7 2.001	:50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer	Node 40 42 44 2 2 4 4 6 11 11	5.001 5.003 5.005 1.001 1.001 1.003 1.003 2.001	No 41 43 45 1.001 3 1.003 5 7 2.001 12	:50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13	5.001 5.003 5.005 1.001 1.001 1.003 1.003 1.005 2.001 2.001 2.003	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003	:50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14	:50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute winter 30 minute summer 15 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005	:50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16	:50% ::50% ::50% ::50%	(1/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26	:50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016	:50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5 135.8	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385 1.610	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060 0.051	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012 1.0431	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28	:50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5 135.8 140.8	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385 1.610 0.408	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060 0.051	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012 1.0431 5.1277	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute summer 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute summer 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021	:50% ::50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5 135.8 140.8 136.3	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385 1.610 0.408 1.618	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060 0.051 0.052	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012 1.0431 5.1277 0.8451	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute winter 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57 57	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.018 1.018	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30	:50% ::50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5 135.8 140.8 136.3 144.7	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385 1.610 0.408 1.618 0.784	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060 0.051 0.052 0.050 0.054	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012 1.0431 5.1277 0.8451 4.1433	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57 57 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021 1.023	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021	:50% ::50% ::50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5 135.8 140.8 136.3 144.7 348.2	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385 1.610 0.408 1.618 0.784 1.505 0.697 1.886	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060 0.051 0.052 0.050 0.054 0.161 0.164 0.119	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012 1.0431 5.1277 0.8451 4.1433 2.1594 5.1665 1.7206	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute summer	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 27 27 27 29 29 57 57 59 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 1.014 1.016 1.016 1.018 1.021 1.021	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021 58 1.023 61	:50% ::50% ::50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5 135.8 140.8 136.3 144.7 348.2 355.5	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385 1.610 0.408 1.618 0.784 1.505 0.697	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060 0.051 0.052 0.050 0.054 0.164 0.119 0.122	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012 1.0431 5.1277 0.8451 4.1433 2.1594 5.1665	_
(Outflow) 15 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute summer 30 minute summer 30 minute winter 30 minute winter 15 minute winter 30 minute summer 15 minute winter 30 minute winter 30 minute winter 30 minute winter 30 minute winter 15 minute summer 30 minute summer 30 minute summer 30 minute summer 30 minute winter 15 minute summer 30 minute winter 15 minute summer 30 minute winter	Node 40 42 44 2 2 4 4 6 11 11 13 13 15 15 25 27 27 29 29 57 57 59	5.001 5.003 5.005 1.001 1.003 1.003 1.005 2.001 2.003 2.003 2.005 2.005 1.014 1.016 1.016 1.018 1.021 1.021 1.023	No 41 43 45 1.001 3 1.003 5 7 2.001 12 2.003 14 2.005 16 26 1.016 28 1.018 30 1.021 58 1.023	:50% ::50% ::50% ::50% ::50% ::50%	(I/s) 53.1 97.4 132.1 30.5 38.4 71.7 52.3 71.4 30.2 38.1 67.5 68.0 91.1 100.0 135.5 135.8 140.8 136.3 144.7 348.2 355.5 349.4	(m/s) 0.507 0.527 0.601 0.431 0.444 0.456 0.369 0.582 0.429 0.451 0.619 0.539 0.620 0.566 0.385 1.610 0.408 1.618 0.784 1.505 0.697 1.886	0.282 0.716 0.743 0.172 0.216 0.671 0.490 0.272 0.170 0.214 0.379 0.382 0.493 0.541 0.060 0.051 0.052 0.050 0.054 0.161 0.164 0.119	Vol (m³) 3.2476 6.6908 6.5143 0.8900 1.0842 2.8130 2.5474 3.3450 1.0121 1.2123 1.6616 1.8363 2.1708 2.5816 9.1012 1.0431 5.1277 0.8451 4.1433 2.1594 5.1665 1.7206	_

118.7

0.904

0.574

0.6739

4.005 37

File: Proposed model FSR - opt Network: Storm Network

Jacques Calitz 24/05/2021 Page 47 Tylorstown Phase 4 Existing tip Reprofile

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	52	19	292.556	0.334	107.6	0.0000	0.0000	OK
30 minute winter	7	20	306.862	0.283	71.4	0.0000	0.0000	OK
30 minute winter	16	23	290.691	0.316	100.0	0.0000	0.0000	OK
30 minute summer	49	19	293.252	0.199	52.5	0.8971	0.0000	OK
30 minute summer	6.001:50%	19	293.038	0.211	61.3	0.0000	0.0000	OK
30 minute summer	51	19	292.827	0.245	101.4	0.9024	0.0000	OK
30 minute summer	6.003:50%	19	292.653	0.251	108.0	0.0000	0.0000	OK
30 minute winter	67	21	280.344	0.284	30.5	0.6445	0.0000	OK
30 minute winter	69	22	275.265	0.325	57.4	0.7021	0.0000	OK
30 minute winter	71	22	270.590	0.350	77.1	0.6286	0.1591	FLOOD
60 minute winter	73	31	269.685	0.350	80.4	0.5450	17.4216	FLOOD
30 minute winter	75	20	268.293	0.343	70.8	0.3979	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute summer	52	6.004	53	107.0	0.848	0.625	0.5772	
30 minute winter	7	1.006	8	71.4	0.795	0.400	0.2874	
30 minute winter	16	2.006	17	99.7	0.908	0.463	0.3163	
30 minute summer	49	6.001	6.001:50%	52.0	0.623	0.221	1.0810	
30 minute summer	49	6.001	50	61.2	0.423	0.260	1.9526	
30 minute summer	51	6.003	6.003:50%	101.0	0.819	0.388	1.0324	
30 minute summer	51	6.003	52	107.6	0.628	0.413	1.4636	
30 minute winter	67	9.001	68	29.8	0.350	0.068	3.2236	
30 minute winter	69	9.003	70	57.1	0.480	0.106	3.8136	
30 minute winter	71	9.005	72	75.0	0.452	0.311	4.8777	
15 minute winter	73	9.007	74	54.8	0.272	0.680	5.3908	
60 minute summer	75	9.009	76	70.6	0.471	0.220	4.7278	

CAUSEVAY Capita	File: Receptor site C - proposed model - FSR.pfd Network: Storm Network Jacques Calitz 24/05/2021	Page 1 Tylorstown Phase 4 Receptor site C Proposed drainage	
302000 302000 5.502 Junction 8012 Juneting Jun	302200	302400 302600	
195800 10.014 9000 13.0000 1	\$90x250mm Junction 1,000 V1500x250mm Junction 1,001 V1500x250mm Junction 1,002 V1500x250mm Junction 1,003 5,002 V1500x250mm Junction 1,004 V1500x250mm Junction 1,005 V1500x250mm Junction 1,006 V1500x250mm Junction 1,006 V1500x250mm Junction 1,006 V1500x250mm Junction 1,006 V1500x250mm Junction 1,006 V1500x250mm Junction 1,006 V1500x250mm Junction 1,007 V1500x250mm		
195600	1.008 V1500x250mm		
195400	Flow+ v10.1 Copyright © 1988-2021 Causeway Technologies Ltd		

File: Receptor site C - proposec Network: Storm Network Jacques Calitz Page 1 Tylorstown Phase 4 Receptor site C Proposed drainage

Design Settings

24/05/2021

Rainfall Methodology FSR Return Period (years) 2 Additional Flow (%) 0

FSR Region England and Wales

M5-60 (mm) 20.000 Ratio-R 0.200 CV 0.750

Time of Entry (mins) 5.00

Maximum Time of Concentration (mins) 60.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200

Preferred Cover Depth (m) 1.200

Include Intermediate Ground ✓

Enforce best practice design rules x

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.002	5.00	411.845		302094.660	195823.794	0.250
51	0.003	5.00	411.821		302088.207	195831.625	0.250
52	0.003	5.00	411.392		302077.162	195842.379	0.250
53	0.002	5.00	410.447		302051.378	195849.713	0.250
54	0.004	5.00	409.633		302022.212	195841.931	0.250
55	0.009	5.00	408.504		301999.162	195821.652	0.250
55_OUT			406.100		301979.347	195802.701	0.660
39	0.041	10.00	414.491		302118.616	195696.153	0.250
40	0.045	10.00	414.345		302104.266	195717.524	0.250
41	0.042	10.00	413.975		302096.508	195729.482	0.250
42	0.130	10.00	413.268		302082.547	195755.647	0.250
43	0.057	10.00	412.575		302067.542	195776.471	0.250
44	0.069	10.00	411.790		302048.725	195793.245	0.250
45	0.003	10.00	410.987		302024.874	195793.652	0.250
46	0.007	10.00	410.323		302004.289	195790.724	0.250
47			410.121		301997.913	195789.383	0.250
50_OUT			406.100		301979.286	195786.429	0.660
2	0.002	5.00	411.440		302102.911	195804.016	0.250
3	0.007	5.00	411.248		302109.093	195783.415	0.250
4	0.011	5.00	410.777		302117.445	195761.839	0.250
5	0.019	5.00	410.145		302130.403	195736.855	0.250
6	0.017	5.00	409.946		302150.435	195711.056	0.250
7	0.025	5.00	408.806		302176.580	195679.682	0.250
8			408.789		302190.988	195660.067	0.250
9	0.023	5.00	408.516		302202.983	195631.211	0.250
10	0.027	5.00	406.288		302210.754	195602.223	0.250
11	0.011	5.00	405.733		302222.869	195572.263	0.250
12	0.015	5.00	405.550		302238.253	195550.318	0.250
13	0.010	5.00	403.454		302266.708	195517.972	0.250
14	0.004	5.00	403.071		302287.452	195489.100	0.250
15			402.410		302292.035	195473.393	0.250
15_OUT			402.039		302302.104	195468.741	0.250
64	0.004	5.00	401.755		302292.157	195465.779	0.250
66_OUT			399.385		302284.672	195436.383	0.250
33	0.005	5 00	407.266		302089.744	195670.772	0.250
63	0.005	5.00	400.084		302270.668	195442.328	0.250
66	0.008	5.00	399.764		302277.089	195446.662	0.250
56	0.027	5.00	408.032		302058.023	195711.789	0.250
57	0.017	5.00	407.541		302042.658	195726.126	0.250
58			407.223		302023.759	195740.332	0.250
59_OUT			406.100		301980.197	195773.747	0.660

Page 2 Tylorstown Phase 4 Receptor site C Proposed drainage

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
71		5.00	406.100		301960.937	195796.217	0.800
70		5.00	404.750		301950.111	195795.015	0.250
70_OUT		3.00	403.487		301930.927	195792.914	0.250
25			402.123		302204.925	195429.176	0.250
32	0.034	5.00	407.343		302071.045	195695.142	0.250
34	0.033	5.00	405.102		302108.528	195634.292	0.250
35	0.041	5.00	404.053		302122.597	195576.275	0.250
36	0.027	5.00	403.476		302125.018	195539.855	0.250
37	0.022	5.00	400.835		302122.753	195507.986	0.250
38	0.014	5.00	398.696		302128.385	195482.668	0.250
38_OUT			397.185		302137.050	195463.816	0.917
31_OUT	0.034		397.185		302164.809	195439.245	0.917
<u></u>	0.076	10.00	414.013		302129.765	195678.649	0.250
17	0.069	10.00	412.909		302155.061	195638.385	0.250
18	0.071	10.00	411.873		302170.262	195603.128	0.250
19	0.134	10.00	410.150		302178.566	195563.888	0.250
20	0.140	10.00	407.200		302187.331	195514.317	0.250
21	0.103	10.00	405.764		302204.716	195491.041	0.250
22			404.483		302214.004	195469.874	0.250
23	0.089	10.00	403.533		302212.472	195453.627	0.250
26			400.591		302203.293	195423.679	0.250
24			402.393		302206.211	195433.852	0.250
30	0.019	5.00	399.090		302200.475	195418.070	0.500
31			398.303		302185.186	195422.760	0.500
62			400.665		302259.353	195439.525	0.250
61			400.899		302247.476	195436.043	0.250
72		5.00	397.185		302132.599	195456.747	1.000
68			392.651		302090.808	195458.982	0.250
69			389.889		302067.509	195464.347	0.250
69_OUT			387.691		302047.440	195464.412	0.250
60	0.003	5.00	400.901		302238.392	195431.144	0.250
65			400.083		302283.882	195452.613	0.250
27			399.170		302201.449	195419.283	0.500
28	0.008	5.00	400.710		302232.059	195425.852	0.250
29			399.983		302216.683	195418.935	0.250
48			409.999		301994.028	195788.522	0.250
49			408.111		301987.669	195787.365	0.250
50			406.113		301981.689	195786.658	0.250
71_OUT			406.100	1200	301956.819	195796.033	0.800
72_OUT		E 00	397.185	1200	302124.908	195455.456	1.000
67	0.010	5.00	395.067		302111.857	195454.691	0.250
59	0.013	5.00	406.667		302002.753	195754.823	0.250
73			399.585		302280.742	195441.772	0.250

Page 3 Tylorstown Phase 4 Receptor site C Proposed drainage

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.014	15	15_OUT	11.092	0.040	402.160	401.789	0.371	29.9	250	16.08	30.9
1.013	14	15	16.362	0.040	402.821	402.160	0.661	24.8	250	15.92	31.1
1.012	13	14	35.551	0.040	403.204	402.821	0.383	92.8	250	15.69	31.3
1.011	12	13	43.081	0.040	405.300	403.204	2.096	20.6	250	14.74	32.2
1.010	11	12	26.800	0.040	405.483	405.300	0.183	146.4	250	14.20	32.7
1.009	10	11	32.317	0.040	406.038	405.483	0.555	58.2	250	13.31	33.7
1.008	9	10	30.012	0.040	408.266	406.038	2.228	13.5	250	12.63	34.5
1.007	8	9	31.250	0.040	408.539	408.266	0.273	114.5	250	12.32	34.8
1.006	7	8	24.338	0.040	408.556	408.539	0.017	1431.6	250	11.40	36.0
1.005	6	7	40.840	0.040	409.696	408.556	1.140	35.8	250	8.86	40.0
1.004	5	6	32.663	0.040	409.895	409.696	0.199	164.1	250	8.18	41.3
1.003	4	5	28.144	0.040	410.527	409.895	0.632	44.5	250	7.03	43.7
1.002	3	4	23.136	0.040	410.998	410.527	0.471	49.1	250	6.51	44.9
1.001	2	3	21.509	0.040	411.190	410.998	0.192	112.0	250	6.06	46.1
1.000	1	2	21.430	0.040	411.595	411.190	0.405	52.9	250	5.43	47.8
6.004	55	55_OUT	27.419	0.040	408.254	405.850	2.404	11.4	250	6.86	44.1
6.003	54	55	30.701	0.040	409.383	408.254	1.129	27.2	250	6.60	44.7
6.002	53	54	30.186	0.040	410.197	409.383	0.814	37.1	250	6.16	45.8
6.001	52	53	26.807	0.040	411.142	410.197	0.945	28.4	250	5.65	47.2
6.000	51	52	15.416	0.040	411.571	411.142	0.429	35.9	250	5.26	48.4
5.011	50	50_OUT	2.414	0.040	405.863	405.842	0.021	114.9	250	13.52	33.4
5.010	49	50	6.022	0.040	407.861	405.863	1.998	3.0	250	13.45	33.5
5.009	48	49	6.463	0.040	409.749	407.861	1.888	3.4	250	13.42	33.5
5.008	47	48	3.979	0.040	409.871	409.749	0.122	32.6	250	13.39	33.6

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.014	1.104	206.9	14.5	0.000	0.000	0.173	0.0	92	0.568
1.013	1.213	227.4	14.6	0.000	0.000	0.173	0.0	89	0.611
1.012	0.626	117.4	14.3	0.000	0.000	0.169	0.0	114	0.371
1.011	1.331	249.6	13.9	0.000	0.000	0.159	0.0	84	0.646
1.010	0.499	93.5	12.8	0.000	0.000	0.144	0.0	119	0.303
1.009	0.791	148.3	12.1	0.000	0.000	0.133	0.0	98	0.424
1.008	1.644	308.3	9.9	0.000	0.000	0.106	0.0	69	0.696
1.007	0.564	105.8	7.9	0.000	0.000	0.083	0.0	94	0.294
1.006	0.159	29.9	8.2	0.000	0.000	0.083	0.0	154	0.115
1.005	1.008	189.0	6.4	0.000	0.000	0.059	0.0	70	0.431
1.004	0.471	88.3	4.7	0.000	0.000	0.042	0.0	83	0.225
1.003	0.904	169.5	2.7	0.000	0.000	0.023	0.0	53	0.322
1.002	0.861	161.4	1.4	0.000	0.000	0.012	0.0	42	0.264
1.001	0.570	106.9	0.5	0.000	0.000	0.004	0.0	34	0.150
1.000	0.830	155.5	0.2	0.000	0.000	0.002	0.0	22	0.164
6.004	1.787	335.0	2.6	0.000	0.000	0.021	0.0	41	0.531
6.003	1.157	217.0	1.5	0.000	0.000	0.012	0.0	39	0.333
6.002	0.991	185.8	1.0	0.000	0.000	0.008	0.0	36	0.270
6.001	1.133	212.4	0.8	0.000	0.000	0.006	0.0	31	0.280
6.000	1.007	188.7	0.4	0.000	0.000	0.003	0.0	26	0.222
5.011	0.563	105.5	35.7	0.000	0.008	0.394	0.0	167	0.429
5.010	3.476	651.7	35.8	0.000	0.000	0.394	0.0	84	1.686
5.009	3.261	611.5	35.8	0.000	0.000	0.394	0.0	86	1.606
5.008	1.057	198.1	35.8	0.000	0.000	0.394	0.0	131	0.688

Page 4 Tylorstown Phase 4 Receptor site C Proposed drainage

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
5.007	46	47	6.515	0.040	410.073	409.871	0.202	32.3	250	13.33	33.7
5.006	45	46	20.792	0.040	410.737	410.073	0.664	31.3	250	13.23	33.8
5.005	44	45	23.854	0.040	411.540	410.737	0.803	29.7	250	12.90	34.1
5.004	43	44	25.208	0.040	412.325	411.540	0.785	32.1	250	12.54	34.6
5.003	42	43	25.667	0.040	413.018	412.325	0.693	37.0	250	12.15	35.0
5.002	41	42	29.657	0.040	413.725	413.018	0.707	41.9	250	11.72	35.6
5.001	40	41	14.254	0.040	414.095	413.725	0.370	38.5	250	11.19	36.3
5.000	39	40	25.742	0.040	414.241	414.095	0.146	176.3	250	10.94	36.7
9.001	65	66	9.031	0.040	399.833	399.514	0.319	28.3	250	5.26	48.3
8.003	63	66	7.747	0.040	399.834	399.514	0.320	24.2	250	7.55	42.6
8.002	62	63	11.657	0.040	400.415	399.834	0.581	20.1	250	7.44	42.8
8.001	61	62	12.377	0.040	400.649	400.415	0.234	52.9	250	7.30	43.1
8.000	60	61	10.321	0.040	400.651	400.649	0.002	5160.4	250	7.05	43.7
9.000	64	65	15.551	0.040	401.505	399.833	1.672	9.3	250	5.13	48.8
4.006	38	38_OUT	20.748	0.040	398.446	396.935	1.511	13.7	250	10.00	38.1
4.005	37	38	25.937	0.040	400.585	398.446	2.139	12.1	250	9.79	38.4
4.004	36	37	31.949	0.040	403.226	400.585	2.641	12.1	250	9.54	38.8
4.003	35	36	36.500	0.040	403.803	403.226	0.577	63.3	250	9.23	39.3
4.002	34	35	59.698	0.040	404.852	403.803	1.049	56.9	250	8.43	40.8
4.001	33	34	41.032	0.040	407.016	404.852	2.164	19.0	250	7.19	43.3
4.000	32	33	30.717	0.040	407.093	407.016	0.077	398.9	250	6.69	44.5
7.003	59	59_OUT	29.443	0.050	406.417	405.850	0.567	51.9	250	7.19	43.3
7.002	58	59	25.519	0.050	406.973	406.417	0.556	45.9	250	6.54	44.9

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
5.007	1.063	199.2	35.9	0.000	0.000	0.394	0.0	131	0.692
5.006	1.078	202.2	35.4	0.000	0.000	0.387	0.0	130	0.699
5.005	1.107	207.6	35.5	0.000	0.000	0.383	0.0	128	0.710
5.004	1.065	199.7	29.5	0.000	0.000	0.315	0.0	122	0.659
5.003	0.992	185.9	24.5	0.000	0.000	0.258	0.0	117	0.597
5.002	0.932	174.7	12.3	0.000	0.000	0.128	0.0	92	0.479
5.001	0.972	182.3	8.4	0.000	0.000	0.086	0.0	79	0.450
5.000	0.454	85.2	4.0	0.000	0.000	0.041	0.0	80	0.212
9.001	1.134	212.6	0.5	0.000	0.000	0.004	0.0	26	0.250
8.003	1.226	230.0	0.8	0.000	0.000	0.007	0.0	31	0.303
8.002	1.347	252.6	0.3	0.000	0.000	0.003	0.0	20	0.250
8.001	0.830	155.6	0.3	0.000	0.000	0.003	0.0	24	0.174
8.000	0.084	15.8	0.3	0.000	0.000	0.003	0.0	57	0.031
9.000	1.979	371.0	0.5	0.000	0.000	0.004	0.0	21	0.379
4.006	1.628	305.3	17.6	0.000	0.000	0.171	0.0	85	0.796
4.005	1.733	324.9	16.3	0.000	0.000	0.157	0.0	82	0.821
4.004	1.735	325.3	14.1	0.000	0.000	0.134	0.0	77	0.789
4.003	0.759	142.3	11.4	0.000	0.000	0.107	0.0	97	0.404
4.002	0.800	150.0	7.3	0.000	0.000	0.066	0.0	81	0.376
4.001	1.386	259.8	4.0	0.000	0.000	0.034	0.0	52	0.488
4.000	0.302	56.6	4.1	0.000	0.000	0.034	0.0	93	0.157
7.003	0.752	150.4	6.7	0.000	0.000	0.057	0.0	51	0.319
7.002	0.800	160.0	5.3	0.000	0.000	0.044	0.0	43	0.310

Page 5 Tylorstown Phase 4 Receptor site C Proposed drainage

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
7.001	57	58	23.643	0.050	407.291	406.973	0.318	74.3	250	6.01	46.2
7.000	56	57	21.015	0.040	407.782	407.291	0.491	42.8	250	5.38	48.0
13.000	71	71_OUT	4.122	0.600	405.300	405.300	0.000	0.0	225	5.07	48.9
11.000	70	70_OUT	19.299	0.050	404.500	403.237	1.263	15.3	250	5.23	48.4
2.013	31	31_OUT	26.210	0.050	397.803	396.685	1.118	23.4	500	14.22	32.7
2.012	30	31	15.992	0.050	398.590	397.803	0.787	20.3	500	13.95	33.0
2.011	27	30	1.556	0.050	398.670	398.590	0.080	19.4	500	13.81	33.1
3.001	29	30	16.231	0.040	399.733	398.840	0.893	18.2	250	5.42	47.9
3.000	28	29	16.860	0.040	400.460	399.733	0.727	23.2	250	5.22	48.5
2.010	26	27	4.767	0.040	400.341	398.920	1.421	3.4	250	13.79	33.1
2.009	25	26	5.734	0.040	401.873	400.341	1.532	3.7	250	13.77	33.2
2.008	24	25	4.850	0.040	402.143	401.873	0.270	18.0	250	13.74	33.2
2.007	23	24	20.742	0.040	403.283	402.143	1.140	18.2	250	13.68	33.3
2.006	22	23	16.319	0.040	404.233	403.283	0.950	17.2	250	13.44	33.5
2.005	21	22	23.115	0.040	405.514	404.233	1.281	18.0	250	13.25	33.7
2.004	20	21	29.052	0.040	406.950	405.514	1.436	20.2	250	12.98	34.1
2.003	19	20	50.340	0.040	409.900	406.950	2.950	17.1	250	12.62	34.5
2.002	18	19	40.109	0.040	411.623	409.900	1.723	23.3	250	12.04	35.2
2.001	17	18	38.394	0.040	412.659	411.623	1.036	37.1	250	11.51	35.9
2.000	16	17	47.551	0.040	413.763	412.659	1.104	43.1	250	10.86	36.8
12.000	72	72_OUT	7.799	0.600	396.185	396.185	0.000	0.0	150	5.13	48.8
10.002	69	69_OUT	20.069	0.050	389.639	387.441	2.198	9.1	250	5.60	47.4
10.001	68	69	23.909	0.050	392.401	389.639	2.762	8.7	250	5.41	47.9
10.000	67	68	21.482	0.050	394.817	392.401	2.416	8.9	250	5.20	48.5

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
7.001	0.628	125.7	5.5	0.000	0.000	0.044	0.0	51	0.267
7.000	0.922	172.9	3.5	0.000	0.000	0.027	0.0	58	0.349
13.000	1.000	39.8	0.0	0.575	0.575	0.000	0.0	0	0.000
11.000	1.386	277.3	0.0	0.000	0.000	0.000	0.0	0	0.000
2.013	1.667	1083.3	62.8	0.000	0.000	0.709	0.0	136	0.803
2.012	1.790	1163.6	63.3	0.000	0.000	0.709	0.0	132	0.850
2.011	1.830	1189.5	61.2	0.000	0.000	0.682	0.0	128	0.855
3.001	1.415	265.4	1.0	0.000	0.000	0.008	0.0	31	0.350
3.000	1.253	234.9	1.0	0.000	0.000	0.008	0.0	32	0.317
2.010	3.295	617.7	61.3	0.000	0.000	0.682	0.0	105	1.847
2.009	3.119	584.8	61.3	0.000	0.000	0.682	0.0	107	1.771
2.008	1.424	267.0	61.4	0.000	0.000	0.682	0.0	144	0.986
2.007	1.415	265.2	61.5	0.000	0.000	0.682	0.0	144	0.980
2.006	1.456	273.0	53.9	0.000	0.000	0.593	0.0	136	0.971
2.005	1.421	266.4	54.2	0.000	0.000	0.593	0.0	137	0.952
2.004	1.342	251.5	45.2	0.000	0.000	0.490	0.0	131	0.874
2.003	1.461	273.9	32.7	0.000	0.000	0.350	0.0	113	0.859
2.002	1.251	234.5	20.6	0.000	0.000	0.216	0.0	100	0.679
2.001	0.991	185.9	14.0	0.000	0.000	0.144	0.0	95	0.521
2.000	0.919	172.4	7.6	0.000	0.000	0.076	0.0	78	0.422
12.000	1.000	17.7	0.0	0.850	0.850	0.000	0.0	0	0.000
10.002	1.793	358.7	0.0	0.000	0.000	0.000	0.0	0	0.000
10.001	1.842	368.4	0.0	0.000	0.000	0.000	0.0	0	0.000
10.000	1.817	363.5	0.0	0.000	0.000	0.000	0.0	0	0.000

Page 6 Tylorstown Phase 4 Receptor site C Proposed drainage

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
9.004	66	73	6.104	0.040	399.514	399.335	0.179	34.1	250	7.64	42.4
9.005	73	66 OUT	6.670	0.040	399.335	399.135	0.200	33.3	250	7.75	42.1

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
9.004	1.033	193.8	2.1	0.000	0.000	0.019	0.0	46	0.336
9.005	1.045	195.9	2.1	0.000	0.000	0.019	0.0	46	0.340

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
1.014	11.092	29.9	250	Swale 1:3 250mm	402.410	402.160	0.000	402.039	401.789	0.000
1.013	16.362	24.8	250	Swale 1:3 250mm	403.071	402.821	0.000	402.410	402.160	0.000
1.012	35.551	92.8	250	Swale 1:3 250mm	403.454	403.204	0.000	403.071	402.821	0.000
1.011	43.081	20.6	250	Swale 1:3 250mm	405.550	405.300	0.000	403.454	403.204	0.000
1.010	26.800	146.4	250	Swale 1:3 250mm	405.733	405.483	0.000	405.550	405.300	0.000
1.009	32.317	58.2	250	Swale 1:3 250mm	406.288	406.038	0.000	405.733	405.483	0.000
1.008	30.012	13.5	250	Swale 1:3 250mm	408.516	408.266	0.000	406.288	406.038	0.000
1.007	31.250	114.5	250	Swale 1:3 250mm	408.789	408.539	0.000	408.516	408.266	0.000
1.006	24.338	1431.6	250	Swale 1:3 250mm	408.806	408.556	0.000	408.789	408.539	0.000
1.005	40.840	35.8	250	Swale 1:3 250mm	409.946	409.696	0.000	408.806	408.556	0.000
1.004	32.663	164.1	250	Swale 1:3 250mm	410.145	409.895	0.000	409.946	409.696	0.000
1.003	28.144	44.5	250	Swale 1:3 250mm	410.777	410.527	0.000	410.145	409.895	0.000
1.002	23.136	49.1	250	Swale 1:3 250mm	411.248	410.998	0.000	410.777	410.527	0.000
1.001	21.509	112.0	250	Swale 1:3 250mm	411.440	411.190	0.000	411.248	410.998	0.000
1.000	21.430	52.9	250	Swale 1:3 250mm	411.845	411.595	0.000	411.440	411.190	0.000
6.004	27.419	11.4	250	Swale 1:3 250mm	408.504	408.254	0.000	406.100	405.850	0.000
6.003	30.701	27.2	250	Swale 1:3 250mm	409.633	409.383	0.000	408.504	408.254	0.000
6.002	30.186	37.1	250	Swale 1:3 250mm	410.447	410.197	0.000	409.633	409.383	0.000

Link	US	Node	DS	Dia	Node	MH
	Node	Type	Node	(mm)	Type	Type
1.014	15	Junction	15_OUT		Junction	
1.013	14	Junction	15		Junction	
1.012	13	Junction	14		Junction	
1.011	12	Junction	13		Junction	
1.010	11	Junction	12		Junction	
1.009	10	Junction	11		Junction	
1.008	9	Junction	10		Junction	
1.007	8	Junction	9		Junction	
1.006	7	Junction	8		Junction	
1.005	6	Junction	7		Junction	
1.004	5	Junction	6		Junction	
1.003	4	Junction	5		Junction	
1.002	3	Junction	4		Junction	
1.001	2	Junction	3		Junction	
1.000	1	Junction	2		Junction	
6.004	55	Junction	55_OUT		Junction	
6.003	54	Junction	55		Junction	
6.002	53	Junction	54		Junction	

Jacques Calitz 24/05/2021 Page 7 Tylorstown Phase 4 Receptor site C Proposed drainage

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
6.001	26.807	28.4	250	Swale 1:3 250mm	411.392	411.142	0.000	410.447	410.197	0.000
6.000	15.416	35.9	250	Swale 1:3 250mm	411.821	411.571	0.000	411.392	411.142	0.000
5.011	2.414	114.9	250	Swale 1:3 250mm	406.113	405.863	0.000	406.100	405.842	0.008
5.010	6.022	3.0	250	Swale 1:3 250mm	408.111	407.861	0.000	406.113	405.863	0.000
5.009	6.463	3.4	250	Swale 1:3 250mm	409.999	409.749	0.000	408.111	407.861	0.000
5.008	3.979	32.6	250	Swale 1:3 250mm	410.121	409.871	0.000	409.999	409.749	0.000
5.007	6.515	32.3	250	Swale 1:3 250mm	410.323	410.073	0.000	410.121	409.871	0.000
5.006	20.792	31.3	250	Swale 1:3 250mm	410.987	410.737	0.000	410.323	410.073	0.000
5.005	23.854	29.7	250	Swale 1:3 250mm	411.790	411.540	0.000	410.987	410.737	0.000
5.004	25.208	32.1	250	Swale 1:3 250mm	412.575	412.325	0.000	411.790	411.540	0.000
5.003	25.667	37.0	250	Swale 1:3 250mm	413.268	413.018	0.000	412.575	412.325	0.000
5.002	29.657	41.9	250	Swale 1:3 250mm	413.975	413.725	0.000	413.268	413.018	0.000
5.001	14.254	38.5	250	Swale 1:3 250mm	414.345	414.095	0.000	413.975	413.725	0.000
5.000	25.742	176.3	250	Swale 1:3 250mm	414.491	414.241	0.000	414.345	414.095	0.000
9.001	9.031	28.3	250	Swale 1:3 250mm	400.083	399.833	0.000	399.764	399.514	0.000
8.003	7.747	24.2	250	Swale 1:3 250mm	400.084	399.834	0.000	399.764	399.514	0.000
8.002	11.657	20.1	250	Swale 1:3 250mm	400.665	400.415	0.000	400.084	399.834	0.000
8.001	12.377	52.9	250	Swale 1:3 250mm	400.899	400.649	0.000	400.665	400.415	0.000
8.000	10.321	5160.4	250	Swale 1:3 250mm	400.901	400.651	0.000	400.899	400.649	0.000
9.000	15.551	9.3	250	Swale 1:3 250mm	401.755	401.505	0.000	400.083	399.833	0.000
4.006	20.748	13.7	250	Swale 1:3 250mm	398.696	398.446	0.000	397.185	396.935	0.000
4.005	25.937	12.1	250	Swale 1:3 250mm	400.835	400.585	0.000	398.696	398.446	0.000
4.004	31.949	12.1	250	Swale 1:3 250mm	403.476	403.226	0.000	400.835	400.585	0.000
4.003	36.500	63.3	250	Swale 1:3 250mm	404.053	403.803	0.000	403.476	403.226	0.000

Link	US Node	Node Type	DS Node	Dia (mm)	Node Type	MH Type
6.001	52	Junction	53		Junction	
6.000	51	Junction	52		Junction	
5.011	50	Junction	50_OUT		Junction	
5.010	49	Junction	50		Junction	
5.009	48	Junction	49		Junction	
5.008	47	Junction	48		Junction	
5.007	46	Junction	47		Junction	
5.006	45	Junction	46		Junction	
5.005	44	Junction	45		Junction	
5.004	43	Junction	44		Junction	
5.003	42	Junction	43		Junction	
5.002	41	Junction	42		Junction	
5.001	40	Junction	41		Junction	
5.000	39	Junction	40		Junction	
9.001	65	Junction	66		Junction	
8.003	63	Junction	66		Junction	
8.002	62	Junction	63		Junction	
8.001	61	Junction	62		Junction	
8.000	60	Junction	61		Junction	
9.000	64	Junction	65		Junction	
4.006	38	Junction	38_OUT		Junction	
4.005	37	Junction	38		Junction	
4.004	36	Junction	37		Junction	
4.003	35	Junction	36		Junction	

Page 8
Tylorstown Phase 4
Receptor site C
Proposed drainage

Pipeline Schedule

24/05/2021

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
4.002	59.698	56.9	250	Swale 1:3 250mm	405.102	404.852	0.000	404.053	403.803	0.000
4.001	41.032	19.0	250	Swale 1:3 250mm	407.266	407.016	0.000	405.102	404.852	0.000
4.000	30.717	398.9	250	Swale 1:3 250mm	407.343	407.093	0.000	407.266	407.016	0.000
7.003	29.443	51.9	250	Swale trapezoidal	406.667	406.417	0.000	406.100	405.850	0.000
7.002	25.519	45.9	250	Swale trapezoidal	407.223	406.973	0.000	406.667	406.417	0.000
7.001	23.643	74.3	250	Swale trapezoidal	407.541	407.291	0.000	407.223	406.973	0.000
7.000	21.015	42.8	250	Swale 1:3 250mm	408.032	407.782	0.000	407.541	407.291	0.000
13.000	4.122	0.0	225	Circular	406.100	405.300	0.575	406.100	405.300	0.575
11.000	19.299	15.3	250	Swale trapezoidal	404.750	404.500	0.000	403.487	403.237	0.000
2.013	26.210	23.4	500	Swale trapezoidal	398.303	397.803	0.000	397.185	396.685	0.000
2.012	15.992	20.3	500	Swale trapezoidal	399.090	398.590	0.000	398.303	397.803	0.000
2.011	1.556	19.4	500	Swale trapezoidal	399.170	398.670	0.000	399.090	398.590	0.000
3.001	16.231	18.2	250	Swale 1:3 250mm	399.983	399.733	0.000	399.090	398.840	0.000
3.000	16.860	23.2	250	Swale 1:3 250mm	400.710	400.460	0.000	399.983	399.733	0.000
2.010	4.767	3.4	250	Swale 1:3 250mm	400.591	400.341	0.000	399.170	398.920	0.000
2.009	5.734	3.7	250	Swale 1:3 250mm	402.123	401.873	0.000	400.591	400.341	0.000
2.008	4.850	18.0	250	Swale 1:3 250mm	402.393	402.143	0.000	402.123	401.873	0.000
2.007	20.742	18.2	250	Swale 1:3 250mm	403.533	403.283	0.000	402.393	402.143	0.000
2.006	16.319	17.2	250	Swale 1:3 250mm	404.483	404.233	0.000	403.533	403.283	0.000
2.005	23.115	18.0	250	Swale 1:3 250mm	405.764	405.514	0.000	404.483	404.233	0.000
2.004	29.052	20.2	250	Swale 1:3 250mm	407.200	406.950	0.000	405.764	405.514	0.000
2.003	50.340	17.1	250	Swale 1:3 250mm	410.150	409.900	0.000	407.200	406.950	0.000
2.002	40.109	23.3	250	Swale 1:3 250mm	411.873	411.623	0.000	410.150	409.900	0.000
2.001	38.394	37.1	250	Swale 1:3 250mm	412.909	412.659	0.000	411.873	411.623	0.000
2.000	47.551	43.1	250	Swale 1:3 250mm	414.013	413.763	0.000	412.909	412.659	0.000

Link	US Node	Node Type	DS Node	Dia (mm)	Node Type	MH Type
4.002	34	Junction	35		Junction	••
4.001	33	Junction	34		Junction	
4.000	32	Junction	33		Junction	
7.003	59	Junction	59_OUT		Junction	
7.002	58	Junction	59		Junction	
7.001	57	Junction	58		Junction	
7.000	56	Junction	57		Junction	
13.000	71	Junction	71_OUT	1200	Manhole	Adoptable
11.000	70	Junction	70_OUT		Junction	
2.013	31	Junction	31_OUT		Junction	
2.012	30	Junction	31		Junction	
2.011	27	Junction	30		Junction	
3.001	29	Junction	30		Junction	
3.000	28	Junction	29		Junction	
2.010	26	Junction	27		Junction	
2.009	25	Junction	26		Junction	
2.008	24	Junction	25		Junction	
2.007	23	Junction	24		Junction	
2.006	22	Junction	23		Junction	
2.005	21	Junction	22		Junction	
2.004	20	Junction	21		Junction	
2.003	19	Junction	20		Junction	
2.002	18	Junction	19		Junction	
2.001	17	Junction	18		Junction	
2.000	16	Junction	17		Junction	

File: Receptor site C - proposec Network: Storm Network

Jacques Calitz 24/05/2021 Page 9 Tylorstown Phase 4 Receptor site C Proposed drainage

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
	` '	(1.77)	` '	**	` '	` '	` '	` '	` '	
12.000	7.799	0.0	150	Circular	397.185	396.185	0.850	397.185	396.185	0.850
10.002	20.069	9.1	250	Swale trapezoidal	389.889	389.639	0.000	387.691	387.441	0.000
10.001	23.909	8.7	250	Swale trapezoidal	392.651	392.401	0.000	389.889	389.639	0.000
10.000	21.482	8.9	250	Swale trapezoidal	395.067	394.817	0.000	392.651	392.401	0.000
9.004	6.104	34.1	250	Swale 1:3 250mm	399.764	399.514	0.000	399.585	399.335	0.000
9.005	6.670	33.3	250	Swale 1:3 250mm	399.585	399.335	0.000	399.385	399.135	0.000

Link	US	Node	DS	Dia	Node	MH
	Node	Type	Node	(mm)	Type	Type
12.000	72	Junction	72_OUT	1200	Manhole	Adoptable
10.002	69	Junction	69_OUT		Junction	
10.001	68	Junction	69		Junction	
10.000	67	Junction	68		Junction	
9.004	66	Junction	73		Junction	
9.005	73	Junction	66 OUT		Junction	

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	s	Link	IL (m)	Dia (mm)
1	302094.660	195823.794	411.845	0.250						
							0	1.000	411.595	250
51	302088.207	195831.625	411.821	0.250		0		1.000	411.333	230
	002000.207			0.200		0				
							0	6.000	411.571	250
52	302077.162	195842.379	411.392	0.250		0 €	1	6.000	411.142	250
						1	0	6.001	411.142	250
53	302051.378	195849.713	410.447	0.250			1	6.001	410.197	250
						0 -1				
							0	6.002	410.197	250
54	302022.212	195841.931	409.633	0.250		1 مر	1	6.002	409.383	250
						0 4	0	6.003	409.383	250
55	301999.162	195821.652	408.504	0.250		ر	1	6.003	408.254	250
						0 2	0	6.004	408.254	250
55_OUT	301979.347	195802.701	406.100	0.660		_1	1	6.004	405.850	250
						6				
39	302118.616	195696.153	414.491	0.250		0				
							0	5.000	414.241	250

Page 10 Tylorstown Phase 4 Receptor site C Proposed drainage

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	ıs	Link	IL (m)	Dia (mm)
40	302104.266	195717.524	414.345	0.250		0	1	5.000	414.095	250
						1	0	5.001	414.095	250
41	302096.508	195729.482	413.975	0.250		0	1	5.001	413.725	250
						1	0	5.002	413.725	250
42	302082.547	195755.647	413.268	0.250		0	1	5.002	413.018	250
42	202067.542	405776 474	440 575	0.250		1	0	5.003	413.018	250
43	302067.542	195776.471	412.575	0.250		0 5	1	5.003	412.325	250
44	302048.725	195793.245	411.790	0.250			0	5.004	412.325 411.540	250 250
44	302046.723	193793.243	411.790	0.230		0 ←				
45	302024.874	195793.652	410.007	0.250			0	5.005	411.540 410.737	250 250
45	302024.874	193793.032	410.987	0.230		0 ← 1	1	3.003	410.737	230
							0	5.006	410.737	250
46	302004.289	195790.724	410.323	0.250		01	1	5.006	410.073	250
4.7	204007.042	405700 202	440.424	0.250			0	5.007	410.073	250
47	301997.913	195789.383	410.121	0.250		0 ←	1	5.007	409.871	250
FO. OUT.	201070 206	105706 430	400 100	0.660			0	5.008	409.871	250
50_OUT	301979.286	195786.429	406.100	0.660		o——1	1	5.011	405.842	250
2	302102.911	195804.016	411.440	0.250		1	1	1.000		250
	202402 002	105700 115	444.040	0.050		ő	0	1.001		250
3	302109.093	195783.415	411.248	0.250		1	1	1.001		250
4	202447.447	405764 000	440 ===	0.050		Ŏ	0	1.002		250
4	302117.445	195761.839	410.777	0.250		1	1	1.002	410.527	250
	202120 402	105726 055	/10 1 4 F	0.250		Ò	0	1.003		250
5	302130.403	195736.855	410.145	0.250		1	1	1.003	409.895	250
						0	0	1.004	409.895	250

File: Receptor site C - proposec Network: Storm Network Jacques Calitz 24/05/2021 Page 11 Tylorstown Phase 4 Receptor site C Proposed drainage

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	5	Link	IL (m)	Dia (mm)
6	302150.435	195711.056	409.946	0.250		1	1	1.004	409.696	250
						70	0	1.005	409.696	250
7	302176.580	195679.682	408.806	0.250		1	1	1.005	408.556	250
						30	0	1.006	408.556	250
8	302190.988	195660.067	408.789	0.250		1	1	1.006	408.539	250
						γ°	0	1.007		250
9	302202.983	195631.211	408.516	0.250		1	1	1.007	408.266	250
						0	0	1.008	408.266	250
10	302210.754	195602.223	406.288	0.250		1	1	1.008	406.038	250
						9	0	1.009	406.038	250
11	302222.869	195572.263	405.733	0.250		1	1	1.009	405.483	250
						ō	0	1.010	405.483	250
12	302238.253	195550.318	405.550	0.250		1	1	1.010	405.300	250
12	202266 700	405547.072	402.454	0.250		0	0	1.011	405.300	250
13	302266.708	195517.972	403.454	0.250		1	1	1.011	403.204	250
14	302287.452	195489.100	403.071	0.250		0	0	1.012 1.012	403.204	250 250
14	302267.432	195469.100	405.071	0.230		1				
15	202202 025	105472 202	402 410	0.250		ŏ	0	1.013	402.821 402.160	250
15	302292.033	195473.393	402.410	0.230		, , , , , , , , , , , , , , , , , , ,				250
45 OUT	202202.404	405460 744	402.020	0.250			0		402.160	250
15_OUT	302302.104	195468.741	402.039	0.250		1	1	1.014	401.789	250
64	302292.157	195465.779	401.755	0.250						
	202204 672	105 126 202	200 205	0.350		0	0		401.505	250
66_OUT	302284.672	195436.383	399.385	0.250		1	1	9.005	399.135	250

File: Receptor site C - proposec Network: Storm Network Jacques Calitz 24/05/2021 Page 12 Tylorstown Phase 4 Receptor site C Proposed drainage

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	าร	Link	IL (m)	Dia (mm)
33	302089.744	195670.772	407.266	0.250		1	1	4.000	407.016	250
						70	0	4.001	407.016	250
63	302270.668	195442.328	400.084	0.250		1 70	1	8.002	399.834	250
							0	8.003	399.834	250
66	302277.089	195446.662	399.764	0.250		_1	1	9.001	399.514	250
						2 0	2	9.004	399.514 399.514	250 250
56	302058.023	195711.789	408.032	0.250		0		9.004	399.314	230
							0	7.000	407.782	250
57	302042.658	195726.126	407.541	0.250		0 5	1	7.000	407.291	250
						ì	0	7.001	407.291	250
58	302023.759	195740.332	407.223	0.250		0 5	1	7.001	406.973	250
						1	0	7.002	406.973	250
59_OUT	301980.197	195773.747	406.100	0.660		۹ 1	1	7.003	405.850	250
71	301960.937	195796.217	406.100	0.800		0 ←──•	0	13.000	405.300	225
70	301950.111	195795.015	404.750	0.250		0 ←		13.000	403.300	
							0	11.000	404.500	250
70_OUT	301930.927	195792.914	403.487	0.250		₀ ——1	1	11.000	403.237	250
25	302204.925	195429.176	402.123	0.250			1	2.008	401.873	250
32	302071.045	195695.142	407.343	0.250		0 0	0	2.009	401.873	250
						30	0	4.000	407.093	250
34	302108.528	195634.292	405.102	0.250		1	1	4.001	404.852	250
						\ \dots	0	4.002	404.852	250

File: Receptor site C - proposec Network: Storm Network Jacques Calitz 24/05/2021 Page 13 Tylorstown Phase 4 Receptor site C Proposed drainage

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	s	Link	IL (m)	Dia (mm)
35	302122.597	195576.275	404.053	0.250		1	1	4.002	403.803	250
						o o	0	4.003	403.803	250
36	302125.018	195539.855	403.476	0.250		1	1	4.003	403.226	250
						0	0	4.004	403.226	250
37	302122.753	195507.986	400.835	0.250			1	4.004	400.585	250
						ŏ	0	4.005	400.585	250
38	302128.385	195482.668	398.696	0.250		1	1	4.005	398.446	250
						Ŏ	0	4.006	398.446	250
38_OUT	302137.050	195463.816	397.185	0.917		1	1	4.006	396.935	250
31_OUT	302164.809	195439.245	397.185	0.917		٩_1	1	2.013	396.685	500
16	302129.765	195678.649	414.013	0.250		\				
4.7	202455.064	105500 005	440.000	0.050		0	0	2.000	413.763	250
17	302155.061	195638.385	412.909	0.250		1	1	2.000	412.659	250
						Ò	0	2.001	412.659	250
18	302170.262	195603.128	411.873	0.250		1	1	2.001	411.623	250
19	202170 566	105562 000	410 150	0.350		1	0	2.002		250
19	302178.300	195563.888	410.150	0.250			1	2.002		250
20	202107 221	105514 217	407 200	0.250		0	0	2.003		250
20	302187.331	195514.317	407.200	0.250			1	2.003		250
		105:0:	40			0	0	2.004		250
21	302204.716	195491.041	405.764	0.250		1	1	2.004	405.514	250
22	202214 004	105460.074	404 402	0.250		0	0	2.005		250
22	302214.004	195469.874	404.483	0.250		1	1	2.005	404.233	250
						0	0	2.006	404.233	250

File: Receptor site C - proposec Network: Storm Network Jacques Calitz 24/05/2021 Page 14 Tylorstown Phase 4 Receptor site C Proposed drainage

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	ns	Link	IL (m)	Dia (mm)
23	302212.472	195453.627	403.533	0.250		1	1	2.006	403.283	250
						0	0	2.007	403.283	250
26	302203.293	195423.679	400.591	0.250			1	2.009	400.341	250
						0	0	2.010	400.341	250
24	302206.211	195433.852	402.393	0.250			1	2.007	402.143	250
20	202200 475	405440.070	200.000	0.500		0	0	2.008	402.143	250
30	302200.475	195418.070	399.090	0.500		<i>}</i>	1	3.001	398.840	250
						0 — 1	2	2.011	398.590 398.590	500
31	302185.186	195422.760	398.303	0.500			1	2.012	397.803	500
31	302103.100	133422.700	330.303	0.500		0 5	-	2.012	337.003	300
							0	2.013	397.803	500
62	302259.353	195439.525	400.665	0.250		1 → >0	1	8.001	400.415	250
							0	8.002	400.415	250
61	302247.476	195436.043	400.899	0.250		30	1	8.000	400.649	250
							0	8.001	400.649	250
72	302132.599	195456.747	397.185	1.000		0 ←				
							0	12.000	396.185	150
68	302090.808	195458.982	392.651	0.250		0 ←	1	10.000	392.401	250
							0	10.001		250
69	302067.509	195464.347	389.889	0.250		0 ← ⊸ 1	1	10.001	389.639	250
							0	10.002	389.639	250
69_OUT	302047.440	195464.412	387.691	0.250		o1	1	10.002	387.441	250
60	302238.392	195431.144	400.901	0.250		, 70				
							0	8.000	400.651	250
65	302283.882	195452.613	400.083	0.250		1	1	9.000	399.833	250
						0 4	0	9.001	399.833	250

File: Receptor site C - proposec Network: Storm Network Jacques Calitz Page 15 Tylorstown Phase 4 Receptor site C Proposed drainage

Manhole Schedule

24/05/2021

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	S	Link	IL (m)	Dia (mm)
27	302201.449	195419.283	399.170	0.500	•	1	1	2.010	398.920	250
						0 2	0	2.011	398.670	500
28	302232.059	195425.852	400.710	0.250		0 6				
							0	3.000	400.460	250
29	302216.683	195418.935	399.983	0.250		0	1	3.000	399.733	250
							0	3.001	399.733	250
48	301994.028	195788.522	409.999	0.250		0 ← 1	1	5.008	409.749	250
							0	5.009	409.749	250
49	301987.669	195787.365	408.111	0.250		01	1	5.009	407.861	250
							0	5.010	407.861	250
50	301981.689	195786.658	406.113	0.250		0 ← ⊸ 1	1	5.010	405.863	250
							0	5.011	405.863	250
71_OUT	301956.819	195796.033	406.100	0.800	1200	<u></u>	1	13.000	405.300	225
72_OUT	302124.908	195455.456	397.185	1.000	1200	<u></u>	1	12.000	396.185	150
67	302111.857	195454.691	395.067	0.250		0 ←				
							0	10.000	394.817	250
59	302002.753	195754.823	406.667	0.250		0 1	1	7.002	406.417	250
						1	0	7.003	406.417	250
73	302280.742	195441.772	399.585	0.250		1	1	9.004	399.335	250
) A	0	9.005	399.335	250

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	England and Wales	Skip Steady State	Х
M5-60 (mm)	20.000	Drain Down Time (mins)	240
Ratio-R	0.200	Additional Storage (m³/ha)	20.0
Summer CV	0.750	Check Discharge Rate(s)	Х
Winter CV	0.840	Check Discharge Volume	х

Capita		File: Receptor s	ite C - proposec	Page 16
CALICEVANY		Network: Storm	n Network	Tylorstown Phase 4
CAUSEWAY 😝		Jacques Calitz		Receptor site C
		24/05/2021		Proposed drainage
	Storm D	Ourations		
15 30 60 120	180 240	360 480	600 720	960 1440
Return Period	Climate Change	Additional Area	Additional Flo	w
(years)	(CC %)	(A %)	(Q %)	
2	0	0		0
30	0	0		0
100	0	0		0
100	40	0		0
	Node 71_OUT Of	ffline Weir Contro	<u>) </u>	
Flap Valve x	Invert Level (m)	405.800 Disc	charge Coefficien	t 0.590
Loop to Node 70	Width (m)	1.000		
	Node 71_OUT Off	line Orifice Contr	<u>ol</u>	
Flap Valve x	Invert Level (m)	405.300 Disc	charge Coefficien	t 0.600
Loop to Node 70		0.150	J	
'		'		
	Node 72_OUT Of	fline Weir Contro	<u>) </u>	
Flap Valve x	Invert Level (m)	396.885 Disc	charge Coefficien	t 0.590
Loop to Node 67	Width (m)	1.000		
	Node 72_OUT Off	line Orifice Contr	<u>ol</u>	
Flap Valve x	Invert Level (m)	396.185 Disc	charge Coefficien	t 0.600
Loop to Node 67	Diameter (m)	0.300		
	Node 38_OUT O	nline Weir Contro	<u>) </u>	
•	x Invert Level		Discharge Coe	fficient 0.590
Replaces Downstream Link	x Width	(m) 3.000		
	Node 31_OUT O	nline Weir Contro	<u>) </u>	
•	x Invert Level		Discharge Coe	fficient 0.590
Replaces Downstream Link	x Width	(m) 3.000		
	Node 55_OUT O	nline Weir Contro	<u>) </u>	
•	x Invert Level		Discharge Coe	fficient 0.590
Replaces Downstream Link	x Width	(m) 3.000		
	Node 50_OUT O	nline Weir Contro	<u>)I</u>	
	1	, ,	.	rr
Flap Valve	x Invert Level		Discharge Coe	fficient 0.590
Replaces Downstream Link	x Width	(m) 3.000		
	Node 59_OUT O	nline Weir Contro	<u>) </u>	
	1	/) 105.055	B: 1 - 5	· · · · · · · · · · · · · · · · · · ·

Width (m) 3.000

Discharge Coefficient 0.590

Flap Valve x Invert Level (m) 405.850

Replaces Downstream Link x

Capita File: R

File: Receptor site C - proposec Network: Storm Network Jacques Calitz

24/05/2021

Page 17
Tylorstown Phase 4
Receptor site C
Proposed drainage

Node 73 Online Weir Control

Flap Valve x Invert Level (m) 399.535 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 73 Online Orifice Control

Flap Valve x Invert Level (m) 399.335 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 62 Online Weir Control

Flap Valve x Invert Level (m) 400.615 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 62 Online Orifice Control

Flap Valve x Invert Level (m) 400.415 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 65 Online Weir Control

Flap Valve x Invert Level (m) 400.033 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 65 Online Orifice Control

Flap Valve x Invert Level (m) 399.833 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 3 Online Weir Control

Flap Valve x Invert Level (m) 411.198 Discharge Coefficient 0.590
Replaces Downstream Link x Width (m) 1.000

Node 3 Online Orifice Control

Flap Valve x Invert Level (m) 410.998 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 5 Online Weir Control

Flap Valve x Invert Level (m) 410.095 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 5 Online Orifice Control

Flap Valve x Invert Level (m) 409.895 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 7 Online Weir Control

Flap Valve x Invert Level (m) 408.756 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Capita File: Receptor site C - proposec

Network: Storm Network

Jacques Calitz 24/05/2021

Page 18 Tylorstown Phase 4 Receptor site C Proposed drainage

Node 7 Online Orifice Control

Flap Valve x Invert Level (m) 408.556 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 9 Online Weir Control

Flap Valve x Invert Level (m) 408.466 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 9 Online Orifice Control

Flap Valve x Invert Level (m) 408.266 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 11 Online Weir Control

Flap Valve x Invert Level (m) 405.683 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 11 Online Orifice Control

Flap Valve x Invert Level (m) 405.483 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 13 Online Weir Control

Flap Valve x Invert Level (m) 403.404 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 13 Online Orifice Control

Flap Valve x Invert Level (m) 403.204 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 15 Online Weir Control

Flap Valve x Invert Level (m) 402.310 Discharge Coefficient 0.590 Replaces Downstream Link x Width (m) 1.000

Node 15 Online Orifice Control

Flap Valve x Invert Level (m) 402.160 Discharge Coefficient 0.600 Replaces Downstream Link x Diameter (m) 0.100

Node 71 Flow through Pond Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Porosity 1.00 Main Channel Length (m) 42.000 Side Inf Coefficient (m/hr) 0.00000 Invert Level (m) 405.300 Main Channel Slope (1:X) 300.0 Safety Factor 2.0 Time to half empty (mins) Main Channel n 0.060 88

Inlets

File: Receptor site C - proposec Network: Storm Network

Jacques Calitz 24/05/2021

Page 19 Tylorstown Phase 4 Receptor site C Proposed drainage

 Depth
 Area
 Inf Area
 Dept

 (m)
 (m²)
 (m²)
 (m)

 0.000
 457.0
 0.0
 0.80

Depth Area Inf Area (m) (m²) (m²) 0.800 695.3 0.0

Node 72 Flow through Pond Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Porosity 1.00 Invert Level (m) 396.185 Time to half empty (mins) 156 Main Channel Length (m) 25.000 Main Channel Slope (1:X) 300.0 Main Channel n 0.060

Inlets

31_OUT 38_OUT

Depth Area Inf Area Depth Area Inf Area (m) (m²)(m²)(m) (m²)(m²)0.000 496.0 1.000 839.0 0.0 0.0

Rainfall

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
2 year 15 minute summer	112.777	31.912	30 year 240 minute winter	34.480	13.715
2 year 15 minute winter	79.142	31.912	30 year 360 minute summer	41.522	10.685
2 year 30 minute summer	81.416	23.038	30 year 360 minute winter	26.991	10.685
2 year 30 minute winter	57.134	23.038	30 year 480 minute summer	33.795	8.931
2 year 60 minute summer	61.301	16.200	30 year 480 minute winter	22.452	8.931
2 year 60 minute winter	40.727	16.200	30 year 600 minute summer	28.377	7.762
2 year 120 minute summer	42.559	11.247	30 year 600 minute winter	19.389	7.762
2 year 120 minute winter	28.275	11.247	30 year 720 minute summer	25.804	6.916
2 year 180 minute summer	35.121	9.038	30 year 720 minute winter	17.342	6.916
2 year 180 minute winter	22.829	9.038	30 year 960 minute summer	21.860	5.756
2 year 240 minute summer	29.197	7.716	30 year 960 minute winter	14.481	5.756
2 year 240 minute winter	19.398	7.716	30 year 1440 minute summer	16.557	4.437
2 year 360 minute summer	23.988	6.173	30 year 1440 minute winter	11.127	4.437
2 year 360 minute winter	15.593	6.173	100 year 15 minute summer	273.602	77.420
2 year 480 minute summer	19.942	5.270	100 year 15 minute winter	192.002	77.420
2 year 480 minute winter	13.249	5.270	100 year 30 minute summer	202.154	57.203
2 year 600 minute summer	17.030	4.658	100 year 30 minute winter	141.863	57.203
2 year 600 minute winter	11.636	4.658	100 year 60 minute summer	153.288	40.510
2 year 720 minute summer	15.715	4.212	100 year 60 minute winter	101.841	40.510
2 year 720 minute winter	10.561	4.212	100 year 120 minute summer	103.325	27.306
2 year 960 minute summer	13.650	3.594	100 year 120 minute winter	68.647	27.306
2 year 960 minute winter	9.042	3.594	100 year 180 minute summer	82.228	21.160
2 year 1440 minute summer	10.717	2.872	100 year 180 minute winter	53.450	21.160
2 year 1440 minute winter	7.203	2.872	100 year 240 minute summer	66.740	17.637
30 year 15 minute summer	212.586	60.154	100 year 240 minute winter	44.341	17.637
30 year 15 minute winter	149.183	60.154	100 year 360 minute summer	52.784	13.583
30 year 30 minute summer	155.010	43.862	100 year 360 minute winter	34.311	13.583
30 year 30 minute winter	108.779	43.862	100 year 480 minute summer	42.569	11.250
30 year 60 minute summer	116.589	30.811	100 year 480 minute winter	28.282	11.250
30 year 60 minute winter	77.459	30.811	100 year 600 minute summer	35.470	9.702
30 year 120 minute summer	78.946	20.863	100 year 600 minute winter	24.235	9.702
30 year 120 minute winter	52.450	20.863	100 year 720 minute summer	32.039	8.587
30 year 180 minute summer	63.479	16.335	100 year 720 minute winter	21.532	8.587
30 year 180 minute winter	41.263	16.335	100 year 960 minute summer	26.838	7.067
30 year 240 minute summer	51.899	13.715	100 year 960 minute winter	17.778	7.067

File: Receptor site C - proposec Network: Storm Network Jacques Calitz 24/05/2021 Page 20 Tylorstown Phase 4 Receptor site C Proposed drainage

Rainfall

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year 1440 minute summer	19.990	5.358	100 year +40% CC 240 minute winter	62.077	24.692
100 year 1440 minute winter	13.435	5.358	100 year +40% CC 360 minute summer	73.898	19.016
100 year +40% CC 15 minute summer	383.043	108.388	100 year +40% CC 360 minute winter	48.036	19.016
100 year +40% CC 15 minute winter	268.802	108.388	100 year +40% CC 480 minute summer	59.596	15.750
100 year +40% CC 30 minute summer	283.016	80.084	100 year +40% CC 480 minute winter	39.594	15.750
100 year +40% CC 30 minute winter	198.608	80.084	100 year +40% CC 600 minute summer	49.658	13.583
100 year +40% CC 60 minute summer	214.603	56.713	100 year +40% CC 600 minute winter	33.930	13.583
100 year +40% CC 60 minute winter	142.577	56.713	100 year +40% CC 720 minute summer	44.855	12.022
100 year +40% CC 120 minute summer	144.655	38.228	100 year +40% CC 720 minute winter	30.145	12.022
100 year +40% CC 120 minute winter	96.105	38.228	100 year +40% CC 960 minute summer	37.573	9.894
100 year +40% CC 180 minute summer	115.119	29.624	100 year +40% CC 960 minute winter	24.889	9.894
100 year +40% CC 180 minute winter	74.831	29.624	100 year +40% CC 1440 minute summer	27.987	7.501
100 year +40% CC 240 minute summer	93.436	24.692	100 year +40% CC 1440 minute winter	18.809	7.501

Jacques Calitz 24/05/2021 Page 21 Tylorstown Phase 4 Receptor site C Proposed drainage

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	1	11	411.616	0.021	0.3	0.0030	0.0000	OK
15 minute winter	51	11	411.598	0.027	0.5	0.0071	0.0000	OK
15 minute winter	52	11	411.174	0.032	0.9	0.0076	0.0000	OK
30 minute summer	53	20	410.232	0.035	1.1	0.0060	0.0000	OK
30 minute summer	54	21	409.420	0.037	1.4	0.0107	0.0000	OK
30 minute summer	55	20	408.292	0.038	2.4	0.0287	0.0000	OK
30 minute summer	55_OUT	20	405.856	0.416	2.3	0.0000	0.0000	OK
30 minute winter	39	21	414.322	0.081	4.2	0.2624	0.0000	OK
30 minute winter	40	21	414.175	0.080	8.9	0.2886	0.0000	OK
30 minute winter	41	22	413.819	0.094	13.1	0.3166	0.0000	OK
30 minute winter	42	22	413.137	0.119	26.3	1.2411	0.0000	OK
30 minute winter	43	22	412.450	0.125	31.7	0.5723	0.0000	OK
30 minute winter	44	22	411.673	0.133	38.3	0.7272	0.0000	OK
30 minute winter	45	23	410.871	0.134	38.5	0.0368	0.0000	OK
30 minute winter	46	23	410.209	0.136	39.0	0.0762	0.0000	OK
30 minute winter	47	23	410.008	0.137	39.0	0.0000	0.0000	OK
30 minute winter	50_OUT	23	405.887	0.447	39.0	0.0000	0.0000	OK
30 minute winter	2	20	411.222	0.032	0.5	0.0061	0.0000	OK
30 minute winter	3	20	411.052	0.053	1.3	0.0313	0.0000	OK
30 minute winter	4	20	410.577	0.050	2.4	0.0454	0.0000	OK
30 minute winter	5	22	410.012	0.117	4.5	0.1770	0.0000	OK
30 minute winter	6	22	409.760	0.064	5.2	0.0888	0.0000	OK
60 minute winter	7	42	408.746	0.190	6.6	0.3727	0.0000	OK
60 minute winter	8	45	408.620	0.081	5.3	0.0000	0.0000	OK
60 minute winter	9	46	408.403	0.137	6.3	0.2478	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	1	1.000	2	0.2	0.117	0.001	0.0428	
15 minute winter	51	6.000	52	0.5	0.194	0.003	0.0397	
15 minute winter	52	6.001	53	0.8	0.280	0.004	0.0881	
30 minute summer	53	6.002	54	1.0	0.256	0.005	0.1180	
30 minute summer	54	6.003	55	1.3	0.316	0.006	0.1310	
30 minute summer	55	6.004	55_OUT	2.3	0.513	0.007	0.1215	
30 minute winter	55_OUT	Flow through pond	71	53.8	0.116	0.011	34.7236	
30 minute winter	39	5.000	40	4.2	0.214	0.049	0.5005	
30 minute winter	40	5.001	41	8.8	0.385	0.048	0.3260	
30 minute winter	41	5.002	42	12.9	0.378	0.074	1.0281	
30 minute winter	42	5.003	43	25.9	0.579	0.139	1.1516	
30 minute winter	43	5.004	44	31.5	0.633	0.158	1.2563	
30 minute winter	44	5.005	45	38.2	0.718	0.184	1.2705	
30 minute winter	45	5.006	46	38.3	0.704	0.190	1.1339	
30 minute winter	46	5.007	47	39.0	0.699	0.196	0.3640	
30 minute winter	47	5.008	48	39.0	1.010	0.197	0.1606	
30 minute winter	50_OUT	Flow through pond	71	53.8	0.116	0.011	34.7236	
30 minute winter	2	1.001	3	0.4	0.086	0.004	0.1253	
30 minute winter	3	1.002	4	1.2	0.200	0.008	0.1427	
30 minute winter	4	1.003	5	2.4	0.124	0.014	0.6851	
30 minute winter	5	1.004	6	3.7	0.220	0.042	0.5565	
30 minute winter	6	1.005	7	5.0	0.141	0.027	2.3464	
60 minute winter	7	1.006	8	5.3	0.166	0.177	0.8150	
60 minute winter	8	1.007	9	5.2	0.156	0.050	1.1922	
60 minute winter	9	1.008	10	5.9	0.434	0.019	0.4341	

Jacques Calitz 24/05/2021 Page 22 Tylorstown Phase 4 Receptor site C Proposed drainage

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute winter	10	39	406.119	0.081	7.4	0.1732	0.0000	ОК
60 minute winter	11	42	405.691	0.208	8.2	0.1903	0.0000	OK
60 minute winter	12	44	405.370	0.070	8.4	0.0850	0.0000	OK
120 minute winter	13	80	403.414	0.210	8.5	0.1634	0.0000	OK
120 minute winter	14	80	402.894	0.073	8.5	0.0237	0.0000	OK
120 minute winter	15	82	402.322	0.162	8.5	0.0000	0.0000	OK
120 minute winter	15_OUT	82	401.859	0.070	8.5	0.0000	0.0000	OK
15 minute summer	64	11	401.526	0.021	0.5	0.0061	0.0000	OK
30 minute summer	66_OUT	20	399.175	0.039	2.1	0.0000	0.0000	OK
30 minute summer	33	21	407.068	0.052	4.2	0.0000	0.0000	OK
30 minute summer	63	18	399.862	0.028	0.7	0.0107	0.0000	OK
30 minute summer	66	19	399.560	0.046	2.2	0.0285	0.0000	OK
15 minute winter	56	11	407.842	0.060	3.9	0.1288	0.0000	OK
15 minute winter	57	11	407.356	0.065	6.2	0.0869	0.0000	OK
15 minute winter	58	12	407.020	0.047	6.3	0.0000	0.0000	OK
30 minute summer	59_OUT	21	405.861	0.421	6.1	0.0000	0.0000	OK
180 minute winter	71	128	405.473	0.173	24.4	0.0000	0.0000	OK
180 minute winter	70	128	404.556	0.056	14.2	0.0000	0.0000	OK
180 minute winter	70_OUT	128	403.291	0.054	14.2	0.0000	0.0000	OK
30 minute winter	25	23	401.984	0.111	66.3	0.0000	0.0000	OK
15 minute winter	32	11	407.214	0.121	4.9	0.3276	0.0000	OK
30 minute winter	34	21	404.930	0.078	7.3	0.2034	0.0000	OK
30 minute winter	35	21	403.908	0.105	11.0	0.3408	0.0000	OK
30 minute winter	36	21	403.300	0.073	12.5	0.1595	0.0000	OK
30 minute winter	37	21	400.663	0.078	14.5	0.1393	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute winter	10	1.009	11	7.3	0.196	0.049	2.4191	
60 minute winter	11	1.010	12	7.7	0.288	0.082	0.7634	
60 minute winter	12	1.011	13	8.3	0.220	0.033	3.1132	
120 minute winter	13	1.012	14	8.3	0.332	0.071	0.9298	
120 minute winter	14	1.013	15	8.5	0.309	0.037	0.7731	
120 minute winter	15	1.014	15_OUT	8.5	0.524	0.041	0.1796	32.0
15 minute summer	64	9.000	65	0.5	0.440	0.001	0.0293	
30 minute summer	33	4.001	34	3.9	0.312	0.015	0.5332	
30 minute summer	63	8.003	66	0.7	0.169	0.003	0.0336	
30 minute summer	66	9.004	73	2.1	0.272	0.011	0.0657	
15 minute winter	56	7.000	57	3.8	0.336	0.022	0.2463	
15 minute winter	57	7.001	58	6.3	0.284	0.050	0.5344	
15 minute winter	58	7.002	59	6.0	0.297	0.037	0.5705	
30 minute winter	59_OUT	Flow through pond	71	53.8	0.116	0.011	34.7236	
180 minute winter	71	13.000	71_OUT	14.2	0.447	0.357	0.1326	
180 minute winter	70	11.000	70_OUT	14.2	0.628	0.051	0.4368	100.1
30 minute winter	25	2.009	26	66.3	1.837	0.113	0.2071	
15 minute winter	32	4.000	33	4.3	0.200	0.077	0.7840	
30 minute winter	34	4.002	35	6.8	0.270	0.045	1.5306	
30 minute winter	35	4.003	36	10.1	0.422	0.071	0.8968	
30 minute winter	36	4.004	37	12.4	0.725	0.038	0.5488	
30 minute winter	37	4.005	38	14.5	0.753	0.045	0.4987	

File: Receptor site C - proposec

Network: Storm Network Jacques Calitz 24/05/2021 Page 23 Tylorstown Phase 4 Receptor site C Proposed drainage

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	38	21	398.528	0.082	15.8	0.0949	0.0000	OK
30 minute winter	38_OUT	21	396.955	0.687	15.8	0.0000	0.0000	OK
30 minute winter	31 OUT	23	396.739	0.471	69.7	0.3519	0.0000	OK
30 minute winter	16	21	413.841	0.078	7.9	0.4734	0.0000	OK
30 minute winter	17	22	412.755	0.096	14.8	0.5280	0.0000	OK
30 minute winter	18	22	411.725	0.102	21.8	0.5818	0.0000	OK
30 minute winter	19	22	410.015	0.115	34.9	1.2321	0.0000	OK
30 minute winter	20	22	407.084	0.134	48.3	1.5034	0.0000	OK
30 minute winter	21	22	405.655	0.141	58.2	1.1657	0.0000	OK
30 minute winter	22	23	404.373	0.140	57.9	0.0000	0.0000	OK
30 minute winter	23	23	403.432	0.149	66.4	1.0623	0.0000	OK
30 minute winter	26	23	400.450	0.108	66.3	0.0000	0.0000	OK
30 minute winter	24	23	402.296	0.153	66.2	0.0000	0.0000	OK
30 minute winter	30	23	398.727	0.137	68.1	0.1054	0.0000	OK
30 minute winter	31	23	397.948	0.145	68.1	0.0000	0.0000	OK
30 minute winter	62	24	400.439	0.024	0.3	0.0000	0.0000	OK
30 minute winter	61	20	400.680	0.031	0.3	0.0000	0.0000	OK
240 minute winter	72	172	396.433	0.248	28.5	0.0000	0.0000	SURCHARGED
240 minute winter	68	172	392.459	0.058	20.2	0.0000	0.0000	OK
240 minute winter	69	172	389.698	0.059	20.2	0.0000	0.0000	OK
240 minute winter	69_OUT	172	387.500	0.059	20.2	0.0000	0.0000	OK
15 minute summer	60	12	400.700	0.049	0.4	0.0099	0.0000	OK
30 minute summer	65	20	399.864	0.031	0.5	0.0000	0.0000	OK
30 minute winter	27	23	398.804	0.134	66.3	0.0000	0.0000	OK
15 minute winter	28	10	400.494	0.034	1.1	0.0206	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute winter	38	4.006	38_OUT	15.8	0.776	0.052	0.4210	
30 minute winter	38_OUT	Flow through pond	72	83.3	0.097	0.006	66.8037	
30 minute winter	31_OUT	Flow through pond	72	83.3	0.097	0.006	66.8037	
30 minute winter	16	2.000	17	7.7	0.343	0.045	1.0914	
30 minute winter	17	2.001	18	14.5	0.494	0.078	1.1319	
30 minute winter	18	2.002	19	21.5	0.609	0.092	1.4210	
30 minute winter	19	2.003	20	34.5	0.741	0.126	2.3589	
30 minute winter	20	2.004	21	48.0	0.842	0.191	1.6569	
30 minute winter	21	2.005	22	57.9	0.979	0.217	1.3672	
30 minute winter	22	2.006	23	57.8	0.928	0.212	1.0176	
30 minute winter	23	2.007	24	66.2	0.975	0.250	1.4103	
30 minute winter	26	2.010	27	66.3	1.899	0.107	0.1665	
30 minute winter	24	2.008	25	66.3	1.274	0.248	0.2588	
30 minute winter	30	2.012	31	68.1	0.832	0.059	1.3128	
30 minute winter	31	2.013	31_OUT	67.7	0.858	0.062	2.0719	
30 minute winter	62	8.002	63	0.3	0.194	0.001	0.0182	
30 minute winter	61	8.001	62	0.3	0.294	0.002	0.0240	
240 minute winter	72	12.000	72_OUT	20.2	1.153	1.141	0.1309	
240 minute winter	68	10.001	69	20.2	0.829	0.055	0.5818	
240 minute winter	69	10.002	69_OUT	20.2	0.821	0.056	0.4930	227.9
30 minute summer	60	8.000	61	0.3	0.080	0.020	0.0476	
30 minute summer	65	9.001	66	0.5	0.134	0.002	0.0369	
30 minute winter	27	2.011	30	66.3	0.857	0.056	0.1205	
15 minute winter	28	3.000	29	1.1	0.363	0.005	0.0530	

Page 24 Tylorstown Phase 4 Receptor site C Proposed drainage

Results for 2 year Critical Storm Duration. Lowest mass balance: 98.13%

24/05/2021

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	29	12	399.764	0.031	1.1	0.0000	0.0000	OK
30 minute winter	48	23	409.839	0.090	39.0	0.0000	0.0000	OK
30 minute winter	49	23	407.947	0.086	39.1	0.0000	0.0000	OK
30 minute winter	50	23	406.023	0.160	39.1	0.0000	0.0000	OK
180 minute winter	71_OUT	128	405.467	0.167	14.2	0.1883	0.0000	OK
240 minute winter	72_OUT	172	396.313	0.128	20.2	0.1442	0.0000	ОК
240 minute winter	67	172	394.876	0.059	20.2	0.0000	0.0000	ОК
30 minute summer	59	21	406.481	0.064	7.1	0.0668	0.0000	OK
30 minute summer	73	19	399.406	0.071	2.1	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	29	3.001	30	1.0	0.361	0.004	0.0450	
30 minute winter	48	5.009	49	39.1	1.684	0.064	0.1499	
30 minute winter	49	5.010	50	39.1	1.171	0.060	0.2994	
30 minute winter	50	5.011	50_OUT	39.0	0.625	0.370	0.1526	
15 minute summer	71_OUT	Weir	70	0.0				0.0
180 minute winter	71_OUT	Orifice	70	14.2				100.1
15 minute summer	72_OUT	Weir	67	0.0				0.0
240 minute winter	72_OUT	Orifice	67	20.2				228.0
240 minute winter	67	10.000	68	20.2	0.832	0.055	0.5208	
30 minute summer	59	7.003	59_OUT	6.1	0.320	0.041	0.5798	
30 minute summer	73	9.005	66 OUT	2.1	0.361	0.011	0.0384	1.6

Jacques Calitz 24/05/2021 Page 25 Tylorstown Phase 4 Receptor site C Proposed drainage

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	11	411.624	0.028	0.5	0.0041	0.0000	ОК
30 minute summer	51	18	411.605	0.033	0.9	0.0088	0.0000	OK
30 minute summer	52	19	411.182	0.040	1.7	0.0097	0.0000	OK
30 minute summer	53	20	410.243	0.045	2.2	0.0077	0.0000	OK
30 minute summer	54	20	409.431	0.048	2.9	0.0139	0.0000	OK
30 minute summer	55	20	408.304	0.050	4.7	0.0373	0.0000	OK
30 minute summer	55_OUT	20	405.859	0.419	4.6	0.0000	0.0000	OK
30 minute winter	39	21	414.344	0.103	8.1	0.3352	0.0000	OK
30 minute winter	40	21	414.197	0.102	16.9	0.3689	0.0000	OK
30 minute winter	41	21	413.846	0.121	25.2	0.4055	0.0000	OK
30 minute winter	42	21	413.171	0.153	50.5	1.5892	0.0000	OK
30 minute winter	43	22	412.485	0.160	61.3	0.7325	0.0000	OK
30 minute winter	44	22	411.710	0.170	74.3	0.9317	0.0000	OK
30 minute winter	45	22	410.909	0.172	74.6	0.0473	0.0000	OK
30 minute winter	46	22	410.247	0.174	75.9	0.0978	0.0000	OK
30 minute winter	47	22	410.045	0.174	75.8	0.0000	0.0000	OK
30 minute winter	50_OUT	23	405.907	0.467	75.6	0.0000	0.0000	OK
30 minute summer	2	20	411.232	0.042	1.0	0.0080	0.0000	OK
15 minute winter	3	12	411.076	0.078	2.8	0.0459	0.0000	OK
30 minute summer	4	20	410.592	0.065	5.0	0.0587	0.0000	OK
30 minute winter	5	22	410.092	0.197	8.8	0.2970	0.0000	OK
30 minute winter	6	21	409.776	0.080	9.4	0.1108	0.0000	OK
30 minute winter	7	21	408.783	0.227	14.2	0.4455	0.0000	OK
30 minute winter	8	24	408.651	0.112	13.1	0.0000	0.0000	OK
60 minute winter	9	39	408.490	0.224	15.0	0.4042	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	1	1.000	2	0.5	0.139	0.003	0.0820	
30 minute summer	51	6.000	52	0.9	0.223	0.005	0.0620	
30 minute summer	52	6.001	53	1.6	0.300	0.007	0.1468	
30 minute summer	53	6.002	54	2.0	0.305	0.011	0.1984	
30 minute summer	54	6.003	55	2.7	0.372	0.012	0.2214	
30 minute summer	55	6.004	55_OUT	4.6	0.611	0.014	0.2050	
15 minute winter	55_OUT	Flow through pond	71	96.2	0.148	0.019	47.3967	
30 minute winter	39	5.000	40	8.0	0.252	0.094	0.8175	
30 minute winter	40	5.001	41	16.9	0.452	0.092	0.5348	
30 minute winter	41	5.002	42	25.0	0.446	0.143	1.6861	
30 minute winter	42	5.003	43	50.1	0.682	0.269	1.8856	
30 minute winter	43	5.004	44	60.9	0.747	0.305	2.0601	
30 minute winter	44	5.005	45	74.0	0.846	0.357	2.0905	
30 minute winter	45	5.006	46	74.6	0.831	0.369	1.8679	
30 minute winter	46	5.007	47	75.8	0.836	0.381	0.5907	
30 minute winter	47	5.008	48	75.8	1.212	0.382	0.2590	
15 minute winter	50_OUT	Flow through pond	71	96.2	0.148	0.019	47.3967	
30 minute summer	2	1.001	3	0.9	0.085	0.009	0.2541	
30 minute summer	3	1.002	4	2.4	0.237	0.015	0.2390	
30 minute summer	4	1.003	5	4.7	0.130	0.028	1.6911	
30 minute winter	5	1.004	6	6.2	0.252	0.070	0.8217	
30 minute winter	6	1.005	7	9.1	0.146	0.048	3.5511	
30 minute winter	7	1.006	8	13.1	0.229	0.439	1.4855	
30 minute winter	8	1.007	9	12.3	0.153	0.117	2.9002	
60 minute winter	9	1.008	10	14.8	0.532	0.048	0.8668	

Jacques Calitz 24/05/2021 Page 26 Tylorstown Phase 4 Receptor site C Proposed drainage

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	10	39	406.151	0.113	18.3	0.2425	0.0000	OK
60 minute winter	11	40	405.721	0.238	19.4	0.2171	0.0000	OK
60 minute winter	12	41	405.398	0.098	20.8	0.1197	0.0000	OK
60 minute winter	13	42	403.445	0.241	21.6	0.1878	0.0000	OK
60 minute winter	14	43	402.924	0.103	21.6	0.0336	0.0000	OK
60 minute winter	15	44	402.351	0.191	21.6	0.0000	0.0000	OK
60 minute winter	15_OUT	44	401.890	0.101	21.5	0.0000	0.0000	OK
30 minute summer	64	18	401.532	0.027	1.0	0.0079	0.0000	OK
30 minute summer	66_OUT	19	399.187	0.052	4.0	0.0000	0.0000	OK
15 minute winter	33	13	407.084	0.068	8.6	0.0000	0.0000	OK
30 minute winter	63	21	399.871	0.037	1.4	0.0141	0.0000	OK
15 minute winter	66	11	399.573	0.059	4.1	0.0363	0.0000	OK
15 minute winter	56	10	407.858	0.076	7.4	0.1639	0.0000	OK
15 minute winter	57	11	407.380	0.089	11.7	0.1178	0.0000	OK
15 minute winter	58	12	407.040	0.067	11.9	0.0000	0.0000	OK
15 minute winter	59_OUT	13	405.867	0.427	12.5	0.0000	0.0000	OK
180 minute winter	71	132	405.566	0.266	36.2	0.0000	0.0000	SURCHARGED
180 minute winter	70	132	404.568	0.068	20.0	0.0000	0.0000	OK
180 minute winter	70_OUT	132	403.303	0.066	20.0	0.0000	0.0000	OK
30 minute winter	25	22	402.016	0.143	129.4	0.0000	0.0000	OK
15 minute winter	32	11	407.245	0.152	9.3	0.4122	0.0000	OK
30 minute summer	34	20	404.955	0.103	15.3	0.2670	0.0000	OK
30 minute winter	35	21	403.939	0.136	22.3	0.4419	0.0000	OK
30 minute winter	36	20	403.323	0.097	26.3	0.2104	0.0000	OK
30 minute winter	37	20	400.688	0.103	30.6	0.1839	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute winter	10	1.009	11	18.0	0.220	0.121	3.3639	
60 minute winter	11	1.010	12	19.2	0.369	0.205	1.4830	
60 minute winter	12	1.011	13	20.6	0.245	0.082	4.3657	
60 minute winter	13	1.012	14	21.3	0.433	0.182	1.8164	
60 minute winter	14	1.013	15	21.6	0.331	0.095	1.1603	
60 minute winter	15	1.014	15_OUT	21.5	0.655	0.104	0.3657	44.7
30 minute summer	64	9.000	65	1.0	0.412	0.003	0.0610	
15 minute winter	33	4.001	34	8.0	0.378	0.031	0.9174	
30 minute winter	63	8.003	66	1.4	0.219	0.006	0.0539	
15 minute winter	66	9.004	73	4.0	0.350	0.021	0.1230	
15 minute winter	56	7.000	57	7.2	0.356	0.041	0.4276	
15 minute winter	57	7.001	58	11.9	0.341	0.094	0.8290	
15 minute winter	58	7.002	59	11.5	0.340	0.072	0.9120	
15 minute winter	59_OUT	Flow through pond	71	96.2	0.148	0.019	47.3967	
180 minute winter	71	13.000	71 OUT	20.0	0.503	0.503	0.1639	
180 minute winter	70	11.000	70_OUT	20.0	0.691	0.072	0.5592	187.2
30 minute winter	25	2.009	26	129.4	2.171	0.221	0.3417	
15 minute winter	32	4.000	33	8.6	0.245	0.152	1.2559	
30 minute summer	34	4.002	35	14.0	0.329	0.093	2.5854	
30 minute winter	35	4.003	36	21.0	0.518	0.148	1.5236	
30 minute winter	36	4.004	37	26.1	0.872	0.080	0.9559	
30 minute winter	37	4.005	38	30.4	0.908	0.093	0.8677	

Jacques Calitz 24/05/2021 Page 27 Tylorstown Phase 4 Receptor site C Proposed drainage

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	38	21	398.555	0.108	33.2	0.1252	0.0000	ОК
30 minute winter	38_OUT	21	396.968	0.700	32.9	0.0000	0.0000	OK
30 minute winter	31 OUT	22	396.770	0.502	136.8	0.3748	0.0000	OK
30 minute winter	16	21	413.863	0.100	15.1	0.6049	0.0000	OK
30 minute winter	17	21	412.782	0.123	28.4	0.6748	0.0000	ОК
30 minute winter	18	22	411.754	0.131	42.0	0.7450	0.0000	OK
30 minute winter	19	22	410.047	0.147	67.6	1.5801	0.0000	OK
30 minute winter	20	22	407.122	0.172	93.9	1.9305	0.0000	OK
30 minute winter	21	22	405.696	0.182	112.8	1.4972	0.0000	OK
30 minute winter	22	22	404.413	0.179	113.0	0.0000	0.0000	OK
30 minute winter	23	22	403.474	0.191	129.7	1.3661	0.0000	OK
30 minute winter	26	22	400.480	0.139	129.4	0.0000	0.0000	OK
30 minute winter	24	22	402.338	0.195	129.6	0.0000	0.0000	OK
30 minute winter	30	22	398.780	0.190	133.4	0.1459	0.0000	OK
30 minute winter	31	23	398.002	0.199	133.2	0.0000	0.0000	OK
30 minute summer	62	21	400.450	0.035	0.8	0.0000	0.0000	OK
30 minute summer	61	19	400.687	0.038	0.6	0.0000	0.0000	OK
240 minute winter	72	176	396.610	0.425	48.5	0.0000	0.0000	SURCHARGED
240 minute winter	68	176	392.472	0.071	29.3	0.0000	0.0000	OK
240 minute winter	69	176	389.711	0.072	29.3	0.0000	0.0000	OK
240 minute winter	69_OUT	176	387.513	0.072	29.3	0.0000	0.0000	OK
15 minute winter	60	11	400.712	0.061	0.7	0.0125	0.0000	OK
30 minute summer	65	19	399.877	0.044	1.0	0.0000	0.0000	OK
30 minute winter	27	22	398.856	0.186	129.3	0.0000	0.0000	OK
15 minute winter	28	10	400.503	0.043	2.1	0.0261	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute winter	38	4.006	38_OUT	32.9	0.934	0.108	0.7320	
15 minute winter	38_OUT	Flow through pond	72	149.1	0.135	0.011	92.4350	
15 minute winter	31_OUT	Flow through pond	72	149.1	0.135	0.011	92.4350	
30 minute winter	16	2.000	17	14.9	0.402	0.086	1.7873	
30 minute winter	17	2.001	18	28.0	0.582	0.150	1.8518	
30 minute winter	18	2.002	19	41.6	0.717	0.177	2.3338	
30 minute winter	19	2.003	20	67.0	0.873	0.245	3.8853	
30 minute winter	20	2.004	21	93.4	0.994	0.371	2.7326	
30 minute winter	21	2.005	22	113.0	1.156	0.424	2.2603	
30 minute winter	22	2.006	23	112.9	1.097	0.414	1.6820	
30 minute winter	23	2.007	24	129.6	1.162	0.488	2.3135	
30 minute winter	26	2.010	27	129.3	2.244	0.209	0.2747	
30 minute winter	24	2.008	25	129.4	1.519	0.485	0.4233	
30 minute winter	30	2.012	31	133.2	0.997	0.115	2.1381	
30 minute winter	31	2.013	31_OUT	132.9	1.015	0.123	3.4358	
30 minute summer	62	8.002	63	0.6	0.222	0.002	0.0351	
30 minute summer	61	8.001	62	0.8	0.276	0.005	0.0432	
240 minute winter	72	12.000	72_OUT	29.3	1.662	1.655	0.1373	
240 minute winter	68	10.001	69	29.3	0.925	0.079	0.7565	
240 minute winter	69	10.002	69_OUT	29.3	0.916	0.082	0.6411	408.2
15 minute winter	60	8.000	61	0.7	0.108	0.045	0.0757	
30 minute summer	65	9.001	66	0.9	0.149	0.004	0.0603	
30 minute winter	27	2.011	30	129.3	1.017	0.109	0.1978	
15 minute winter	28	3.000	29	2.0	0.406	0.009	0.0857	

File: Receptor site C - proposec Network: Storm Network Tylorstov Jacques Calitz Receptor

24/05/2021

Page 28
Tylorstown Phase 4
Receptor site C
Proposed drainage

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	29	11	399.773	0.040	2.0	0.0000	0.0000	OK
30 minute winter	48	22	409.864	0.115	75.8	0.0000	0.0000	OK
30 minute winter	49	22	407.971	0.110	75.7	0.0000	0.0000	OK
30 minute winter	50	22	406.064	0.201	75.7	0.0000	0.0000	OK
180 minute winter	71_OUT	132	405.557	0.257	20.0	0.2901	0.0000	OK
240 minute winter	72_OUT	176	396.348	0.163	29.3	0.1848	0.0000	OK
240 minute winter	67	176	394.889	0.072	29.3	0.0000	0.0000	OK
15 minute winter	59	13	406.507	0.090	14.3	0.0939	0.0000	OK
15 minute winter	73	11	399.435	0.100	4.0	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	29	3.001	30	1.9	0.422	0.007	0.0749	
30 minute winter	48	5.009	49	75.7	1.988	0.124	0.2463	
30 minute winter	49	5.010	50	75.7	1.043	0.116	0.4739	
30 minute winter	50	5.011	50_OUT	75.6	0.746	0.716	0.2467	
15 minute summer	71_OUT	Weir	70	0.0				0.0
180 minute winter	71_OUT	Orifice	70	20.0				187.2
15 minute summer	72_OUT	Weir	67	0.0				0.0
240 minute winter	72_OUT	Orifice	67	29.3				408.5
240 minute winter	67	10.000	68	29.3	0.928	0.080	0.6772	
15 minute winter	59	7.003	59_OUT	12.5	0.404	0.083	0.9325	
30 minute summer	73	9.005	66_OUT	4.0	0.426	0.020	0.0632	3.1

Jacques Calitz 24/05/2021 Page 29 Tylorstown Phase 4 Receptor site C Proposed drainage

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	1	19	411.626	0.031	0.6	0.0044	0.0000	OK
15 minute winter	51	11	411.608	0.037	1.2	0.0097	0.0000	OK
15 minute winter	52	11	411.186	0.044	2.2	0.0107	0.0000	OK
15 minute winter	53	12	410.247	0.050	2.8	0.0086	0.0000	OK
30 minute summer	54	20	409.436	0.053	3.6	0.0153	0.0000	OK
30 minute summer	55	19	408.309	0.055	6.2	0.0413	0.0000	OK
30 minute summer	55_OUT	19	405.861	0.421	6.0	0.0000	0.0000	OK
30 minute winter	39	21	414.355	0.114	10.5	0.3697	0.0000	OK
30 minute winter	40	21	414.208	0.113	22.0	0.4075	0.0000	OK
30 minute winter	41	21	413.858	0.133	32.8	0.4482	0.0000	OK
30 minute winter	42	21	413.187	0.169	65.9	1.7582	0.0000	OK
30 minute winter	43	21	412.502	0.177	80.3	0.8106	0.0000	OK
30 minute winter	44	22	411.728	0.188	97.4	1.0306	0.0000	OK
30 minute winter	45	22	410.927	0.190	97.7	0.0524	0.0000	OK
30 minute winter	46	22	410.266	0.193	99.5	0.1084	0.0000	OK
30 minute winter	47	22	410.062	0.191	99.5	0.0000	0.0000	OK
30 minute winter	50_OUT	22	405.919	0.478	99.4	0.0000	0.0000	OK
15 minute winter	2	12	411.237	0.046	1.4	0.0089	0.0000	OK
30 minute summer	3	20	411.090	0.092	3.6	0.0539	0.0000	OK
30 minute summer	4	20	410.599	0.072	6.5	0.0653	0.0000	OK
30 minute winter	5	20	410.112	0.217	11.6	0.3269	0.0000	OK
30 minute winter	6	22	409.788	0.092	13.7	0.1277	0.0000	OK
30 minute winter	7	21	408.794	0.238	18.5	0.4667	0.0000	OK
30 minute winter	8	23	408.667	0.128	18.3	0.0000	0.0000	OK
30 minute winter	9	23	408.503	0.237	21.2	0.4272	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	1	1.000	2	0.6	0.138	0.004	0.0990	
15 minute winter	51	6.000	52	1.1	0.237	0.006	0.0768	
15 minute winter	52	6.001	53	2.1	0.332	0.010	0.1783	
15 minute winter	53	6.002	54	2.6	0.326	0.014	0.2414	
30 minute summer	54	6.003	55	3.4	0.393	0.016	0.2693	
30 minute summer	55	6.004	55_OUT	6.0	0.654	0.018	0.2514	
15 minute winter	55_OUT	Flow through pond	71	122.0	0.163	0.024	61.4876	
30 minute winter	39	5.000	40	10.4	0.269	0.122	0.9960	
30 minute winter	40	5.001	41	22.0	0.483	0.121	0.6529	
30 minute winter	41	5.002	42	32.6	0.476	0.187	2.0621	
30 minute winter	42	5.003	43	65.6	0.729	0.353	2.3105	
30 minute winter	43	5.004	44	79.8	0.799	0.400	2.5196	
30 minute winter	44	5.005	45	96.9	0.906	0.467	2.5594	
30 minute winter	45	5.006	46	97.8	0.888	0.484	2.2903	
30 minute winter	46	5.007	47	99.5	0.900	0.499	0.7203	
30 minute winter	47	5.008	48	99.5	1.307	0.502	0.3149	
15 minute winter	50_OUT	Flow through pond	71	122.0	0.163	0.024	61.4876	
15 minute winter	2	1.001	3	1.2	0.085	0.011	0.3363	
30 minute summer	3	1.002	4	3.2	0.254	0.020	0.2957	
30 minute summer	4	1.003	5	6.2	0.129	0.037	2.1874	
30 minute winter	5	1.004	6	10.0	0.286	0.113	1.1641	
30 minute winter	6	1.005	7	13.2	0.162	0.070	3.9801	
30 minute winter	7	1.006	8	18.3	0.251	0.611	1.8820	
30 minute winter	8	1.007	9	17.7	0.177	0.167	3.3957	
30 minute winter	9	1.008	10	21.0	0.587	0.068	1.0999	

Jacques Calitz 24/05/2021 Page 30 Tylorstown Phase 4 Receptor site C Proposed drainage

Results for 100 year Critical Storm Duration. Lowest mass balance: 98.13%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
60 minute summer	10	38	406.166	0.128	25.4	0.2744	0.0000	OK
60 minute winter	11	37	405.733	0.250	27.0	0.2283	0.1481	FLOOD
60 minute winter	12	39	405.411	0.111	28.9	0.1355	0.0000	OK
60 minute winter	13	37	403.454	0.250	30.4	0.1950	1.1572	FLOOD
60 minute winter	14	39	402.934	0.113	27.5	0.0368	0.0000	OK
60 minute winter	15	40	402.361	0.201	27.5	0.0000	0.0000	OK
60 minute winter	15_OUT	40	401.900	0.111	27.4	0.0000	0.0000	OK
15 minute winter	64	10	401.535	0.030	1.3	0.0087	0.0000	OK
30 minute summer	66_OUT	20	399.192	0.057	5.2	0.0000	0.0000	OK
15 minute winter	33	12	407.092	0.075	11.3	0.0000	0.0000	OK
30 minute winter	63	19	399.877	0.043	2.1	0.0162	0.0000	OK
30 minute summer	66	19	399.579	0.065	5.4	0.0405	0.0000	OK
15 minute winter	56	10	407.865	0.083	9.5	0.1802	0.0000	OK
15 minute winter	57	11	407.391	0.100	15.1	0.1330	0.0000	OK
15 minute winter	58	12	407.050	0.077	15.2	0.0000	0.0000	OK
30 minute summer	59_OUT	20	405.871	0.431	16.6	0.0000	0.0000	OK
180 minute winter	71	136	405.631	0.331	38.8	0.0000	0.0000	SURCHARGED
180 minute winter	70	136	404.573	0.073	23.1	0.0000	0.0000	OK
180 minute winter	70_OUT	136	403.309	0.072	23.1	0.0000	0.0000	OK
30 minute winter	25	22	402.031	0.158	170.3	0.0000	0.0000	OK
15 minute winter	32	11	407.259	0.166	11.9	0.4487	0.0000	OK
30 minute summer	34	20	404.967	0.115	20.3	0.2984	0.0000	OK
30 minute summer	35	20	403.954	0.151	30.7	0.4915	0.0000	OK
30 minute summer	36	20	403.335	0.109	35.5	0.2356	0.0000	OK
30 minute summer	37	20	400.700	0.115	41.0	0.2059	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute summer	10	1.009	11	25.0	0.233	0.169	3.8269	
60 minute winter	11	1.010	12	26.1	0.401	0.279	1.8512	
60 minute winter	12	1.011	13	28.7	0.293	0.115	4.8355	
60 minute winter	13	1.012	14	26.8	0.462	0.228	2.1361	
60 minute winter	14	1.013	15	27.5	0.371	0.121	1.3078	
60 minute winter	15	1.014	15_OUT	27.4	0.693	0.133	0.4398	57.4
45			6.5	4.0	0.400	0.000	0.0760	
15 minute winter	64	9.000	65	1.3	0.483	0.003	0.0760	
15 minute winter	33	4.001	34	10.7	0.402	0.041	1.1328	
30 minute winter	63	8.003	66	2.0	0.235	0.009	0.0704	
30 minute summer	66	9.004	73	5.4	0.320	0.028	0.1874	
15 minute winter	56	7.000	57	9.2	0.368	0.053	0.5329	
15 minute winter	57	7.001	58	15.2	0.367	0.121	0.9902	
15 minute winter	58	7.002	59	14.7	0.360	0.092	1.0911	
15 minute winter	59_OUT	Flow through pond	71	122.0	0.163	0.024	61.4876	
180 minute winter	71	13.000	71_OUT	23.1	0.582	0.582	0.1639	
180 minute winter	70	11.000	70_OUT	23.1	0.719	0.083	0.6217	243.1
20 minuto wintor	25	2.000	26	170.2	2 226	0.201	0.4100	
30 minute winter	25	2.009	26	170.3	2.326	0.291	0.4199	
15 minute winter	32	4.000	33	11.3	0.265	0.199	1.5065	
30 minute summer	34	4.002	35	18.8	0.355	0.125	3.2233	
30 minute summer	35	4.003	36	28.4	0.562	0.200	1.8956	
30 minute summer	36	4.004	37	35.3	0.941	0.108	1.1983	
30 minute summer	37	4.005	38	41.0	0.977	0.126	1.0892	

Jacques Calitz 24/05/2021 Page 31
Tylorstown Phase 4
Receptor site C
Proposed drainage

Results for 100 year Critical Storm Duration. Lowest mass balance: 98.13%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	38	20	398.568	0.122	44.6	0.1403	0.0000	OK
30 minute summer	38 OUT	20	396.976	0.707	44.6	0.0000	0.0000	OK
30 minute winter	31 OUT	22	396.787	0.519	180.8	0.3877	0.0000	OK
30 minute winter	16	21	413.873	0.110	19.7	0.6685	0.0000	OK
30 minute winter	17	21	412.795	0.136	37.2	0.7470	0.0000	OK
30 minute winter	18	22	411.768	0.145	55.0	0.8243	0.0000	OK
30 minute winter	19	22	410.063	0.163	88.7	1.7491	0.0000	OK
30 minute winter	20	22	407.141	0.191	123.5	2.1380	0.0000	OK
30 minute winter	21	22	405.715	0.201	148.4	1.6578	0.0000	OK
30 minute winter	22	22	404.432	0.199	148.3	0.0000	0.0000	OK
30 minute winter	23	22	403.495	0.212	170.3	1.5137	0.0000	OK
30 minute winter	26	22	400.496	0.154	170.3	0.0000	0.0000	OK
30 minute winter	24	22	402.358	0.215	170.3	0.0000	0.0000	OK
30 minute winter	30	22	398.806	0.216	175.5	0.1661	0.0000	OK
30 minute winter	31	22	398.029	0.226	175.5	0.0000	0.0000	OK
30 minute summer	62	20	400.455	0.040	1.0	0.0000	0.0000	OK
15 minute winter	61	12	400.690	0.041	0.9	0.0000	0.0000	OK
240 minute winter	72	180	396.726	0.541	60.8	0.0000	0.0000	SURCHARGED
240 minute winter	68	180	392.478	0.077	34.2	0.0000	0.0000	OK
240 minute winter	69	180	389.717	0.078	34.2	0.0000	0.0000	OK
240 minute winter	69_OUT	180	387.519	0.078	34.2	0.0000	0.0000	OK
15 minute summer	60	11	400.716	0.065	0.9	0.0132	0.0000	OK
15 minute winter	65	12	399.882	0.049	1.3	0.0000	0.0000	OK
30 minute winter	27	22	398.882	0.212	170.2	0.0000	0.0000	OK
15 minute winter	28	10	400.508	0.048	2.7	0.0287	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	38	4.006	38_OUT	44.6	1.007	0.146	0.9196	
15 minute winter	38_OUT	Flow through pond	72	185.5	0.145	0.013	121.4157	
15 minute winter	31_OUT	Flow through pond	72	185.5	0.145	0.013	121.4157	
30 minute winter	16	2.000	17	19.5	0.429	0.113	2.1876	
30 minute winter	17	2.001	18	36.7	0.622	0.197	2.2672	
30 minute winter	18	2.002	19	54.4	0.767	0.232	2.8586	
30 minute winter	19	2.003	20	87.8	0.934	0.321	4.7636	
30 minute winter	20	2.004	21	122.7	1.065	0.488	3.3509	
30 minute winter	21	2.005	22	148.3	1.237	0.557	2.7729	
30 minute winter	22	2.006	23	148.4	1.174	0.544	2.0649	
30 minute winter	23	2.007	24	170.3	1.248	0.642	2.8315	
30 minute winter	26	2.010	27	170.2	2.404	0.276	0.3377	
30 minute winter	24	2.008	25	170.3	1.633	0.638	0.5177	
30 minute winter	30	2.012	31	175.5	1.072	0.151	2.6196	
30 minute winter	31	2.013	31_OUT	174.5	1.085	0.161	4.2204	
30 minute summer	62	8.002	63	0.8	0.231	0.003	0.0449	
30 minute summer	61	8.001	62	1.0	0.325	0.006	0.0542	
240 minute winter	72	12.000	72_OUT	34.2	1.945	1.938	0.1373	
240 minute winter	68	10.001	69	34.2	0.967	0.093	0.8464	
240 minute winter	69	10.002	69_OUT	34.2	0.958	0.095	0.7173	522.5
15 minute winter	60	8.000	61	0.9	0.111	0.054	0.0879	
15 minute winter	65	9.001	66	1.1	0.157	0.005	0.0730	
30 minute winter	27	2.011	30	170.2	1.091	0.143	0.2427	
15 minute winter	28	3.000	29	2.6	0.432	0.011	0.1043	

Jacques Calitz 24/05/2021 Page 32 Tylorstown Phase 4 Receptor site C Proposed drainage

Results for 100 year Critical Storm Duration. Lowest mass balance: 98.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	29	11	399.777	0.044	2.6	0.0000	0.0000	OK
30 minute winter	48	22	409.877	0.127	99.5	0.0000	0.0000	OK
30 minute winter	49	22	407.983	0.122	99.5	0.0000	0.0000	OK
30 minute winter	50	22	406.084	0.220	99.4	0.0000	0.0000	OK
180 minute winter	71_OUT	136	405.618	0.318	23.1	0.3594	0.0000	OK
240 minute winter	72_OUT	180	396.367	0.181	34.2	0.2053	0.0000	OK
240 minute winter	67	180	394.895	0.078	34.2	0.0000	0.0000	OK
30 minute summer	59	20	406.520	0.103	18.2	0.1074	0.0000	OK
30 minute summer	73	20	399.463	0.128	5.4	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	29	3.001	30	2.6	0.449	0.010	0.0922	
30 minute winter	48	5.009	49	99.5	2.128	0.163	0.3022	
30 minute winter	49	5.010	50	99.4	1.129	0.153	0.5741	
30 minute winter	50	5.011	50_OUT	99.4	0.801	0.942	0.3016	
15 minute summer	71_OUT	Weir	70	0.0				0.0
180 minute winter	71_OUT	Orifice	70	23.1				243.2
15 minute summer	72_OUT	Weir	67	0.0				0.0
240 minute winter	72_OUT	Orifice	67	34.2				522.9
240 minute winter	67	10.000	68	34.2	0.971	0.094	0.7576	
30 minute summer	59	7.003	59_OUT	16.6	0.442	0.110	1.1342	
30 minute summer	73	9.005	66 OUT	5.2	0.453	0.026	0.0766	4.0

Jacques Calitz 24/05/2021

Page 33
Tylorstown Phase 4
Receptor site C
Proposed drainage

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
30 minute summer	1	18	411.631	0.036	0.9	0.0051	0.0000	OK
30 minute summer	51	18	411.613	0.042	1.6	0.0110	0.0000	OK
15 minute winter	52	11	411.192	0.050	3.0	0.0121	0.0000	OK
15 minute winter	53	12	410.254	0.057	3.9	0.0098	0.0000	OK
30 minute summer	54	20	409.444	0.061	5.2	0.0176	0.0000	OK
30 minute summer	55	19	408.318	0.063	8.9	0.0474	0.0000	OK
30 minute summer	55_OUT	19	405.864	0.423	8.7	0.0000	0.0000	OK
30 minute winter	39	21	414.370	0.129	14.8	0.4196	0.0000	OK
30 minute winter	40	21	414.223	0.128	30.9	0.4627	0.0000	OK
30 minute winter	41	21	413.876	0.151	45.9	0.5092	0.0000	OK
30 minute winter	42	21	413.210	0.192	92.5	1.9982	0.0000	OK
30 minute winter	43	21	412.527	0.201	112.8	0.9216	0.0000	OK
30 minute winter	44	21	411.754	0.213	136.9	1.1714	0.0000	OK
30 minute winter	45	22	410.953	0.216	137.5	0.0595	0.0000	OK
30 minute winter	46	22	410.292	0.219	139.9	0.1231	0.0000	OK
30 minute winter	47	22	410.087	0.215	140.0	0.0000	0.0000	OK
30 minute winter	50_OUT	22	405.936	0.496	140.0	0.0000	0.0000	OK
30 minute summer	2	19	411.243	0.053	2.0	0.0102	0.0000	OK
30 minute summer	3	20	411.110	0.111	5.1	0.0653	0.0000	OK
30 minute summer	4	19	410.610	0.083	9.5	0.0751	0.0000	OK
30 minute summer	5	19	410.127	0.231	17.4	0.3491	0.0000	OK
30 minute winter	6	21	409.806	0.110	22.0	0.1525	0.0000	OK
30 minute winter	7	19	408.806	0.250	29.7	0.4905	0.9857	FLOOD
60 minute summer	8	38	408.683	0.144	24.5	0.0000	0.0000	OK
60 minute winter	9	35	408.516	0.250	30.3	0.4510	0.3795	FLOOD

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	1	1.000	2	0.9	0.151	0.006	0.1317	
30 minute summer	51	6.000	52	1.6	0.255	0.008	0.0969	
15 minute winter	52	6.001	53	2.9	0.352	0.014	0.2303	
15 minute winter	53	6.002	54	3.7	0.353	0.020	0.3167	
30 minute summer	54	6.003	55	5.0	0.434	0.023	0.3544	
30 minute summer	55	6.004	55_OUT	8.7	0.717	0.026	0.3312	
15 minute winter	55_OUT	Flow through pond	71	172.5	0.185	0.034	88.1130	
30 minute winter	39	5.000	40	14.6	0.293	0.172	1.2834	
30 minute winter	40	5.001	41	30.8	0.525	0.169	0.8423	
30 minute winter	41	5.002	42	45.8	0.518	0.262	2.6630	
30 minute winter	42	5.003	43	92.3	0.794	0.496	2.9857	
30 minute winter	43	5.004	44	112.3	0.870	0.563	3.2588	
30 minute winter	44	5.005	45	136.3	0.986	0.657	3.3015	
30 minute winter	45	5.006	46	137.5	0.967	0.680	2.9567	
30 minute winter	46	5.007	47	140.0	0.988	0.703	0.9229	
30 minute winter	47	5.008	48	140.0	1.438	0.707	0.4024	
15 minute winter	50_OUT	Flow through pond	71	172.5	0.185	0.034	88.1130	
30 minute summer	2	1.001	3	1.7	0.086	0.016	0.4917	
30 minute summer	3	1.002	4	4.5	0.279	0.028	0.3855	
30 minute summer	4	1.003	5	9.0	0.129	0.053	2.5551	
30 minute winter	5	1.004	6	15.7	0.323	0.178	1.6262	
30 minute winter	6	1.005	7	21.3	0.219	0.113	4.5735	
15 minute winter	7	1.006	8	24.6	0.290	0.823	2.2856	
60 minute summer	8	1.007	9	24.4	0.210	0.231	3.9065	
60 minute summer	9	1.008	10	28.7	0.627	0.093	1.4661	

File: Receptor site C - proposec

Network: Storm Network Jacques Calitz 24/05/2021 Page 34 Tylorstown Phase 4 Receptor site C Proposed drainage

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.13%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute summer	10	36	406.187	0.148	37.7	0.3177	0.0000	OK
60 minute winter	11	31	405.733	0.250	39.6	0.2283	8.1962	FLOOD
60 minute summer	12	35	405.415	0.115	32.0	0.1405	0.0000	OK
120 minute winter	13	60	403.454	0.250	31.7	0.1950	4.8564	FLOOD
60 minute summer	14	35	402.935	0.114	28.4	0.0372	0.0000	OK
60 minute summer	15	35	402.362	0.202	28.3	0.0000	0.0000	OK
60 minute summer	15_OUT	36	401.902	0.112	28.2	0.0000	0.0000	OK
15 minute winter	64	10	401.539	0.034	1.8	0.0098	0.0000	OK
30 minute summer	66_OUT	20	399.200	0.065	7.3	0.0000	0.0000	OK
15 minute winter	33	12	407.103	0.087	16.0	0.0000	0.0000	OK
30 minute summer	63	19	399.884	0.049	3.1	0.0188	0.0000	OK
30 minute summer	66	19	399.590	0.076	8.1	0.0471	0.0000	OK
15 minute winter	56	10	407.877	0.095	13.3	0.2046	0.0000	OK
15 minute winter	57	11	407.408	0.117	21.1	0.1562	0.0000	OK
15 minute winter	58	12	407.065	0.092	21.3	0.0000	0.0000	OK
30 minute summer	59_OUT	20	405.877	0.437	24.1	0.0000	0.0000	OK
180 minute winter	71	136	405.748	0.448	52.3	0.0000	0.0000	SURCHARGED
180 minute winter	70	136	404.581	0.081	27.9	0.0000	0.0000	OK
180 minute winter	70_OUT	136	403.317	0.080	27.9	0.0000	0.0000	OK
30 minute winter	25	22	402.053	0.180	240.1	0.0000	0.0000	OK
15 minute winter	32	11	407.278	0.185	16.7	0.5023	0.0000	OK
30 minute summer	34	20	404.984	0.132	29.0	0.3424	0.0000	OK
30 minute summer	35	20	403.976	0.173	44.2	0.5619	0.0000	OK
30 minute summer	36	20	403.351	0.125	51.9	0.2715	0.0000	OK
30 minute summer	37	20	400.717	0.132	60.1	0.2371	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute summer	10	1.009	11	37.0	0.310	0.249	4.0989	
60 minute winter	11	1.010	12	26.3	0.401	0.281	1.8570	
60 minute summer	12	1.011	13	31.5	0.316	0.126	4.8952	
15 minute winter	13	1.012	14	27.0	0.465	0.230	2.1452	
60 minute summer	14	1.013	15	28.3	0.375	0.124	1.3268	
60 minute summer	15	1.014	15_OUT	28.2	0.697	0.136	0.4489	62.7
15 minute winter	64	9.000	65	1.8	0.513	0.005	0.1096	
13 miliate winter	0 1	3.000	03	1.0	0.515	0.003	0.1050	
15 minute winter	33	4.001	34	15.4	0.433	0.059	1.5144	
30 minute summer	63	8.003	66	3.1	0.260	0.013	0.0954	
30 minute summer	66	9.004	73	8.1	0.342	0.042	0.4030	
15 minute winter	56	7.000	57	12.9	0.386	0.075	0.7137	
15 minute winter	57	7.001	58	21.3	0.403	0.169	1.2561	
15 minute winter	58	7.002	59	20.6	0.390	0.129	1.4014	
15 minute winter	59_OUT	Flow through pond	71	172.5	0.185	0.034	88.1130	
180 minute winter	71	13.000	71_OUT	28.0	0.703	0.703	0.1639	
180 minute winter	70	11.000	70_OUT	27.9	0.756	0.101	0.7137	341.7
30 minute winter	25	2.009	26	240.1	2.535	0.411	0.5434	
15 minute winter	32	4.000	33	16.0	0.293	0.283	1.9138	
30 minute summer	34	4.002	35	27.1	0.391	0.181	4.2237	
30 minute summer	35	4.003	36	41.6	0.625	0.292	2.4906	
30 minute summer	36	4.004	37	51.4	1.034	0.158	1.5902	
30 minute summer	37	4.005	38	59.8	1.074	0.184	1.4451	

File: Receptor site C - proposec

Network: Storm Network Jacques Calitz 24/05/2021 Page 35 Tylorstown Phase 4 Receptor site C Proposed drainage

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.13%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	38	20	398.586	0.140	65.1	0.1616	0.0000	OK
30 minute summer	38_OUT	20	396.987	0.719	65.1	0.0000	0.0000	OK
240 minute winter	31_OUT	184	396.931	0.662	106.3	0.4946	0.0000	OK
30 minute winter	16	21	413.888	0.125	27.6	0.7591	0.0000	OK
30 minute winter	17	21	412.814	0.155	52.1	0.8489	0.0000	OK
30 minute winter	18	21	411.787	0.164	77.2	0.9368	0.0000	OK
30 minute winter	19	21	410.085	0.185	124.7	1.9879	0.0000	OK
30 minute winter	20	22	407.167	0.217	173.8	2.4292	0.0000	OK
30 minute winter	21	21	405.743	0.228	209.3	1.8837	0.0000	OK
30 minute winter	22	22	404.459	0.226	208.6	0.0000	0.0000	OK
30 minute winter	23	22	403.524	0.241	239.6	1.7213	0.0000	OK
30 minute winter	26	22	400.517	0.176	240.1	0.0000	0.0000	OK
30 minute winter	24	22	402.386	0.243	240.0	0.0000	0.0000	OK
30 minute winter	30	22	398.843	0.253	247.4	0.1948	0.0000	OK
30 minute winter	31	22	398.067	0.264	247.6	0.0000	0.0000	OK
15 minute winter	62	13	400.464	0.048	1.5	0.0000	0.0000	OK
15 minute winter	61	11	400.695	0.046	1.3	0.0000	0.0000	OK
240 minute winter	72	184	396.929	0.744	82.5	0.0000	0.0000	FLOOD RISK
240 minute winter	68	184	392.487	0.086	41.8	0.0000	0.0000	OK
240 minute winter	69	184	389.726	0.087	41.8	0.0000	0.0000	OK
240 minute winter	69_OUT	184	387.528	0.087	41.8	0.0000	0.0000	OK
15 minute winter	60	11	400.724	0.073	1.3	0.0148	0.0000	OK
15 minute winter	65	12	399.893	0.060	1.8	0.0000	0.0000	OK
30 minute winter	27	22	398.919	0.249	240.2	0.0000	0.0000	OK
15 minute winter	28	10	400.514	0.054	3.7	0.0323	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
30 minute summer	38	4.006	38_OUT	65.1	1.107	0.213	1.2203	, ,
15 minute winter	38_OUT	Flow through pond	72	244.9	0.158	0.018	174.5248	
15 minute winter	31_OUT	Flow through pond	72	244.9	0.158	0.018	174.5248	
30 minute winter	16	2.000	17	27.3	0.467	0.158	2.8234	
30 minute winter	17	2.001	18	51.6	0.676	0.278	2.9303	
30 minute winter	18	2.002	19	76.6	0.835	0.326	3.6922	
30 minute winter	19	2.003	20	123.6	1.018	0.451	6.1486	
30 minute winter	20	2.004	21	172.5	1.159	0.686	4.3260	
30 minute winter	21	2.005	22	208.6	1.348	0.783	3.5819	
30 minute winter	22	2.006	23	208.9	1.278	0.765	2.6696	
30 minute winter	23	2.007	24	240.0	1.366	0.905	3.6458	
30 minute winter	26	2.010	27	240.2	2.620	0.389	0.4371	
30 minute winter	24	2.008	25	240.1	1.789	0.899	0.6659	
30 minute winter	30	2.012	31	247.6	1.173	0.213	3.3797	
30 minute winter	31	2.013	31_OUT	247.1	1.179	0.228	5.4938	
15 minute winter	62	8.002	63	1.1	0.255	0.004	0.0555	
15 minute winter	61	8.001	62	1.5	0.259	0.009	0.0730	
240 minute winter	72	12.000	72_OUT	41.8	2.375	2.366	0.1373	
240 minute winter	68	10.001	69	41.8	1.024	0.113	0.9765	
240 minute winter	69	10.002	69_OUT	41.8	1.014	0.117	0.8276	715.5
15 minute winter	60	8.000	61	1.3	0.124	0.080	0.1141	
15 minute winter	65	9.001	66	1.6	0.168	0.008	0.0949	
30 minute winter	27	2.011	30	240.2	1.191	0.202	0.3139	
15 minute winter	28	3.000	29	3.6	0.468	0.016	0.1330	

File: Receptor site C - proposec Network: Storm Network Jacques Calitz Page 36 Tylorstown Phase 4 Receptor site C Proposed drainage

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.13%

24/05/2021

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	29	11	399.783	0.050	3.6	0.0000	0.0000	OK
30 minute winter	48	22	409.894	0.145	140.0	0.0000	0.0000	OK
30 minute winter	49	22	408.000	0.139	140.0	0.0000	0.0000	OK
30 minute winter	50	22	406.111	0.248	140.0	0.0000	0.0000	OK
180 minute winter	71_OUT	136	405.729	0.429	28.0	0.4852	0.0000	OK
240 minute winter	72_OUT	184	396.392	0.207	41.8	0.2345	0.0000	OK
240 minute winter	67	184	394.904	0.087	41.8	0.0000	0.0000	OK
30 minute summer	59	20	406.540	0.123	25.9	0.1275	0.0000	OK
30 minute summer	73	20	399.531	0.196	8.1	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	29	3.001	30	3.6	0.485	0.013	0.1191	
30 minute winter	48	5.009	49	140.0	2.318	0.229	0.3906	
30 minute winter	49	5.010	50	140.0	1.245	0.215	0.7312	
30 minute winter	50	5.011	50_OUT	140.0	0.875	1.327	0.3884	
15 minute summer	71_OUT	Weir	70	0.0				0.0
180 minute winter	71_OUT	Orifice	70	27.9				341.8
15 minute summer	72_OUT	Weir	67	0.0				0.0
240 minute winter	72_OUT	Orifice	67	41.8				716.4
240 minute winter	67	10.000	68	41.8	1.028	0.115	0.8740	
30 minute summer	59	7.003	59_OUT	24.1	0.496	0.160	1.4654	
30 minute summer	73	9.005	66 OUT	7.3	0.492	0.037	0.0989	5.6

Tylorstown Phase 4

Schedule of maintenance 24 May 2021

GENERAL DISCLAIMER:

This report has been prepared by Redstart in favour of Rhondda Cynon Taf County Borough Council ("the Client") and is for the sole use and benefit of the Client in accordance with the agreement between the Client and Redstart dated November 2018 under which Redstart's services were performed. Other than in respect of liability which cannot be excluded by law, Redstart accepts no liability to any other party in respect of the contents of this report. This report is confidential and may not be disclosed by the Client or relied on by any other party without the express prior written consent of Redstart.

Whilst care has been taken in the construction of this report, the conclusions and recommendations which it contains are based upon information provided by third parties ("Third Party Information"). Redstart has for the purposes of this report relied upon and assumed that the Third Party Information is accurate and complete and has not independently verified such information for the purposes of this report. Redstart makes no representation, warranty or undertaking (express or implied) in the context of the Third Party Information and no responsibility is taken or accepted by Redstart for the adequacy, completeness or accuracy of the report in the context of the Third Party Information on which it is based.

FREEDOM OF INFORMATION:

Redstart understands and acknowledges the Authority's legal obligations and responsibilities under the Freedom of Information Act 2000 (the "Act") and fully appreciates that the Authority may be required under the terms of the Act to disclose any information which it holds. Redstart maintains that the report contains commercially sensitive information that could be prejudicial to the commercial interests of the parties. On this basis Redstart believes that the report should attract exemption from disclosure, at least in the first instance, under Sections 41 and/or 43 of the Act. Redstart accepts that the damage which it would suffer in the event of disclosure of certain of the confidential information would, to some extent, reduce with the passage of time and therefore proposes that any disclosure (pursuant to the Act) of the confidential information contained in the report should be restricted until after the expiry of 24 months from the date of the report.

1. Schedules of Maintenance

1.1 Introduction

The maintenance of drainage and SuDS features is vital ensuring that they work as efficiently as they set out to do. Maintenance activities can be broadly defined as:

- Regular maintenance basic tasks carried out regularly
- Occasional maintenance tasks that are required periodically but on a much less frequent basis
- Remedial maintenance tasks required when a fault needs rectifying and often includes unforeseen events

This section highlights the maintenance requirements for the proposed drainage system and components. During construction the contractor will be responsible for the maintenance of the drainage system. Upon completion of the construction work that responsibility would pass to RCT.

This section will be subject to review following detailed design.

1.2 Gullies, catchpits, manholes, sewers

Stormwater gullies, manholes and sewers, and catchpits are located across the site, and are the principle means of collecting and conveying stormwater runoff to the discharge point.

The responsibility for the operation and maintenance of the stormwater drainage infrastructure will be with the owner/occupier of the site. Table 1.1 provides guidance on the type of operational and maintenance requirements that may be appropriate. The list of actions is not exhaustive and some actions may not always be required.

Maintenance Schedule

Table 1.1: Operation and Maintenance Requirements for Below Ground Drainage

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Remove litter and debris	Monthly (or as required)
	Monitoring	Inspect monthly
Occasional maintenance	Sediment management	As required
Remedial maintenance	Structure rehabilitation/repair	As required

Regular maintenance should be undertaken to ensure the performance of the system remains at a satisfactory level, and operates as intended/designed. Regular maintenance of stormwater infrastructure generally involves inspection/monitoring, and the removal of the sediments, litter and debris.

Monthly inspections/monitoring of stormwater infrastructure should be undertaken to determine silt accumulation rates and establish appropriate removal frequencies. Removal of silt build up from inlets/sumps should be undertaken as necessary.

All litter and debris should be removed from the stormwater infrastructure, and should be undertaken as part of general maintenance. Removal of litter and debris should be undertaken from the surface without the requirement for entry into confined spaces. If entry into confined spaces is required, a suitably qualified specialist should be engaged to undertake the works.

Occasional maintenance of stormwater devices generally involves the removal of sediment that has accumulated over time within the device. Gullies, catch pits, and other collection points should be cleaned out when necessary to prevent the re-entry of sediments into the downstream system, and maintain the overall long term performance of the drainage system. Cleaning can be undertaken by vacuum pumping, whereby sediment is vacuumed from the device and transferred to a tanker to be carried off site to an approved dumping location. Most suppliers recommend that cleaning operations be undertaken every 6 months.

If defects are found in the drainage infrastructure which are affecting or may affect the performance of the system, the defects should be remedied immediately. Remedial maintenance to manholes, catch pits headwalls, sewer or other drainage infrastructure may be able to undertaken using hand tools, but depending upon the nature and severity of the maintenance required, light machinery and hydraulic excavating machinery may be required.

Remedial maintenance for stormwater devices includes repairing access covers and frames and cover and frame seating, and replacing sections of sewer, or other infrastructure that has failed.

Construction

During construction the principal contractor must ensure that preventative measures have been put in place as to not allow the construction runoff drain into the system. Measures must be taken to ensure debris from the construction site does not block the components. Routine inspections should be undertaken ensuring that the drainage is functioning properly. Outfalls must be constructed to the correct level and all joints must be correctly sealed. During construction backfill should be correctly installed as specified as per the manufactures' recommendations.

1.3 Swales

Construction

Construction vehicles and equipment not directly involved in the construction of the rills and swales should be kept away from these areas. Excavations for the swales should aim to be undertaken in times of dry weather, when possible, to prevent mobilisation of sediments from exposed surfaces. Exposed surfaces after rill or swale excavations should be stabilised as soon as possible with grass seed and straw mulch. Perimeter controls should be installed prior to construction to protect watercourses.

Maintenance Schedule

Table 1.2 below shows the operation and maintenance requirements for the swale, taken from the CIRIA C753 SuDS Manual.

Table 1.2: Operation and maintenance requirements for swales (CIRIA C753, 2015)

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Remove litter and debris	Monthly, or as required
	Cut grass - to retain grass height within specified design range	Monthly (during growing season), or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets for silt accumulation, establish appropriate silt removal frequencies	Half yearly
	Inspect check dams for blockages and failure.	Half yearly
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swale treatment area
Remedial actions	Repair erosion or other damage by re-turfing or reseeding	As required
	Relevel uneven surfaces and reinstate design levels	As required
	Remove and dispose of oils or petrol residues using safe standard practices	As required

1.4 Detention/attenuation ponds

Construction

Construction vehicles and equipment not directly involved in the construction of the detention/attenuation ponds will be kept away from these areas. Silt fences, staged excavation works and temporary drainage swales/bunds to divert runoff away from exposed areas will be utilised, as appropriate, to manage the risks associated with, and to intercept the discharge of, sediment laden runoff prior to its discharge to nearby watercourses. Excavations for the detention/attenuation pond should aim to be undertaken in times of dry weather when possible, to prevent mobilisation of sediments, during rainfall events. Surfaces exposed as part of the detention/attenuation pond construction should be stabilised as soon as possible, by the use of hydroseeding or an alternative approved approach. Perimeter controls should be installed prior

to construction to protect watercourses. Perimeter controls should be installed prior to construction to protect watercourses.

Maintenance Schedule

Table 1.3 shows the operation and maintenance requirements for the detention/attenuation ponds, taken from the CIRIA C753 SuDS Manual.

Table 1.3: Operation and maintenance requirements for detention/attenuation ponds (CIRIA C753, 2015)

Maintenance Schedule	Required Action	Typical frequency		
Regular	Remove litter and debris	Monthly (or as required)		
maintenance	Cut the grass - public areas	Monthly (during growing season)		
	Cut the meadow grass	Half yearly (spring, before nesting season, and autumn)		
	Inspect marginal and bankside vegetation and remove nuisance plants (for first 3 years)	Monthly (at start, then as required)		
	Inspect inlets, outlets, banksides, structures, pipework etc. for evidence of blockage and/or physical damage	Monthly		
	Inspect silt accumulation rates in the detention basin and establish appropriate removal frequencies; undertake contamination testing once some build-up has occurred, to inform management and disposal options	Half yearly		
	Check any mechanical devices, e.g. penstocks	Half yearly		
	Tidy all dead growth (scrub clearance) before start of growing season (Note: tree maintenance is usually part of overall landscape management contract)	Annually		
	Remove sediment from any forebay.	Every 1-5 years, or as required		
	Remove sediment and planting from one quadrant of the main body of detention/attenuation ponds without sediment forebays.	Every 5 years, or as required		
Occasional maintenance	Remove sediment from the main body of big detention basins when pool volume is reduced by 20%	With effective pre-treatment, this will only be required rarely, e.g. every 25-50 years		
Remedial	Repair erosion or other damage	As required		
actions	Replant, where necessary	As required		
	Aerate detention basin when signs of eutrophication are detected	As required		
	Realign rip-rap or repair other damage	As required		
	Repair/rehabilitate inlets, outlets and overflows.	As required		

REDSTART

St David's House Pascal Close St Mellons Cardiff CF3 OLW

www.redstartwales.com

REDSTART

St David's House Pascal Close St Mellons Cardiff CF3 OLW

www.redstartwales.com

Tylorstown Phase 4

Drainage Strategy Report 20 September 2021

GENERAL DISCLAIMER:

This report has been prepared by Redstart in favour of Rhondda Cynon Taf County Borough Council ("the Client") and is for the sole use and benefit of the Client in accordance with the agreement between the Client and Redstart dated November 2018 under which Redstart's services were performed. Other than in respect of liability which cannot be excluded by law, Redstart accepts no liability to any other party in respect of the contents of this report. This report is confidential and may not be disclosed by the Client or relied on by any other party without the express prior written consent of Redstart.

Whilst care has been taken in the construction of this report, the conclusions and recommendations which it contains are based upon information provided by third parties ("Third Party Information"). Redstart has for the purposes of this report relied upon and assumed that the Third Party Information is accurate and complete and has not independently verified such information for the purposes of this report. Redstart makes no representation, warranty or undertaking (express or implied) in the context of the Third Party Information and no responsibility is taken or accepted by Redstart for the adequacy, completeness or accuracy of the report in the context of the Third Party Information on which it is based.

FREEDOM OF INFORMATION:

Redstart understands and acknowledges the Authority's legal obligations and responsibilities under the Freedom of Information Act 2000 (the "Act") and fully appreciates that the Authority may be required under the terms of the Act to disclose any information which it holds. Redstart maintains that the report contains commercially sensitive information that could be prejudicial to the commercial interests of the parties. On this basis Redstart believes that the report should attract exemption from disclosure, at least in the first instance, under Sections 41 and/or 43 of the Act. Redstart accepts that the damage which it would suffer in the event of disclosure of certain of the confidential information would, to some extent, reduce with the passage of time and therefore proposes that any disclosure (pursuant to the Act) of the confidential information contained in the report should be restricted until after the expiry of 24 months from the date of the report.

Quality Management

Job No	GC/3694				
Project	Tylorstown - Phase 4				
Location	Tylorstown				
Title	Drainage Strategy Report				
Document Ref	GC3613-RED-73-RSC-RP-C-00	001	Issue / Revision	P02	
File reference	P:\Schemes_CGC\GC003600-99\GC003613 - RCT Tylorstown Landslide\1 - Documents\Drainage\Phase 4 - Drainage strategy\GC3613-RED-73-RSC-RP-C-0001 - P02 - Phase 4 Drainage strategy report.docx				
Date	20 September 2021				
Prepared by	Jacques Calitz	Signature (for file)	Palt		
Checked by	Jack Southon	Signature (for file)	Jack South	r	
Authorised by	Phill Hardwick	Signature (for file)			

Revision Status / History

Rev	Date	Issue / Purpose/ Comment	Prepared	Checked	Authorised
P01		First issue	JC	JS	PH
P02		Second Issue	JC	JS	PH

Contents

1.	Introduction	1
2.	Site Context	2
3.	Existing Flood Risk to the Site	14
4.	Development proposals	18
5.	Surface Water Management	19
6.	Schedules of Maintenance	30
7.	SUDS statutory compliance	31
8.	Conclusion	33

Appendices

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

1. Introduction

1.1 Brief and overview

As a result of heavy rainfall associated with Storm Dennis, a landslip of approximately 28,000m³ of material occurred in Tylorstown, Rhondda Cynon Taff on 16 February 2020. This resulted in blocking of the river channel and foot path and removal/altering of the existing drainage channels.

Following on from previous phases of work, the Phase 4 works propose to move the remaining material to the receptor site (Site C) and reprofile the slip. This will include works reinstating the footpath/dismantled tramway and drainage channels as well as reprofiling of the tip after approximately 151,000m³ of tip material has been removed.

Approximately 151,000m³ of material is proposed to be moved to Receptor Site C which is located to the side of the Lllawanno Tip.

Capita Redstart has been commissioned by the client Rhondda Cynon Taf County Borough Council (RCTCBC) to provide a drainage strategy in support of a full planning application and subsequent full SAB application for the proposed works.

The drainage strategy covers both sites (the donor site and the receptor site) due to alterations in existing exceedance flow paths.

This assessment is a qualitative report and based on readily available information.

1.2 Aims and Objectives

This document outlines and discusses the strategy for the surface water drainage from the proposed Receptor Site C and the reprofiled donor site (Tylorstown slip). It is recommended that this drainage strategy is read in conjunction with the drawings and documents contained in Appendix A to D.

2. Site Context

2.1 Site location

Donor Site (Tylorstown slip)

The donor site (location of the slip) is located at the existing Tylorstown Upper Tip north of Tylorstown and just south of the "Wales with view" lookout point along Blaenllechau road. The nearest postcode for the site is CF43 4UF and the National Grid Reference for the approximate centre of the site is ST 01225 96194 (Figure 2.1). The site is a greenfield site with no previous development apart from the tip (no impermeable area).

Receptor Site C

The proposed receptor site C is located alongside of Llanwonno Tip located east of Tylorstown just off of Blaenllechau road. The nearest postcode for the site is CF37 3PH and the National Grid Reference for the approximate centre of the site is ST 02116 95641 (Figure 2.1). The site is a greenfield site with no previous development (no impermeable area).

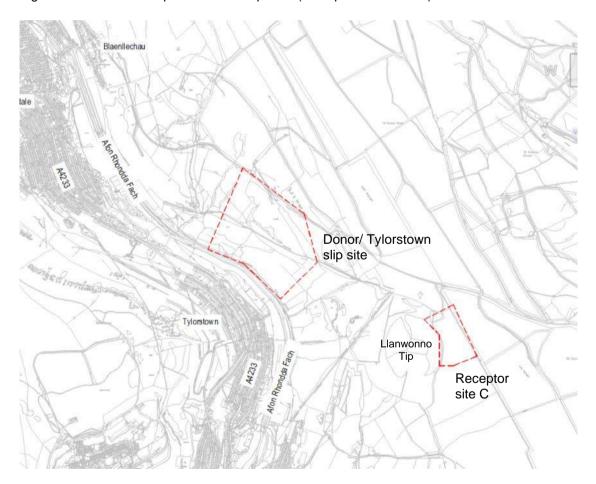


Figure 2.1 – Site Location (Donor (Tylorstown slip) and receptor Site C location

The image below (Figure 2.2) shows the location and extent of the slip taken with a drone after the slip happened.

Figure 2.2 - Tylorstown slip

2.2 Topography

A topographical survey was undertaken by Vinci Surveys in May 2020 and is contained in Appendix A.

LIDAR data was also obtained as part of this assessment and is shown in Figure 2.3 and 2.4 below.

Donor Site (Tylorstown slip)

Tylorstown Upper Tip is located within the valley of the Afon Rhondda Fach. The existing site topography is steep and falls North-East to South-West towards the river.

Available data suggests that the existing site ground elevations range from approximately 344m to 180m above ordnance datum (AOD).

Due to the slip, the existing dismantled tramline and drainage channels have been removed and the existing topography has been steepened.

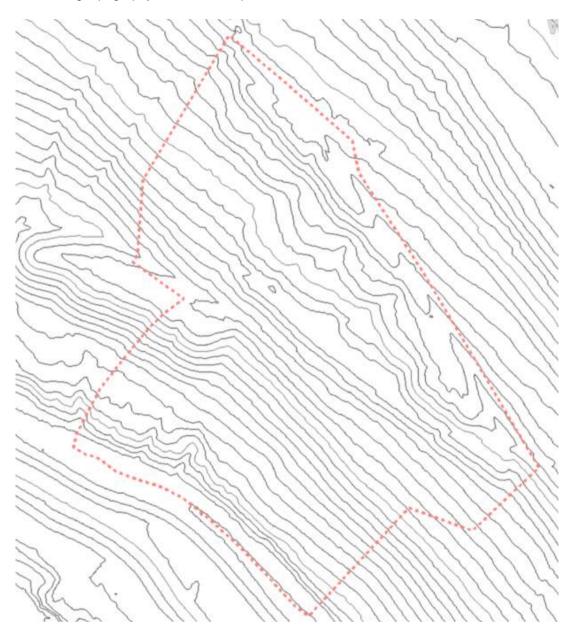


Figure 2.3 – Donor site (pre slip) – 2015 LIDAR data

Receptor Site C

The northern section of the Receptor site C falls towards the west while the southern section falls towards the south-west and south east respectively.

The existing site ground elevations range from approximately 412m to 383m above ordnance datum (AOD).

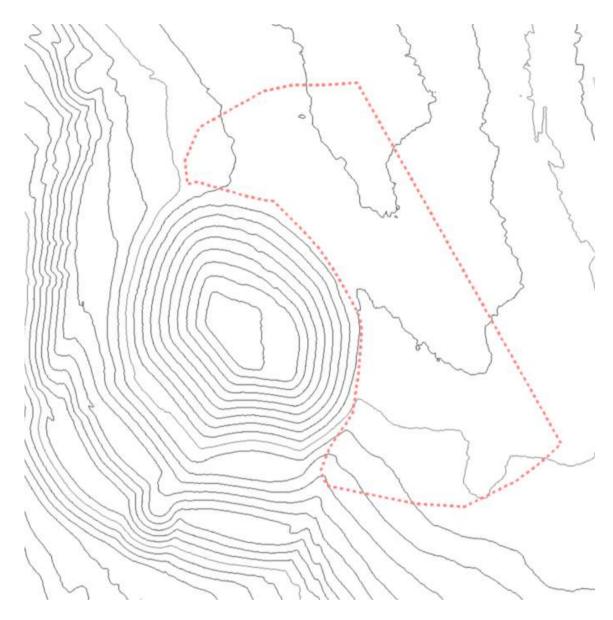


Figure 2.4 - Receptor Site C - 2015 LIDAR data

2.3 Geology

The British Geological Survey (BGS) Online Geology Viewer¹ notes the underlain bedrock of both sites as Secondary A: Secondary A strata are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

Donor site (Tylorstown Upper Tip)

Ground Investigations were undertaken by Exploration Associates in November 2001 and are contained in Appendix B. The expected geology for the site is shown is Table 2.1.

¹ British Geological Survey (BGS) Online Geology http://mapapps.bgs.ac.uk/geologyofbritain/home.html

Table 2.1: Tylorstown Upper Tip - Site geology

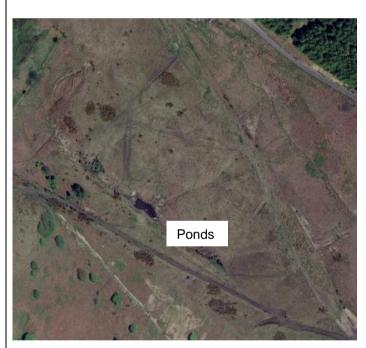
Strata	Expected Thickness (m)	Generalised Description
MADE GROUND	0 – 10.75m	Loose dark grey and black slightly clayey very sandy GRAVEL. Gravel is fine to coarse angular to sub-angular mudstone, clinker and coal
Boulder Clay (outside tip)	0 - 2.8m	Boulder Clay Medium dense dark orange brown very clayey sandy slightly gravely angular cobbles of siltstone and sandstone
HIGHLY WEATHERED BRITHDIR MEMBER	2.2 – 5.65m	Moderately weak to moderately strong grey/orange brown fine medium SANDSTONE. Highly weathered to non-intact fracture discontinuity.
SILTSTONE	0.7 – 1.5m	Very weak and weak dark grey SILTSTONE. In other areas layer is slightly sandy gravelly CLAY or SILT rather than SILSTONE.
SANDSTONE (BRITHDIR MEMBER	6.5 - m	Strong grey fine grained SANDSTONE (SANDSTONE (BRITHDIR MEMBER). Slightly weathered.
SILTSTONE	7 - m	Very weak and weak dark grey SILTSTONE.
SANDSTONE (BRITHDIR MEMBER	4.3 – m+	Strong grey fine grained SANDSTONE (SANDSTONE (BRITHDIR MEMBER). Slightly weathered.

Receptor Site C

Ground Investigations were undertaken by Quantum Geotech in March 2021 and are contained in Appendix B. The expected geology for the site is shown is Table 2.2.

Table 2.2: Receptor site C - Site geology

Strata	Expected Thickness (m)	Generalised Description
MADE GROUND	0.15-0.7m	Black dark grey slightly sandy silty GRAVEL with metal. Gravel is fine to coarse angular to subangular Mudstone, clinker and coal
		Grass over soft dark grey slightly sandy slightly gravelly SILT with rootlets and rare coal/charcoal. Gravel is fine to coarse sub
HIGHLY WEATHERED	0.6-2.6m	Slightly clayey slightly silty GRAVEL. GRAVEL with medium to high cobble and boulder content


BRITHDIR		(HIGHLY WEATHERED BRITHDIR MEMBER).
MEMBER		GRAVEL is fine to coarse sub-angular to sub-
		rounded Sandstone with some Mudstone
SANDSTONE		Strong grey fine grained. Weathered and
(BRITHDIR	7- 21m+	fractured SANDSTONE (SANDSTONE
MEMBER		(BRITHDIR MEMBER)

2.4 Hydrology

The closest river to the sites is the Afon Rhondda Fach which is located between 850m away of the Receptor site C and is located at the discharge point of the ditches at the donor site.

Several surface water features are located within each of the sites (as shown by the topographic survey):

 Before the slip occurred, there were three ponds located on the tip created from the existing springs as can be seen from Google earth aerial images (shown below)

Donor site

- There are several springs discharging to the surface due to the perched groundwater (coal/mudstone seam underlying weather/fractured sandstone).
- Several ditches/channels are located within the site cascading both the spring flows and the surface water run-off to the Afon Rhondda Fach river.

• To the north west of the site there are two natural ditches that collect run-off and discharges to a lower down concrete channel finally discharging to the Afon Rhondda Fach

Receptor site C

- To the south west of the site (along Llanwonno Tip access track) there is an existing concrete channel that collects the run-off from the access track and the surrounding area to the east
- There is an additional ditch to the east

2.5 Hydrogeology

The donor site and Receptor site C is not located within a Source protection Zone (SPZ) as designated by Natural Resources Wales (NRW).

The BGS Online Geology Viewer, however, notes that groundwater vulnerability is high as the both sites are underlain by a Secondary A aquifer (superficial deposits and bedrock).

Perched groundwater is expected at both sites due to the presence of mudstone/coal/siltstone seams underlying weathered/fractured sandstone.

The groundwater levels differ at each of the sites:

There are several spring discharges visible within the Tylorstown Upper Tip site and the potential for perched groundwater is high due to shallow coal/mudstone seams underlying the fractured/weathered sandstone.

Donor site

Based on the groundwater monitoring results completed in November of 2001, groundwater was found to be relatively deep (shallowest being 6.14m bgl). Based on the borehole information the coal/mudstone/siltstone seams are expected to be relatively shallow.

Receptor site C	Based on the groundwater monitoring results completed, groundwater was found to be very deep (shallowest being 6.43m bgl). Based on the borehole information the coal/mudstone/siltstone seams are expected to be relatively deep at Receptor Site C.
	There are no springs located within the Receptor Site C area and potential for shallow perched groundwater is low due to the deep fractured sandstone and coal/mudstone/siltstone layers.

2.6 Existing Surface Water Drainage

A summary of each site's existing surface water drainage is given below. Pre and post slip conditions are given for the Tylorstown slip (donor) site.

Donor Site (Tylorstown slip)

Pre-slip

North of the existing	North of the existing tramway, several springs discharge into existing ditches and cascade into ponds which overtop into the existing ditch along the north of the dismantled tramway which discharges towards the west of the site. Other springs discharge into ditches and directly into the ditch along the dismantled tramway.
tramway	There were three existing ponds based on google earth images that were
,	located on the existing Tylorstown Upper tip before the slip occurred. The ponds were most likely formed by the spring flows and were assumed to have had no storage potential and generally filled with water from the springs especially during wet seasons (winter).
North of the tip	North of the tip, there is a drain along the top which serves the catchment to the north of the road. The ditch also collects runoff from the crest of the tip draining towards the ditch. The ditch discharges via a culvert under the tramway. The ditch downstream ultimately discharges into the river.
	South of the dismantled tramway, there are several ditches discharging to the
South of	river. There are two main culvert connections to the river. Based on google
tramway	earth images, due to significant vegetation growth the ditches have become less pronounced due to significant interception.

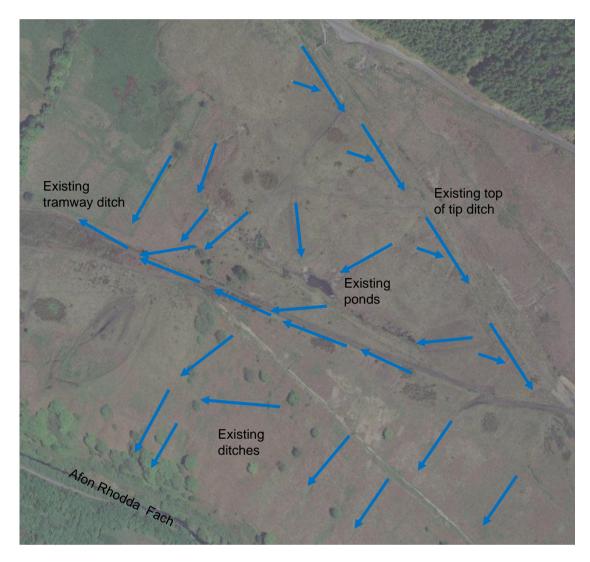


Figure 2.5 – Donor site (pre-slip) - Existing surface water drainage features

Post-slip

North of the existing tramway	Due to the slip, the previous ponds north of the existing dismantled tramway, were destroyed. New cuttings into the soil and slipped material were formed by the springs and surface water run-off. Temporary concrete ditches have been installed to collect the spring and ditch flows as the dismantled tramway and its adjacent ditch was destroyed by the slip.
	The springs to the west still discharge into ditches and directly into the ditch along the tramway as they have not been impacted by the slip.
North of the tip	North of the tip, there is a drain along the top which serves the catchment to the north of the road. The ditch also collects runoff from the crest of the tip draining towards the ditch. The ditch discharges via a culvert under the tramway. The ditch downstream ultimately discharges into the river.
	To ensure no further slips occur until works to the tip has been completed, temporary piping is used to collect run-off from the upper catchment and cascade it downstream.

	South of the tramway, several new ditches were formed after the slip within
South of	the slipped material as the existing ditches were filled/destroyed. A temporary
tramway	concrete ditch was installed to cascade water into more vegetated areas with
	ditches to ensure erosion of the slipped material is managed.

The darker blue arrows in the image below shows changes in flow paths due to the slip.

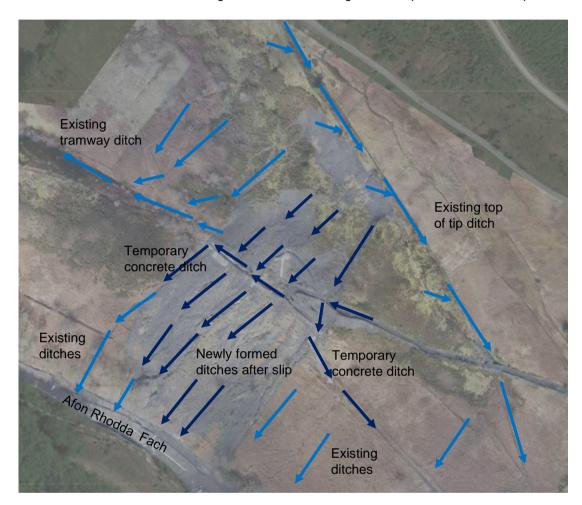


Figure 2.6 – Donor Site (post slip) - Existing surface water drainage features

Receptor Site C

Northern section of the site	The northern section of the site drains to two existing ditches, which discharge to an existing concrete channel. This concrete channel ultimately discharges into the Afon Rhondda Fach downstream.
Eastern and south eastern section of the site	The eastern section of the site (east of the ridgeline along the middle of the site) drains to the existing ditch which is located all along the eastern boundary along the track.
Southern/ south-western section of the site	The southern and western sections of the site drains to the existing concrete ditch which is located along the access track.

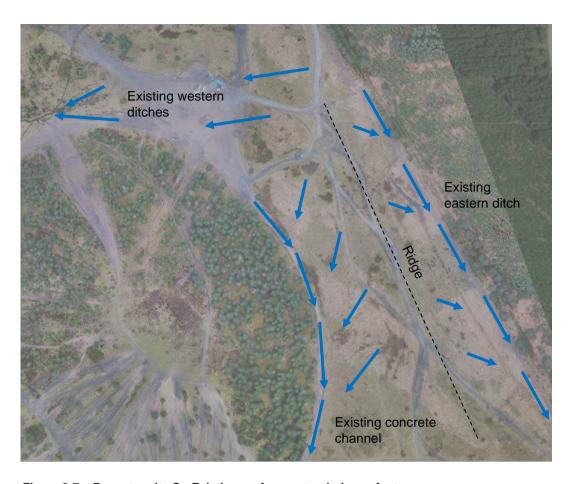


Figure 2.7 – Receptor site C - Existing surface water drainage features

From the information available, there are no flow restrictions or significant storage features, identified across the existing drainage features for both sites (only at the discharge points to the Afon Rhondda Fach).

Before the slip occurred there were three ponds located on the existing Tylorstown Upper tip. In the assessment these ponds were however assumed to have had no storage potential and assumed to be permanently filled with water from the springs especially during the wetter winter season. Invert levels have been taken from the survey where available.

Refer to Appendix C for available information regarding the existing surface water drainage and exceedance flow paths.

3. Existing Flood Risk to the Site

A Flood Consequence Assessment (FCA) or consultation with the NRW was not completed. A summary of flood risk from several sources is however given below.

3.1.1 Tidal flood risk

The site is not located close to any tidal sources. The risk of tidal flooding is therefore considered very low.

3.1.2 Fluvial flood risk

The NRW flood maps indicate that the both sites lies within the Low to Medium Risk of flooding from rivers zone (Figure 3.1).

Only where the existing ditches discharge into the river, are they within the flood zone.

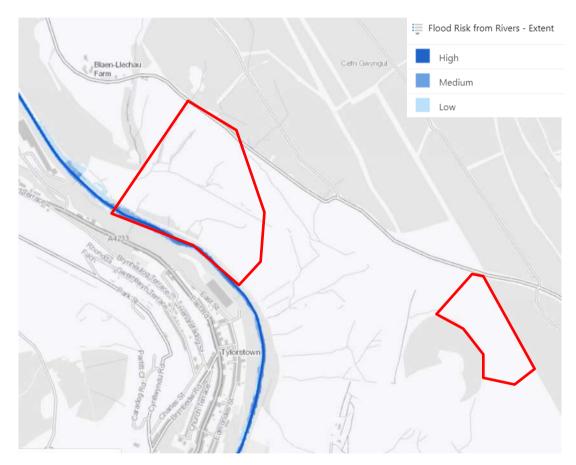


Figure 3.1 – Natural Resources Wales for flood risk from rivers

The existing risk of fluvial flooding is deemed as low risk

3.1.3 Surface water flood risk

The proposed sites are within areas at risk of surface water flooding (surface water ditches). There are areas of localised surface water flooding which coincide with the surface water ditches and drainage features, as identified in the topographic survey, which is known to carry water and can flood during larger storm events (Figure 3.2).

The existing risk of surface water flooding is deemed as low risk.

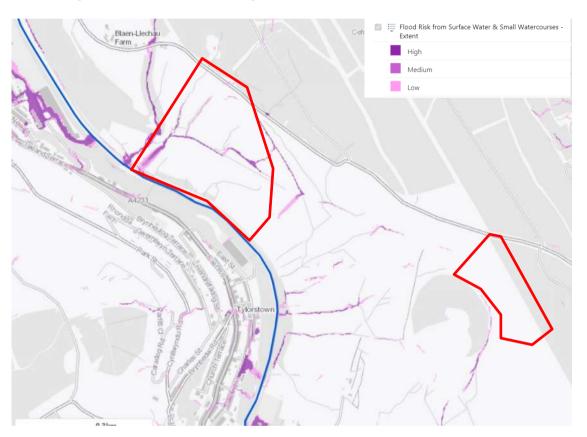


Figure 3.2 - Natural Resources Wales flood map for flood risk from surface water

3.1.4 Sewer flood risk

A review of available information from the SFCA indicates no record of sewer flooding on-site. There are also no sewers located within the site.

3.1.5 Groundwater flood risk

Perched groundwater is expected at both sites due to the presence of mudstone/coal/siltstone seams underlying weathered/fractured sandstone as per the GI investigations.

According to the RCTCBC Preliminary Flood Risk Assessment (PFRA) groundwater susceptibility maps, the north sites fall in an area which has a medium to high probability of groundwater flooding (Figure 3.3).

For Receptor Site C, potential for shallow perched groundwater is low due to the deep fractured sandstone and coal layers based on the GI. Groundwater flood risk is thus low for the site.

For the Tylerstown slip (donor) site, there are several existing springs visible and shallow perched groundwater is expected. The risk of groundwater flooding for the donor site is thus high.

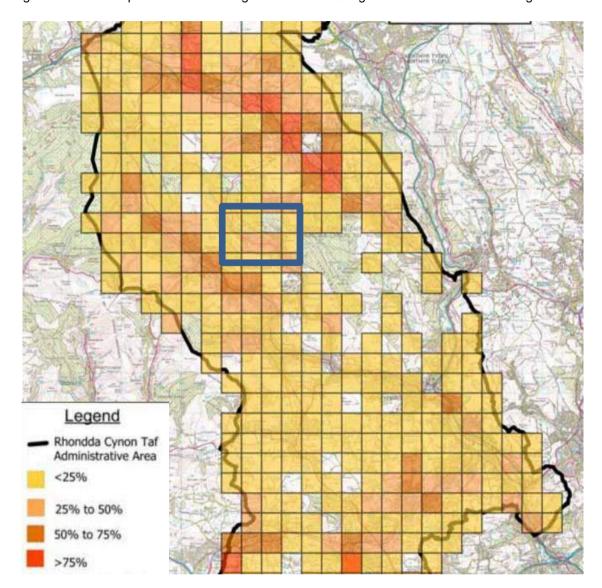


Figure 3.3 – RCTCBC Preliminary Flood Risk Assessment (PFRA) groundwater susceptibility map

3.1.6 Flood risk from artificial sources

There is no risk of flooding of the sites from any artificial sources (reservoirs).

Figure 3.4 – Natural Resources Wales flood map for flood risk from artificial sources

4. Development proposals

4.1 Proposed Development Description

Following on from previous phases of work, the Phase 4 works propose to move the remaining material to the receptor site (Site C) and reprofile the slip. This will include works reinstating the footpath/dismantled tramway and drainage channels as well as reprofiling of the tip after approximately 151,000m³ of tip material has been removed.

Approximately 151,000m³ of material is proposed to be moved to Receptor Site C which is located to the side of the Lllawanno Tip.

The drainage strategy covers both sites (the donor site and the receptor site) due to alterations in existing exceedance flow paths and to maintain existing greenfield run-off rates.

Development proposals are provided in Appendix D.

5. Surface Water Management

5.1 Overview

The surface water drainage system has been designed in accordance with the NPPF and the accompanying Guidance and Technical Standards for SuDS.

To comply with the National SuDS Standards as referenced in the Rhondda Cynon Taf SAB application documentation, surface water discharge was managed by following the below hierarchy:

- 1.) Collect for use
- 2.) Infiltration to the maximum extent that is practical where it is safe and acceptable to do so
- 3.) Discharge to watercourses
- 4.) Discharge to surface water sewer, highway drain or another drainage system
- 5.) Discharge to combined sewers (last resort)

5.2 Site Constraints

A review of the site characteristics has informed the following site constraints which have influenced the development of the surface water drainage strategy:

- · Steep slopes of existing tip/donor site
- Existing tip material containing contaminants from mine workings
- · Perched groundwater and springs located within the donor site

5.3 Climate change

The NRW provides guidance on climate change allowances which should be considered when assessing future risk of flooding.

Climate change allowances should be applied to peak rainfall intensities. Table 5.1 shows the anticipated change in extreme rainfall intensity in small (<5km²) and urban/local drainage catchments². The central and upper allowances should be used to assess the range of impact.

Table 5.1: Change to extreme rainfall intensity compared to a 1961-90 baseline

Applies across all of Wales	Total potential change anticipated for 2020s (2015-2039)	Total potential change anticipated for 2050s (2040-2069)	Total potential change anticipated for 2080s (2070-2115)
Upper estimate	10%	20%	40%
Central estimate	5%	10%	20%

https://gov.wales/sites/default/files/publications/2019-06/adapting-to-climate-change-guidance-for-flood-and-coastal-erosion-risk-management-authorities-in-wales.pdf

5.4 Greenfield Runoff Rates

The Greenfield runoff rates (I/s/ha) for both sites were calculated using the IH124 method and are summarised in Table 5.2.

Table 5.2: IH124 Existing Greenfield run-off rates - per hectare

M5-60	20
'r' ratio M5-60 / M5-2day	0.2
SPR	0.37
Storm event (return period)	Greenfield runoff rate (litres/sec/ha)
Qbar	19.74
4.14.37	4= 00
1 in 1 Year	17.38
1 in 1 Year 1 in 30 Year	17.38 35.15

Based on visual inspection the existing donor site has approximately 4 springs which are not accounted for in the IH124 method for greenfield run-off rates. Approximately 6l/s per spring (conservative estimate) was calculated as additional spring flow for the existing tip which should be added as a base flow to the greenfield run-off rates. The spring flow estimation, based on available groundwater and ground information, is provided in Appendix C.

Due to the steep nature of the donor site, additional modelling using FSR rainfall was done to check the greenfield rates and to determine potential flows needed to be accommodated in the proposed drainage features. The calculations were done based on the donor site pre-slip conditions determined from Google Earth historic aerial images and LIDAR data. The visible ponds on the existing tip were assumed to be full/saturated and not provide any storage. Where existing drainage elements were unclear, areas were not modelled. These calculations are contained within Appendix C and summarised in Table 5.3. The modelled values include spring flows.

Table 5.3: Modelled Existing Greenfield run-off rates - Existing tip/donor site

IH124 – Greenfield rates (excluding spring flows)				
Storm event (return period)	Area 1 (7.106ha) 4 springs	Area 2 (0.406ha)	Area 3 (0.603ha)	
1 in 2 Year	66.44	3.80	5.64	
1 in 30 Year	118.31	6.76	10.04	
1 in 100 Year	144.89	8.28	12.30	
Modelled - Greenfield rates				
Storm event (return period)	Area 1 (7.106ha) 4 springs	Area 2 (0.406ha)	Area 3 (0.603ha)	
1 in 2 Year	220.0	-	-	
1 in 30 Year	358.3	-	-	
1 in 100 Year	445.8	-	-	

From Table 5.3 it is evident that the IH124 method is not suitable for steep catchments (slopes between 1:2 and 1:50) as it utilises an averaged slope of a catchment. The modelled greenfield run-off rates for the site are thus more representative of the actual expected greenfield run-off rates and was used in the design of drainage elements.

The discharge areas are shown visually in Figure 5.1.

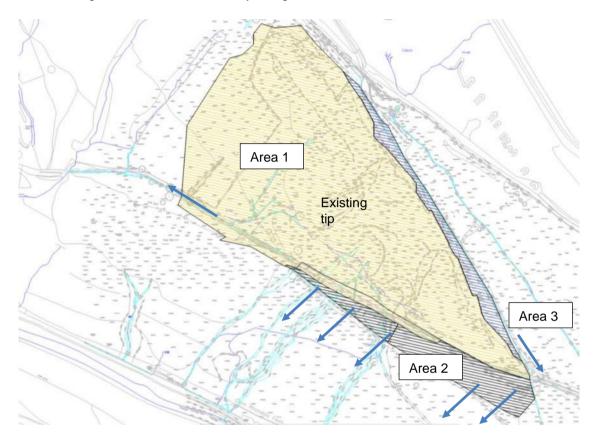


Figure 5.1 – Greenfield discharge areas (existing tip)

Converting the Greenfield run-off rates as per Table 5.4, to averaged l/s/ha rates, the allowable greenfield run-off rates for the donor site are:

Table 5.4: Modelled Greenfield run-off rates - per hectare- Existing tip/donor site

Storm event (return period)	Greenfield runoff rate (litres/sec/ha) – springs incl.
Qbar (1:2 year)	30.96
1 in 30 Year	50.42
1 in 100 Year	62.74

5.5 Allowable Surface Water Discharge Rate

In trying to keep the discharge rates to as close to greenfield discharge rates as reasonably practicable, the proposed discharge rates were developed by ensuring the 1:30 year event can be contained within the drainage system and not flood.

The drainage elements were also designed to be able to cascade run-off from the steep slopes to the tramway ditch during larger events (1:100 year event and larger) without any flooding/ponding on the steep embankment which could cause potential stability issues and scouring.

The land use of the sites will not change (to remain greenfield sites) and the sites will remain 100% permeable. However, how the existing sites drains/ cascades run-off will be altered by the changes in landscape as well as the exceedance flow paths.

Receptor Site C

The deposited material at Receptor Site C will alter the existing exceedance flow paths and runoff. Based on the IH124 method, the greenfield run-off rates of each area were calculated as shown in Table 5.5 below. Table 5.5 also includes the discharge rates achieved with the proposed drainage strategy for Site C as described in Section 5.7.

Table 5.5: Proposed run-off rates - Receptor Site C

Storm event (return period)	Area 1 (2.996ha)	Area 2 (1.351ha)	Area 3 (0.690ha)	Area 4 (0.071ha)	Total
	All	owable IH124	Existing run-o	ff rates	
1 in 2 Year	28.01	12.63	6.45	0.67	47.76
1 in 30 Year	49.88	22.49	11.49	1.19	85.05
1 in 100 Year	61.09	27.55	14.07	1.46	104.17
Proposed run-off rates (modelled)					
1 in 2 Year	20.20	14.20	7.50	2.00	43.9
1 in 30 Year	29.30	20.00	20.40	3.09	72.79
1 in 100 Year	34.30	23.30	27.70	5.20	90.5

The discharge areas are shown visually in Figure 5.2.

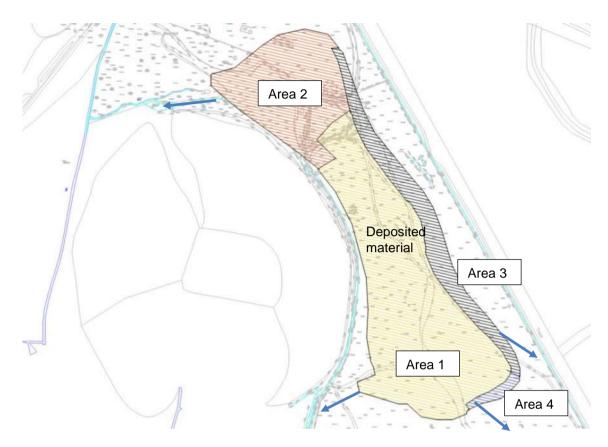


Figure 5.2 – Greenfield/proposed discharge areas (Receptor site C)

Proposed donor site (existing tip)

Due to the slip, several of the existing drainage channels and ponds were destroyed and new channels formed. The proposed drainage strategy tried to mimic and reinstate the existing preslip exceedance flow paths and drainage conditions as best as possible. The drainage strategy also tried to provide more slope stability and accommodate the removal of material from the donor site.

Based on the modelled results as per Table 5.4, the greenfield run-off rates of each area were calculated as shown in Table 5.6 below. Table 5.6 also includes the discharge rates achieved with the proposed drainage strategy for the reprofiled tip as described in Section 5.7.

Table 5.6: Proposed run-off rates - Existing tip/donor site

Storm event (return period)	Area 1 (7.330ha) Incl. 4 springs	Area 2 (0.950ha)	Total	
	Allowable modelled Gree	nfield run-off rates		
1 in 2 Year	226.93	27.27	254.2	
1 in 30 Year	369.59	45.76	415.35	
1 in 100 Year	459.85	57.46	517.31	
Proposed run-off rates (modelled)				
1 in 2 Year	238.1	20.6	258.7	
1 in 30 Year	467.2	46.1	513.3	
1 in 100 Year	551.2	62.9	614.1	

The discharge areas are shown visually in Figure 5.3.

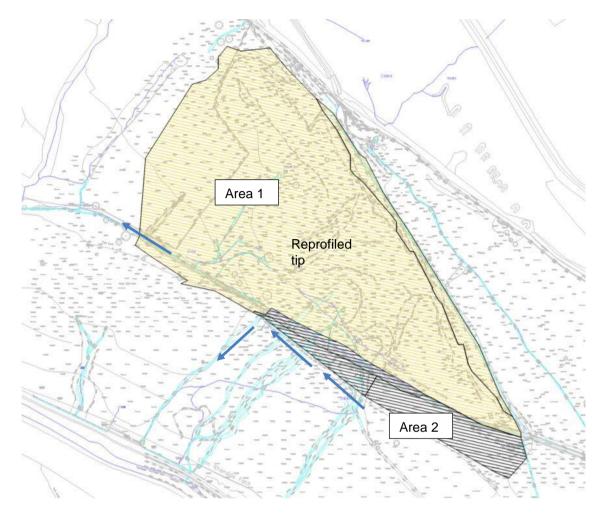


Figure 5.3 – Greenfield/proposed discharge areas (Existing tip)

It should be noted that the modelled Greenfield and proposed run-off rates (presented in Tables 5.3-5.6) assume a time of entry of between 5min and 20min dependent on the distance from the drainage features. Once the sites become vegetated and more established, the vegetation will intercept flows and the peak flows indicated will be reduced.

5.6 SuDS discharge hierarchy

The SuDS discharge hierarchy should be followed to attempt to design the SuDS strategy to mimic the natural drainage routes, infiltration rates and discharge rates as far as possible. An assessment of the SuDS discharge hierarchy for the proposed drainage strategy is shown in Table 5.7.

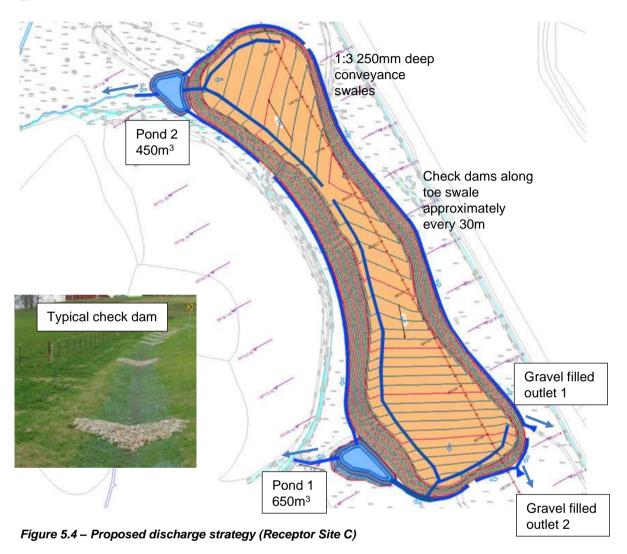
Table 5.7: SuDS discharge hierarchy

Discharge strategy	Description
Re Use	Due to the nature of the development, rainwater harvesting was not deemed appropriate.
Infiltration system/ into ground	Due to the perched groundwater (springs) and potential for destabilising the area further at the existing tip (donor site) and potential contaminants from mine workings (deposited material and existing tip), infiltration was not deemed appropriate. Both sites are also located within high groundwater vulnerability areas.
	Both sites discharge into the Afon Rhondda Fach via existing drainage channels (concrete channels and natural ditches).
To surface water body	The proposed drainage is to connect into the existing ditches and discharge into the river as existing at similar discharge rates (Greenfield rates).
	Existing ditches to be reinstated/rehabilitated where they have been damaged.
To surface water sewer	Not applicable
To a combined sewer	Not applicable

5.7 Proposed SuDS Strategy

A surface water drainage strategy has been developed in line with the philosophy that underlies The SuDS Manual; favouring a combination of management techniques managing water quantity and quality and promoting biodiversity and amenity values. The surface water drainage design philosophy approach maintains the relatively natural flow path of water and discharge to existing concrete channels and ditches which ultimately discharge to the Afon Rhondda Fach.

To ensure no increase in discharge to the existing watercourses and drainage channels and not increase flooding downstream, flows are to be attenuated and discharged at Greenfield rates in accordance with TAN15 and not increase water discharged off the site. Greenfield runoff rates are to be maintained as existing whilst also satisfying the other three pillars of SuDS design by offering amenity, biodiversity, water quality improvements.


The proposed receptor site deposited material and slip reprofiling have been designed to mimic existing topography as best as possible to allow for existing exceedance flow paths to be maintained and drainage features incorporated to direct run-off where appropriate to maintain existing flow paths where levels have been altered.

The proposed drainage strategy layouts and other associated calculations and drawings, presented in Appendix E, illustrates the SuDS features proposed to manage the surface water runoff from the site.

Receptor Site C

The proposed drainage strategy for Receptor site C is shown in Figure 5.4 below and in Appendix E.

For receptor site C, central swales have been incorporated to convey flows from the top of the deposited material and toe swales to convey flows from the banks. The swales convey flows into two attenuation ponds which discharge into the existing ditches at Greenfield rates via a filter drain connections. Overflow weirs have been incorporated if the filter drains become blocked.

Based on the modelled results using FSR rainfall data, the ponds can accommodate up to the 1:100 year event without overtopping and maintain Greenfield run-off rates or lower as shown in Table 5.5. Flooding/ponding from the upstream swales will cascade towards the pond and be confined within the site for events larger than the 1:100 year storm.

For the southern banks/batter of the deposited material, toe swales have been incorporated directing flows towards the eastern ditch as existing. To attenuate and slow down flows and maintain Greenfield run-off rates, check dams have been incorporated into the swales. Additional gravel/cobbled outlets are proposed to spread and slow down flows at discharge.

The modelled discharge from the south eastern swales are higher than the allowable Greenfield rates. The modelled results do not account for the spreading and slowing down of the flows at the gravel outlets and assume a time of entry of 5min which does not account for any interception by vegetation on the embankment batter.

The proposed drainage network will thus be able to contain the 1:30 year event. Localised flooding will occur for more significant storms (larger than the 1:100 year event) within the upstream swales but will be contained within the site.

Proposed donor site (existing tip)

The proposed drainage strategy for the reprofiled tip is shown in Figure 5.5 below and in Appendix E.

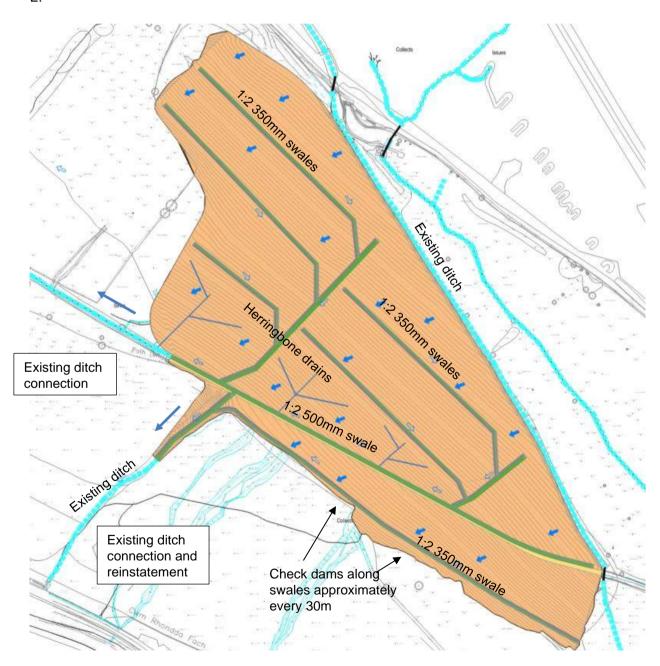


Figure 5.4 – Proposed discharge strategy (Reprofiled tip)

The proposed drainage features for the reprofiled tip have been designed to allow for not only surface water conveyance but also spring flows. Spring flows are to be intercepted and conveyed via gravel filled herringbone drains to the proposed drainage channels to attempt to improve stability and potential future slippages.

Surface water runoff is intercepted by swales located along berms which convey flows to a ditch along the reinstated footpath which discharge to existing ditches/channels. Existing exceedance flow paths will be altered with the reprofiled tip and flows diverted to different discharge points to existing.

Flows to be attenuated with check dams within proposed ditch where appropriate and to maintain as close to possible Greenfield run-off rates.

Based on the modelled results, the proposed drainage features can accommodate up to the 1:30 year event and maintain close to Greenfield run-off rates. Flooding/ponding from the upstream swales will cascade towards the tramway ditch and be confined within the site for events larger than the 1:30 year storm.

The modelled discharges are higher than the allowable Greenfield rates as shown in Table 5.6. The models assume a time of entry of between 5 and 20min which does not account for any interception by vegetation or the effect of the herringbone drains on the spring flows. The spring flows used are also very conservative and based on worst case scenario. Due to the existing tip having slipped due to oversaturation, the proposed discharge rates are thus deemed to be acceptable.

Existing drainage channels damaged by the slip, downstream of the dismantled tramway, are to be reinstated where appropriate and reinforced with erosion matting and seeded with hessian to accommodate steep slopes and promote vegetation growth.

Assessing the proposed and existing levels, when the system floods, majority of the water will flow over the side of proposed swales and cascade down the embankment downhill berms and ultimately towards the proposed ditch along the dismantled tramway. An overflow weir is also proposed along the proposed ditch which can overflow towards the ditch south of the dismantled tramway.

The proposed strategies include; swales and attenuation ponds. Features are to be vegetated and meandered to blend in with natural landscape in addition to providing water quality, amenity and biodiversity benefits.

5.8 Maintenance and operation

The maintenance of SuDS is vital ensuring that they work as efficiently as they set out to do.

A schedule of maintenance for the proposed SuDS features is contained in Chapter 6.

5.9 Proposed Surface Water Quality Management

Water quality has been assessed using the 'Simple Index Approach' as outlined under 'The SuDS Manual' (CIRIA c753, 2015).

The SuDS components within the surface water drainage strategy have been designed in accordance with the guidance set-out in the SuDS Manual.

Treatment within SuDS components is essential for frequent low intensity and duration rainfall events, where urban contaminants are being mobilised and washed off urban surfaces and the aggregated contribution to the total pollutant load to the receiving surface water body is potentially high. For rainfall events greater than the 1 in 1 return period, the pollutants become diluted and the environmental risks will be reduced which means that the SuDS treatment process becomes less crucial. Treatment effectiveness is strongly linked to the hydraulic control of runoff, in particular velocity control and retention time.

The proposed site development is not of urban or agricultural nature, but the material deposited is of old mine workings. Based on soil assessments the tip material to be deposited and the insitu material on the site is of the similar composition and nature. The material to be deposited should this not pose any risk dissimilar to the in-situ material.

The proposed drainage systems also utilise vegetated bentonite lined swales with 150mm of topsoil and vegetated lined attenuation ponds. The topsoil layer and vegetation should be able to trap and mitigate any potential contaminant transported from the deposited tip material and existing tip.

6. Schedules of Maintenance

Refer to "GC3613 – Tylorstown Phase 4 - Schedule of maintenance" document contained in Appendix E.

7. SUDS statutory compliance

The preceding sections outlined how the SuDS assets employed within the management train conform with the standards, S1 to S6 detailed under 'Statutory standards for sustainable drainage systems – designing, constructing, operating and maintaining surface water drainage system' (Welsh Government, 2018). A summary showing how the design for the proposed development satisfies SuDS statutory standards S1 to S6 has been provided in Table 7.1 below.

Table 7.1 – Proposed mid catchment statutory SuDS standards summary

Standard	Designers' response
	Level 1 – Rainwater collected for use Rainwater harvesting would not be considered for a scheme of this nature as there would not be a requirement for the water.
S1 – Surface water destination	Level 2 – Discharge of surface water into the ground Due to the perched groundwater (springs) and potential for destabilising the area further at the existing tip (donor site) and potential contaminants from mine workings (deposited material and existing tip), infiltration was not deemed appropriate. Both sites are also located within high groundwater vulnerability areas.
	Level 3 – Discharge to a surface water body The existing site discharges into the Afon Rhondda Fach via existing drainage channels (concrete channels and natural ditches). The proposed drainage system is proposed to connect into the existing ditches and discharge into the river as existing at similar discharge rates.
	 Proposed discharge rates to be similar to existing greenfield discharge rates. Receptor site C Up to the 1:30 year event is contained and conveyed within the drainage system and discharged at close to greenfield rates without flooding. For larger storm events (>1:100 year storm event), there will be some flooding cascaded towards the proposed ponds and contained within the site.
S2 – Surface water runoff hydraulic control	 Reprofiled tip Up to the 1:30 year event is contained and conveyed within the drainage system and discharged at close to greenfield rates. There is some localised ponding within the system but will cascade back into the system. For larger storm events (>1:100 year storm event), there will be some more flooding. Assessing the proposed and existing levels, when the system floods, majority of the water will flow over the side of proposed swales and cascade down the embankment downhill berms and ultimately towards the proposed ditch along the dismantled tramway. An overflow weir is also proposed along the proposed ditch which can overflow towards the ditch south of the dismantled tramway.

S3 – Water Quality	 The proposed site development is not of urban or agricultural nature, but the material deposited is of old mine workings. Based on soil assessments the tip material to be deposited and the in-situ material on the site is of the same composition and nature. The material to be deposited should thus not pose any risk dissimilar to the in-situ material. The proposed drainage systems also utilise vegetated bentonite lined swales with 150mm of topsoil and vegetated lined attenuation ponds. The topsoil layer and vegetation should be able to trap and mitigate any potential contaminant transport from the deposited tip material.
S4 - Amenity	 Minimal impact on existing landscape. Proposed swale, receptor site C deposited material and reprofiled tip to be seeded and attenuation ponds to be vegetated All vegetation removed during construction to be reinstated same as existing as far as reasonably practicable.
S5 - Biodiversity	To enhance biodiversity and habitat and not change the existing landscape significantly: • Proposed swale, receptor site C deposited material and reprofiled tip to be seeded and attenuation ponds to be vegetated • All vegetation removed during construction to be reinstated same as existing as far as reasonably practicable.
S6 – Design of drainage for Construction, Operation and Maintenance and Structural Integrity	Maintenance of swales, attenuation ponds and control structures (check dams and weirs) to be undertaken in accordance with Operation and Maintenance schedule.

8. Conclusion

8.1 Drainage strategy

- 8.1.1 The proposed works include the raising of the low spot on the section of the existing A4059 carriageway by 250mm, removing the existing road crown and have the whole carriageway draining at 2.5% towards a new swale/shallow-ditch drainage feature along the carriageway in the north eastern verge.
- 8.1.2 The Natural Resources Wales' Flood Risk Map Viewer does not identify any high risk of flooding to either of the sites. Flooding from fluvial, tidal, sewer flooding, groundwater and artificial sources have been assessed and considered to be low for the site. There are areas of localised surface water flooding which coincide with the drainage features, as identified in the topographic survey, which is known to surcharge and potentially flood during larger storm events. The reprofiled tip is however at risk to groundwater flooding as there are spring and perched groundwater present.
- 8.1.3 An assessment of the surface water catchment has been made and the Greenfield runoff rate (Qbar) for the sites have been determined. Due to the steep nature of the existing Tylorstown Upper tip, the greenfield rates were modelled to determine the rate rather than using the IH124 method.
- 8.1.4 Proposed discharge rates to be similar to existing greenfield discharge rates and the surface water drainage strategies are able to contain the 1:30 year event and not cause flooding downstream for events larger than the 1:30 year as detailed for each site below:

Receptor site C

Up to the 1:30 year event is contained and conveyed within the drainage system and discharged at close to greenfield rates without flooding.

For larger storm events (>1:100 year storm event), there will be some flooding but will be cascaded towards the proposed ponds.

Reprofiled tip

Up to the 1:30 year event is contained and conveyed within the drainage system and discharged at close to greenfield rates. There is some localised ponding within the system along the ditch in along the tramway, but will cascade back into the system.

For larger storm events (>1:100 year storm event), there will be some more flooding. Assessing the proposed and existing levels, when the system floods, majority of the water will flow over the side of proposed swales and cascade down the embankment downhill berms and ultimately towards the proposed ditch along the dismantled tramway. An overflow weir is also proposed along the proposed ditch which can overflow towards the ditch south of the dismantled tramway.

- 8.1.5 The surface water drainage strategies include lined swales and attenuation ponds to control runoff as no infiltration SuDS features are considered due to the perched groundwater and potential contaminants. The proposed drainage strategy provides water quality and quantity benefits in accordance with current guidance and standards. Additional amenity and biodiversity benefits are included with the provision of seeded swales and ponds, which form part of the drainage strategy.
- 8.1.6 Water quality has been assessed using the 'Simple Index Approach' and the SuDS features proposed can provide enough mitigation for the proposed land use.

- 8.1.7 The proposed surface water and SuDS systems for each proposed catchment have been designed in accordance with standards, S1 to S6 detailed under 'Statutory standards for sustainable drainage systems designing, constructing, operating and maintaining surface water drainage system' (Welsh Government, 2018).
- 8.1.8 Providing the guidance presented within the Drainage Strategy Report is followed, Capita Redstart considers the proposed development suitable for the site.